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Abstract
Location-based analytics leverage accurate 

location awareness enabled by the fifth genera-
tion (5G) mobile technology standard, as well as 
the integration of heterogeneous technologies, to 
empower a plethora of new services for 5G verti-
cals and optimize the use of network resources. 
This article proposes an end-to-end architecture 
integrated in the 5G network infrastructure to pro-
vide location-based analytics as a service. Based 
on this architecture, we present an overview of 
cutting-edge applications in 5G and beyond, 
focusing on people-centric and network-centric 
location-based analytics.

Introduction
Location information is a pivotal service of 5G 
and beyond cellular networks and will enable a 
plethora of new location-dependent use cases. 
Indeed, since Release (Rel.) 16, the 3rd Gener-
ation Partnership Program (3GPP) is enhancing 
5G networks and devices with localization func-
tionalities targeting a very high level of location 
accuracy (with sub-meter accuracy 95 percent 
of the time or more) [1, 2]. Besides the localiza-
tion of users, there is a growing interest in loca-
tion-based analytics — the analysis of the location 
and behavior of people and objects in public 
areas, roads, and buildings — through dedicat-
ed infrastructures or by relying on user devic-
es [3–10]. While closely related, location-based 
analytics are not a mere extension of user equip-
ment (UE) localization, but rather a new para-
digm that enables a large variety of scenarios 
and applications.

Location-based analytics can be classified as 
people-centric and network-centric. People-cen-
tric analytics refer to the ensemble of information 
related to people’s presence and movements in 
physical spaces (e.g., people counting, dynam-
ic map creation, flow tracking, fusion of spa-
tiotemporal data with multimodal information, 
and anomalous behavior detection) [3–7]. Net-
work-centric analytics refer to the ensemble of 
information related to network operation (e.g., 
network planning, fault detection, resilience, 
location-aware diagnosis and troubleshooting) 
[8–10]. On one hand, the ability to operate 5G 
networks in both sub-6 GHz and millimeter-wave 
(mmWave) frequency bands and the use of mas-

sive antenna arrays significantly extend the capa-
bilities of cellular localization. On the other hand, 
such new 5G features as beamforming, multi-con-
nectivity, and the adoption of new spectrum 
portions pose new challenges for autonomous 
network management. 

The provision of location-based analytics 
relies on complex features and mobility patterns 
extracted from raw location-related data inher-
ent in physical and network events. This calls for 
an extension of the 5G network functions (e.g., 
the scheduler) to interface with location data in a 
multi-layer and flexible architecture that:
•	 Facilitates secure sharing and reuse of accu-

rate location and context data for diverse 
localization services

•	 Combines the different network functions for 
the extraction of location-based analytics

There is a unique opportunity for network pro-
viders to make location-based analytics a net-
work-native service in 5G and beyond, which will 
be pivotal in creating new disruptive services and 
optimizing network performance.

This article proposes a full-stack architec-
ture integrated in the 5G network infrastruc-
ture to enable a plethora of services requiring 
location-based analytics. Such analytics rely on 
enhanced positioning provided in 5G together 
with heterogeneous data. Finally, we present a 
set of case studies on people-centric and net-
work-centric analytics that can be implemented 
with the proposed architecture.

End-to-End Architecture
The 5G system consists of the next-generation 
radio access network (5G-RAN) and the 5G core 
network. The 5G-RAN is a distributed set of base 
stations, or gNBs, managing efficient use of the 
radio spectrum. The 5G core operates via net-
work functions and service-based interfaces. Net-
work virtualization decouples network functions 
from the hardware on which they operate, lead-
ing to a more dynamic system that can be con-
trolled by software. 

We propose new system functionalities inte-
grated in the 5G network infrastructure to allow 
operators and service providers to expose loca-
tion-based analytics as a service. Such functional-
ities leverage 5G network information combined 
with heterogeneous data from other radio access 
technologies [2]. 
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Location-Based Analytics in 5G and Beyond

5G FOR VERTICALS: FROM THEORY TO PRACTICE AND BEYOND

The authors propose an end-to-
end architecture integrated in 
the 5G network infrastructure to 
provide location-based analytics 
as a service. Based on this archi-
tecture, they present an overview 
of cutting-edge applications in 
5G and beyond, focusing on peo-
ple-centric and network-centric 
location-based analytics.
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Localization and Analytics Functions
We propose the use of virtualization techniques 
to run the localization and analytics functions as 
virtual functions, with the support of both tradi-
tional virtual machine and cloud-native container 
based techniques. This provides an augmentation 
of the 5G architecture by leveraging the Europe-
an Telecommunications Standards Institute (ETSI) 
network function virtualization framework, which 
represents the 3GPP standard for operators to 
deploy 5G network functions in virtualized infra-
structures. This augmentation of the 5G architec-
ture offers operators and service providers the 
possibility to expose new location-based analytics 
to third parties and exploit location data for smart 
network management.

