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Abstract
Wireless energy transfer (WET) is a 

ground-breaking technology for cutting the last 
wire between mobile sensors and power grids 
in smart cities. However, WET only offers effec-
tive transmission of energy over a short distance. 
Robotic WET is an emerging paradigm that mounts 
the energy transmitter on a mobile robot and 
navigates the robot through different regions in 
a large area to charge remote energy harvesters. 
However, it is challenging to determine the robot-
ic charging strategy in an unknown and dynamic 
environment due to the uncertainty of obstacles. 
This article proposes a hardware-in-the-loop joint 
optimization framework that offers three distinctive 
features: efficient model updates and re-optimiza-
tion based on the last-round experimental data; 
iterative refinement of the anchor list for adapta-
tion to different environments; and verification of 
algorithms in a high-fidelity Gazebo simulator and a 
multi-robot testbed. Experimental results show that 
the proposed framework significantly saves WET 
mission completion time while satisfying energy 
harvesting and collision avoidance constraints.

Introduction
Powering massive Internet of Things (IoT) devices 
is a fundamental issue to realize intelligent mon-
itoring, detection, manufacturing, and control in 
future smart cities. However, it has always been 
regarded as a great challenge due to the limit-
ed size, vast volume, and sporadic nature of IoT 
devices. Recently, wireless energy transfer (WET) 
has been considered as a viable solution that 
deploys energy harvesters (EHs) on IoT devic-
es such that the received radio frequency (RF) 
signals can be converted into electrical energies 
[1]. The harvested energy can be used for subse-
quent uplink communication with wireless pow-
ered communication technology [2]. Compared 
to conventional energy-harvesting technologies 
such as solar, thermal, vibration, and magnetic 
resonance coupling, the advantages of WET are 
three-fold:
1. It involves no wire, no contact, and fewer 

batteries, and represents a controllable ener-
gy supply [1].

2. The same RF circuitry for wireless communi-

cations can be reutilized for WET [3].
3. RF signals facilitate one-to-many charging 

due to the broadcast nature of the wireless 
medium [3].
Current WET products (e.g., Powercast) only 

support short-range energy transmissions. Robot-
ic WET [4–7] emerges as a promising solution, 
which mounts the energy transmitter on a mobile 
robot and navigates the robot through differ-
ent regions in a large area in order to approach 
different EHs at different time slots. Compared 
to unmanned aerial vehicle (UAV) WET [8, 9], 
ground robots do not consume any propulsion 
energy to maintain stable hovering. For instance, 
the motion power of a Turtlebot is 9.3 W (i.e., 7 
hours of operation time with a 14.8 V 4400 mAh 
battery), while the propulsion power of a UAV 
is above 100 W [8, 9]. However, ground robots 
need to face the complex collision avoidance 
problem on the ground, as illustrated in Fig. 1. 
Therefore, UAV WET is suitable for time-sensi-
tive applications, while robotic WET is suitable 
for energy-sensitive applications. Existing algo-
rithms for robotic WET can be categorized into 
two types: global planning algorithms [4–6] and 
local planning algorithms [10–12]. Global plan-
ning algorithms determine the anchor points, 
routes, and resources (e.g., charging time and 
beam directions at each anchor point), while local 
planning algorithms periodically adjust the route 
for collision avoidance in a dynamic environment. 
These global and local planning algorithms have 
been studied separately for robotic WET systems. 
Therefore, it is necessary to integrate both for 
more efficient robotic charging, i.e., achieving 
smaller mission completion time while satisfying 
the energy harvesting and collision avoidance 
constraints.

Generally, it is challenging to determine the 
robotic charging strategy in an unknown and 
dynamic environment due to the uncertainty of 
obstacles. First, effective global and local plan-
ning algorithms are based on accurate mathemat-
ical models (e.g., robot motion time model). But 
parameters (e.g., distance matrix) in these models 
could be inaccurate in dynamic environments. 
Second, joint optimization of anchors, routes, 
and resources is needed to adapt the planned 
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route to different environments, which can be 
computationally expensive. Finally, simulators 
should support close-to-reality features to veri-
fy the robustness of algorithms against practical 
uncertainties.