Figure 1 shows a comprehensive view of the 
proposed system architecture and includes details 
of how the location-related functions coexist on 
top of a virtualized infrastructure for on-demand 
deployment in the form of localization services. 
The proposed system is compliant with the 3GPP 
5G core architecture as it makes use of a ser-
vice-based architecture integrated in the 5G net-
work functions and augments it with atomized 
and independent location functions. Specifically, 
the system is aligned with the 3GPP enhanced 
Location Service (eLCS) architecture, which 
specifies 5G network functions, interfaces, and 
workflows for location-related functionalities [1]. 
Here, the location management function (LMF) 
coordinates and calculates the user position for 
location-based services requested by external or 
internal eLCS clients, including other network 
functions.

In our proposed system architecture, the 
localization enablers provide the other system 
functions with UE location data (e.g., coordi-
nates, velocity, direction). In particular, localiza-
tion enablers implement the LMFs deployed on 
demand to fulfill specific performance require-
ments: integration of 5G New Radio (NR), glob-
al navigation satellite system (GNSS), and WiFi, 
as well as device-free localization. Such LMFs 
provide location data to the location data ana-
lytics functions (LDAFs) for the provision of loca-
tion-based analytics. LDAFs can be considered 
as LCS clients and use location data from LMFs. 
People-centric and network-centric LDAFs apply 
descriptive, predictive, prescriptive, and diagnos-
tic algorithms to perform statistical analysis on 
location and network data, assess future possi-
ble conditions, search for actions to be taken, 
and determine the causes for specific conditions, 
respectively. Finally, the integrity, security, and 
privacy functions provide authentication and 
advanced cryptographic techniques on the local-
ization and analytics data to be exposed toward 
external applications, secure conditional sharing 
techniques, and data management policies (e.g., 
anonymization, obfuscation).

Localization Analytics as Service APIs
The localization analytics are exposed as services 
through dedicated application programming inter-
faces (APIs). A service can be seen as a combina-
tion of multiple localization-related functions (i.e., 
LMFs and LDAFs) that need to be wired in the 
form of pipelines to provide the desired output 
requested by external applications. This requires 

a workflow execution engine (management and 
orchestration) to translate service requests into 
functional steps that involve the localization relat-
ed functions.

The localization analytics output is then 
exposed through localization analytics service 
APIs as either an on-demand RESTful service or 
a continuous data stream. This is managed via 
dedicated access control functions within the 
API layer. The overall approach’s main goal is 
to provide a flexible and composable platform 
where the various localization functions can be 
combined while facilitating sharing and reuse of 
some of the key functionalities (e.g., those for the 
localization enablers or data security and privacy) 
across different localization services.

5G Localization
This section presents the ongoing 3GPP standard-
ization activities and research in the area of 5G 
localization to better define the eLCS involved 
within the proposed architecture. We also give 
an overview of the main technologies that can 
be combined with 5G location data to improve 
localization.

5G Standardization and Metrics
The 5G NR was defined in two phases (Phases 1 
and 2) corresponding to 3GPP Rels. 15 and 16. 
Localization in 5G was introduced in Rel. 15 for 
non-standalone operation (5G networks aided 
by existing 4G infrastructure) and continued in 
Rel. 16 for standalone NR operation, with further 
enhancements in Rel. 17. 5G localization mainly 
relies on measurements of single-value metrics, 
such as downlink and uplink time difference of 
arrival (DL/UL-TDoA) and beamforming angle 
of arrival (AoA) or angle of departure (AoD). 
Depending on the use case, some received sig-
nal strength indicators such as the reference sig-
nal received power (RSRP) and reference signal 

FIGURE 1. System architecture for location-based analytics as a service.
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received quality (RSRQ) can also be used for 
positioning. 

The use of richer information within the local-
ization process (e.g., exploiting multipath or 
prior information about the environment) can be 
extended to use soft information [11] to signifi-
cantly improve the localization accuracy in 5G 
scenarios, especially in challenging environments.

Heterogeneous Location Data Fusion
The fusion of radio access technology (RAT)-de-
pendent and RAT-independent location data in a 
hybrid fashion can help to meet the demanding 
localization requirements on accuracy, latency, 
and integrity level for 5G use cases. 

GNSS is supported in 3GPP for 5G, and com-
bination with cellular positioning is needed for 
many use cases in which one technology is not 
fully operating or has limited coverage, such as in 
tunnels or urban canyon scenarios. Studies show 
that use of even only one high-accuracy 5G tim-
ing measurement can significantly improve hori-
zontal positioning accuracy with respect to GNSS 
standalone solutions [12].

Concerning the integration of other RAT-inde-
pendent positioning methods, the combination 
of ranging measurements for a UE from multi-
ple WiFi access points (APs) and 5G NR cells, for 
both indoor and outdoor scenarios, is envisaged 
to accomplish high-accuracy positioning. Howev-
er, in 5G networks, the location server may not 
have the information about the WiFi APs’ exact 
locations; this limits the usefulness of WiFi data 
at the location server. In such cases, for instance, 
smartphone movements can be estimated using 
WiFi Fine Time Measurement ranging measure-
ments [13]. These data can be integrated in a 
network-based location system defined in 3GPP, 
where the network collects timing and angle mea-
surements sent from the UE.

In this context, the large bandwidth of 
mmWave networks not only enables very high 
accuracy positioning, but enables simultaneous 
localization and mapping (SLAM) through AoA 
information. SLAM in mmWave networks relies 
on anchor location estimation, device localization, 
and environment mapping for both physical and 
virtual anchors. A low-complexity SLAM algorithm 
fully integrated with an mmWave communication 
system is feasible with median error smaller than 
0.3–0.5 m [14].

Device-Free Localization
Device-free localization relies on the detection 
and analysis of signals reflected by device-free tar-
gets (persons, vehicles, etc.) as in radar networks. 
Such networks sense the wireless environment to 
infer the location of targets and can take advan-
tage of any modulated signal at any frequency of 
operation.

The ultra-low-latency connectivity and finer 
radar range resolution enabled by 5G are paving 
the way to the use of 5G NR waveforms for joint 
radar and communication. As an example appli-
cation, a 5G integrated radar service has been 
proposed in [15] for future vehicle networks. In 
this context, the use of mmWave technology is 
particularly relevant since the reduced wavelength 
allows the use of massive arrays with electronic 
steering capabilities, thereby improving the direc-

tionality properties for detection and tracking of 
device-free targets.

From Localization to Analytics
This section presents a set of case studies for peo-
ple-centric and network-centric location-based 
analytics. They are conceived for implementation 
as LDAFs (Fig. 1) for compatibility and direct inte-
gration in the 3GPP 5G core architecture. These 
examples only cover a subset of possible use 
cases, and are introduced to showcase the sys-
tem functionalities in the envisioned architecture, 
which is aligned with the ongoing work in 3GPP 
and could be further extended based on the tech-
nical implementation of use cases. 

People-Centric Location-Based Analytics
People-centric analytics provide insights and 
empower domains such as smart cities and trans-
portation, enabling a number of 5G services.

Mobility Clustering: This use case investigates 
the mobility patterns in large-scale mobility data-
sets, which can be implemented within the pro-
posed architecture using 5G LMFs as input. Such 
datasets exhibit challenges in terms of granularity, 
regularity, and accuracy, which motivate the use 
of modern deep learning techniques to be imple-
mented as LDAFs. We investigate recurrent-net-
work-based sequence-to-sequence autoencoders 
[4] for human mobility analysis. We conduct unsu-
pervised spatiotemporal clustering on the Open-
PFLOW dataset [3], which represents walking, 
biking, and commuting mobility in the city of 
Tokyo for 24 h at regular 1 min timesteps. The 
autoencoding model is formed by stacking layers 
of gated recurrent units in an encoder/decoder 
structure.

After training, spatiotemporal aspects of the 
mobility data are encoded in the latent space 
represented by the encoder output. There we 
apply principal component analysis, and then use 
the K-means method to detect clusters. Figure 2 
shows the process applied to walking trajectories 
from [3]. The visualization on the actual Tokyo 
map indicates potential trends such as regional, 
sub-regional, and cross-regional mobility con-
centration, as well as patterns of stationary and 
non-stationary behavior across different time peri-
ods. The fusion of heterogeneous technologies 
and contextual information enabled by the pro-
posed end-to-end architecture, such as network 
conditions, events, and geographic labels from 
the surrounding environment, will further improve 
such mobility analytics (e.g., with dedicated net-
work functions for anomaly detection and the 
interplay with other aspects of human activity). 
The proposed approach also builds on the archi-
tecture’s ability to maintain a steady influx of data 
in order to validate, update, and retrain the pro-
posed model.