This article provides three main contributions 
to address the above challenges. Specifically, a 
hardware-in-the-loop (HIL) robotic WET system 
design is proposed, which allows efficient model 
updates and re-optimization based on the last-
round experimental data. Furthermore, a joint 
optimization framework based on the K-Cheby-
chev density-based spatial clustering of applica-
tions with noise (DBSCAN) and the successive 
local search is proposed to adjust the anchor list 
in different environments. Finally, all the algo-
rithms are implemented and tested in a high-fidel-
ity Gazebo simulator and a multi-robot testbed. 
The simulator and the testbed together form a 
digital twin cyber-physical platform. Extensive 
results based on the digital twin platform are pro-
vided to verify the effectiveness of the proposed 
HIL joint optimization framework. In the follow-
ing, we first review the conventional robotic WET 
technologies before introducing our designs and 
implementations.

Conventional Robotic Wireless Energy Transfer
Robotic WET minimizes the total mission comple-
tion time (i.e., the sum of moving and charging 
time) by planning the anchor positions, routes, 
charging time, and energy beams, while satisfying 
the energy harvesting requirements at all IoT devic-
es [4–6]. To achieve this goal, conventional robotic 
WET algorithms consist of four sequential steps:
•	 Step 1: Modeling. Measurements are usually 

stored as look-up tables, which cannot be 
directly used for subsequent optimization. 
We can transform the measurements into 
mathematical models, and the parameters in 
these models are obtained by curve fitting.

•	 Step 2: Anchor point generation. This divisde 
the EHs into multiple clusters and assigns an 
anchor for each cluster where the robot will 
stop for a while to charge the surrounding 
EHs.

•	 Step 3: Route planning. The robot needs to 
visit the anchor points generated from Step 
2. Different routes (i.e., sequences of anchor 
points) result in different motion time.

•	 Step 4: Resource allocation. The robot needs 
to determine the amount of time spent at 
each anchor point based on the models, 
anchors, and routes in Steps 1–3. To fully 
exploit the degrees of freedom in the spatial 
domain, pencil-like energy-focusing beams 
can be shaped and steered toward the target 
devices.

In the following, we review the existing methods 
involved in each step.

Mathematical Models
To guarantee sufficient harvested energy at all 
nodes, the robot may visit and charge the IoT 
devices one by one. However, this requires an 
exceedingly long time spent in motion [4]. A 
more time-efficient strategy is to let the robot 
simultaneously charge multiple devices at only a 
few positions. These positions are called anchor 
points. The robot motion time model measures 

the moving time from any anchor to another, 
which is used for subsequent anchor generation 
and route planning later. This model is described 
by a directed graph, where the vertices represent 
the anchor points and the directed edges repre-
sent the feasible routes. The route length is rep-
resented by a distance matrix, with the element 
at the mth row and jth column representing the 
distance from anchor m to anchor j. The motion 
time is calculated as distance over velocity.

To implement resource allocation, it is neces-
sary to model the energy loss of robotic WET. In 
general, wireless energies experience attenuations 
twice before being converted into electrical ener-
gies: signal propagation in the air and RF-to-cur-
rent conversion in the EH.
•	 The wireless channel model is a function of 

the received RF power with respect to the 
transmitted RF power [9]. It can be cat-
egorized into statistical, deterministic, and 
quasi-deterministic methods. Statistical 
models are low-complexity but inaccurate 
parameterized models. Deterministic mod-
els (i.e., ray tracing) launch rays in various 
directions and traces the propagation, refec-
tion, scattering, and absorbtion using the 
electromagnetic field. However, it requires 
exceedingly long modeling time. Most indus-
trial standards adopt quasi-deterministic 
channel models, which obtain hyper-param-
eters for different scenarios using ray tracing 
and generate wireless channels using some 
statistical method.

•	 The energy harvesting model is a function 
of the harvested power with respect to 
the received RF power [1]. This function is 
nonlinear, since an energy harvesting cir-
cuit consists of nonlinear elements such as 
diodes. According to [14], the energy har-
vesting model should satisfy the monotonic-
ity, sensitivity, nonlinearity, and saturation 
properties. Energy harvesting models can 
be categorized into piecewise linear model, 
logistic model, and sensitivity-based logis-
tic model [1]. The former two models are 
low-complexity but only support partial prop-
erties. The last model supports all properties 
but is a nonconvex function that may cause 
additional computational costs during the 
subsequent steps [14].

FIGURE 1. A robotic WET system with dynamic obstacles.