Group Detection and People Counting: There 
is a growing interest in designing crowd-centric 
device-free [5] and device-based methods for 
group detection and people counting that infer 
the number of targets directly from the measured 
data without estimating their locations. 

The Group-In method [6] is an LDAF that 
provides group inference using as input the wire-
less traces collected by the WiFi LMF. A previ-
ous Group-In study [6] used experiments in an 

GNSS is supported in 3GPP 
for 5G and the combination 
with cellular positioning is 

needed for many use cases in 
which one technology is not 
fully operating or has limited 
coverage, such as in tunnels 
or urban canyon scenarios. 

Studies show that use of 
even only one high-accuracy 
5G timing measurement can 

significantly improve horizon-
tal positioning accuracy with 
respect to GNSS stand-alone 

solutions.
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indoor setting but did not consider the application 
of Group-In at a large scale using WiFi datasets. 
In this article, we apply the Group-In algorithms 
to a city-scale dataset [7] that is a result of the 
pilot study in Gold Coast, Australia. The Group-In 
LDAF provides the following localization analytics 
APIs:
1. Group detection
2. Long-term group detection
3. Crowd size
Group detection infers people groups during 
short time intervals (e.g., 2 min), long-term link-
ages aggregate group detection for each pair 
of people based on frequency of appearance in 
the same groups over a longer time interval (e.g., 
weekly), and crowd size shows the number of 
people at the time intervals.

As the city-scale dataset does not contain 
ground truth values for people groups, we select 
a parameter set based on controlled lab experi-
ments. The fixed (selected) parameters provide 
satisfactory performance in almost all scenari-
os (more than 80 percent pairwise and Jaccard 
accuracy except when the groups of devices 
are consistently closer than 2 m to each other). 
Moreover, the performance is cross-validated by 
dividing the controlled datasets into five equal 
data chunks and applying the same parameters to 
data chunks without re-calibration. It is possible to 
apply analytics in the large-scale dataset without 
additional training since no explicit training phase 
is needed due to the unsupervised graph-cluster-
ing-based approach. Through ground-truth data, 
more precise calibration of the parameters could 
be achieved. We observe that it is computational-
ly feasible to apply Group-In at a large scale, infer 
groups out of more than 100 people, and gener-
ate insights in near real time.

Figure 3 shows the results of applying Group-
In to a one-week trace (10 min time interval, 30 
s sampling time). The preliminary results include 
existence of static WiFi devices as well as mobile 
WiFi devices that are in vehicles (on the road). 
Moreover, a single person is considered as one 
group. As a result, the most commonly observed 
group was a one-person group, followed by 
two-people groups, and so on. As expected, we 
observe a positive correlation between the num-
ber of groups and the number of people. The 
data follows a daily trend with a peak value (up 

to 110 people) every day. Results indicate that 
Group-In is a promising technique for the anal-
ysis of city-scale data for long periods. Accurate 
localization through 5G will lead to more granular 
insights for people counting and group behavior 
identification without additional computational 
complexity. 

Network-Centric Location-Based Analytics
Two use cases are now presented to show the use 
of location-based analytics for network manage-
ment: network optimization for efficient service 
provisioning considering the dynamic changes in 
the network; and location-aware diagnosis/trou-
bleshooting for the maintenance of the cellular 
network by identifying problems as well as ensur-
ing the resilience of the network itself.

Network Optimization: An example of 
location-aware network optimization is pencil 
beamforming based on the estimated UE posi-
tion. Pencil beamforming relies on the location 
information of the LMF communicated to net-
work-centric LDAFs, but unlike other types of ser-
vices, it does not interface third parties via APIs, 
but communicates these analytics to other man-

FIGURE 2. Pedestrian mobility autoencoder-based clustering in Tokyo.

FIGURE 3. People counts and number of groups observed every 10 minutes based on wireless activities in the Gold 
Coast. The results are shown for a one-week period (as a function of equally spaced time units).
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agement network functions for the gNB beam 
management within the 5G-RAN. We have per-
formed a preliminary analysis on the impact of 
pencil beamforming on the quality of service 
(QoS) of 5G networks and the electromagnetic 
field (EMF) exposure. To this aim, an open source 
simulator has been developed [9] that is able to 
synthesize the traffic beams for each gNB, in both 
direction and beamwidth, by exploiting UE local-
ization accuracy. Each beam is directed toward 
the center of a circular area in which the UE is 
assumed to be, where the diameter of this circular 
area indicates the uncertainty level for UE loca-
tion estimate. Different from [9], we summarize 
here the main insights about the location-aware 
management of the pencil beams, by analyzing 
average EMF and throughput over the territory.