Target 
Velocity

Collision 
Avoidance Velocity

Collision!

WET Robot

Energy Harvesters

Energy Beam

Low Energy Cost
��Battery: 14.8V 

and 4400 mAh
��Total Operating 

Time: 7 hours

Robotic WET minimizes the 
total mission completion 

time by planning the anchor
positions, routes, charging 

time, and energy beams, 
while satisfying the energy 

harvesting
requirements at all IoT 

devices.



IEEE Communications Magazine • February 20224

Anchor Point Generation

Anchor point generation can be viewed as a spa-
tial clustering problem [6, 13]. In general, clus-
tering for robotic WET can be categorized into 
distance-based and density-based methods. In dis-
tance-based methods (e.g., k-means clustering), a 
distance metric is used to determine the similarity 
between EHs. The method produces compact and 
spherical clusters around a set of centroids that 
are very sensitive to outliers. On the other hand, 
density-based methods (e.g., DBSCAN) adopt a 
density threshold to distinguish the important EHs 
from the outliers. As such, it can deal with unbal-
anced clusters and outliers pretty well. Different 
from k-means clustering, DBSCAN generates arbi-
tary shapes, which provide higher flexibility than 
k-means for anchor point generation.

Route Planning
With the positions of anchor points, the next step 
is to determine the visiting sequence of these 
points via route planning. The route planning 
problem is a constrained discrete optimization 
problem [4, 5], where the constraints guarantee: 
1. The robot returns to the starting point.
2. The robot visits the selected vertices.
3. The planned path is connected.
Conventionally, tree search algorithms such as 
branch-and-bound (B&B) can be adopted for sys-
tematically pruning ineffective solutions, leading 
to significant reduction of the computational com-
plexity compared to exhaustive search while guar-
anteeing optimality. However, its complexity is 
still high since the solution space grows exponen-
tially with the number of anchor points. Imitation 
learning emerges as a promising solution to solve 
the large-scale discrete optimization problem. The 
core idea is to treat route planning as a classifica-
tion problem and adopt a deep neural network to 
mimic the behavior of tree search algorithms.

Resource Allocation
When the WET robot moves along the optimized 
route, the remaining factors that impact the sys-
tem performance are the resources allocated at 
each anchor point. Common resources include 
the charging time (time-domain) and the energy 
beams (angle-domain) [14]. For charging time 
allocation, different anchor points along the route 
should be jointly considered. This is because the 

charging time at the current location might have 
a long-term impact on future locations, as the 
harvested energy at IoT devices can be stored 
in batteries. For beam allocation, there are two 
types: multi-antenna-based and directional-an-
tenna-based. In particular, multi-antenna energy 
beamforming adjusts the power and phase at 
each antenna to form the desired beam direc-
tions. In this case, the harvested energy is the mul-
tiplication of the charging time and the harvested 
power, which introduces non-convexity to the 
resource allocation problem. Advanced optimi-
zation tools such as majorization minimization 
[14] (which iterates between solving and finding a 
surrogate problem of the primal problem) can be 
used to obtain suboptimal solutions. On the other 
hand, directional-antenna beamforming has a sec-
tor shape, and the robot needs to rotate itself to 
alter the beam direction. Using exhaustive search, 
the beam direction can be selected from a finite 
codebook with pre-designed beam patterns.

Proposed Hardware-in-the-Loop Joint 
Optimization Framework

System Description
Existing schemes assume that the WET robot has 
perfect knowledge of the environment, and the 
planned route can be directly adopted. In prac-
tice, however, the WET robot needs to perform 
periodic sensing and avoid collisions with the 
surrounding obstacles. This implies that the WET 
robot must adjust its route online, leading to a 
mismatch between the planned and actual routes. 
To mitigate the mismatch, the HIL joint optimi-
zation framework is proposed in Fig. 2, which 
supports interactions among experiments, simula-
tions, modeling, and planning based on the robot 
operating system (ROS) communication. The goal 
is to allow efficient model updates and re-optimi-
zation based on the last-round experimental data. 
For example, the initial motion time between two 
anchors is estimated as straight line distance over 
velocity. But if the robot takes a detour due to the 
obstacles between the two anchors, the actual 
motion time would be longer than the estimated 
time. With feedback of the actual motion time 
obtained from experiments, the motion time 
model becomes closer to reality, thereby improv-
ing the system performance.