Table 1 presents the values of the average EMF 
(V/m) and average throughput (Mb/s) according 
to different location uncertainty levels, together 
with the confidence intervals (C.I.). Results show 
that an increase of the location uncertainty level 
results in higher EMF (due to possible overlap 
of the wider beams) and lower throughput (the 
higher beamwidth lowers the beam’s directivity). 
Therefore, higher localization accuracy helps to 
reduce the EMF exposure while increasing the 
throughput.

Network Diagnosis: Location-aware network 
diagnosis can rely on contextualized indicators 
(i.e., time-series metrics combining location and 
cellular network measurement). Such indicators 
are extracted from the network measurements 

reported by users in different areas of interest, 
including cell coverage, center, and edge. This 
concept can be especially beneficial for 5G ultra-
dense scenarios, characterized by high dynamic-
ity of users and increased demand due to the 
reduced coverage areas and inter-site distances 
[10].

Supported by the high-accuracy localization 
produced by the 5G LMFs and provided to the 
network-centric analytics (LDAFs), of which the 
contextualized indicators are part, novel mecha-
nisms for failure diagnosis can be implemented 
and provided as applications for network opera-
tors. In this way, and going beyond the previously 
cited approach [10] (which worked with manually 
defined areas and simple Bayes classifiers), novel 
developments support the complete automation 
of the definition of the areas of interest by esti-
mating cell coverage area, center, edge, influenc-
ing area on other cells (the area that will be most 
likely be covered by the cell in case of a failure in 
its neighbor), and area being influenced by each 
of their neighbors. This has led to an increased 
number of available contextualized indicators that 
can be used for diagnosis.

Figure 4 compares the performance of failure 
diagnosis mechanisms using only classic metrics 
with the use of both classic and contextualized 
metrics (fusion). This is done for the indoor ultra-
dense scenario with 12 picocells and multiple 
modeled failures presented in [10]. Network 
diagnosis is performed based on three classifiers, 
namely K-nearest neighbors, discriminant analysis 
classification, and multiclass error-correcting out-
put codes classification. Results show that for the 
different classifiers, the use of contextualized data 
considerably decreases the diagnosis error rate 
with respect to only using classical metrics, thus 
providing a powerful tool for 5G failure manage-
ment. The availability of localization data for the 
generation of the location-enriched metrics allow 
the median diagnosis error rate for the three clas-
sifiers to be reduced significantly, going below 1 
percent for disc and multiclass. This demonstrates 
the relevance of location-aware information for 
improving failure management of 5G networks. 
The proposed network management approaches 
can use different types of data. For example, min-
imization of drive-test (MDT) data can be direct-
ly integrated in the proposed approaches (e.g., 
in the calculation of contextualized indicators). 
Therefore, when MDT traces are available, they 
could help in both obtaining more accurate loca-
tion-based analytics and improving network man-
agement and diagnosis. 

Conclusion
This article has presented a new system architec-
ture for the provision of location-based analytics 
as a service, which will enable a plethora of new 
people-centric and network-centric applications 
for 5G verticals. The proposed system architecture 
is an augmentation of the 5G architecture, where 
network and user data from heterogeneous tech-
nologies are combined to extract on-demand ana-
lytics that can serve third-party applications and 
be used to optimize the network performance. 
Example analytics for case studies involving peo-
ple grouping, mobility clustering, network opti-
mization, as well as network diagnosis have been 

TABLE 1. Average EMF (V/m) and average throughput (Mb/s) for different values of location uncertainty level.

.. 2 m 4 m 8 m 16 m 20 m

Avg. EMF (V/m) 0.797 1.558 2.948 4.700 5.509

EMF C.I. (V/m) 0.795
0.798

1.555
1.561

2.944
2.952

4.694
4.706

5.502
5.516

Avg. throughput (Mb/s)
422.001 138.593 43.518 13.159 9.255

411.683 134.197 41.776 12.583 8.860

Thr. C.I. (V/m) 432.318 142.999 45.261 13.735 9.650

FIGURE 4. Comparison between the diagnosis error rate (DER) obtained by classic and location-enriched contextu-
alized metrics in an ultra-dense scenario, using k-nearest neighbor (KNN), discriminant analysis classification 
(disc), and multiclass error-correcting output codes (ECOC) classification.
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illustrated, showing the effectiveness of the pro-
posed architecture. 
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The proposed system archi-
tecture is an augmentation 

of the 5G architecture, where 
network and user data from 
heterogeneous technologies 

are combined to extract 
on-demand analytics that 

can serve third-party applica-
tions and be used to optimize 

the network performance.
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