Specifically, the system in Fig. 2 operates in 
an iterative manner. Each iteration consists of the 
following operations:
•	 Offline Planning Stage. First, the models 

are fitted to the measurements obtained 
from the last-round experimental validation. 
Measurements may include the amount of 
motion time when the robot travels from 
one anchor point to another, the channel 
fading vs. the charging distance, and the 
harvested power vs. the incident power. 
Then the robot explores the environment 
to obtain the current positions of EHs and 
building a static map based on simultaneous 
localization and mapping (SLAM). Finally, 
with the fitted models and positions of EHs, 
the global planner generates the charging 
policy (including route, time, beam) offline.

•	 Online Validation Stage. First, the robot fol-

FIGURE 2. Hardware-in-the-loop joint optimization framework for robotic wireless energy transfer.
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lows the target route produced in the offline 
stage. Then the robot performs object detec-
tion periodically using onboard sensors. The 
sensor outputs (i.e., ego-positions, ego-ve-
locities, and poses of other obstacles) are 
shared to the industrial computer via ROS 
communication for local planning. Finally, 
the local planner adjusts the route constantly 
to avoid collisions. This is achieved by com-
puting a velocity vector that is closest to a 
target route provided by the global planner, 
while taking into account the robot kinemat-
ics and the chances of collisions. The online 
stage is implemented in real environments 
or close-to-reality simulators, which would 
generate new measurements for next-round 
offline planning.

Below, we provide details of the new modules 
and features supported by the framework.

Joint Optimization for Global Planning
As shown in the lower middle of Fig. 2, the pro-
posed framework adopts a joint optimization 
framework for global planning, which has two 
major differences compared to conventional algo-
rithms. First, we adopt the K-Chebychev DBSCAN 
method instead of k-means clustering for anchor 
point generation. This is because k-means cluster-
ing can minimize the sum distance between the 
anchor point and its associated EHs. However, for 
WET systems, the key factor affecting the system 
performance is the distance from each anchor to 
the farthest EH in its cluster [13]. Therefore, after 
executing the DBSCAN algorithm, we re-compute 
the anchors’ positions as Chebyshev centers via 
min-max optimization [13]. Furthermore, if the 
transmitter adopts a directional antenna, the cover-
age of an energy beam should also be considered 
(e.g., by adding an energy beamforming constraint) 
[1] to the min-max optimization problem [13]. Sec-
ond, we add an anchor point selection module to 
prune ineffective positions and navigate the robots 
away from dense traffic when possible. This is real-
ized via joint optimization based on the iterative 
local search framework [5] at the global planning 
layer. The algorithm iterates between selecting a 
subset of anchor points among all the candidates 
and executing the route planning and resource 
allocation algorithms. As such, the anchor positions 
are no longer fixed as in conventional robotic WET, 
but are adaptively optimized in different environ-
ments.

Local Planning for Collision Avoidance
Conventional robotic [4–6] or UAV-aided [8, 9] 
WET schemes ignore the local planning problem. 
In practice, however, the robot must avoid colli-
sions with any object residing in the environment, 
while making progress toward the next anchor 
point for wireless charging. This is realized by the 
local planner shown in the lower right of Fig. 2. 
The local navigation algorithms depend on the 
mobility of obstacles. If the observed obstacles 
are static, the key is to compute a velocity vec-
tor for the robot while taking into account the 
robot kinematics and dynamics. If the obstacles 
are moving, the above approach can be applied 
by extrapolations of the observed velocities to 
estimate the future positions of obstacles. The 
problem of collision avoidance becomes challeng-

ing when the obstacles are not simply moving at 
a constant speed, but are also intelligent decision 
making agents that try to avoid collisions as well. 
This is because each robot can only estimate the 
positions and velocities of other agents but can-
not know their reactions and intents. In this case, 
each robot needs to select a velocity outside the 
reciprocal velocity obstacle (RVO) region induced 
by other agents [12]. It has been proved that the 
RVO provides a sufficient and necessary condi-
tion for a robot to avoid collisions with an obsta-
cle moving at a known velocity but unknown 
intention [10]. Note that the RVO scheme can be 
replaced by deep reinforcement learning (DRL), 
which can achieve higher efficiency under a prop-
erly tuned reward function and a specific environ-
ment. DRL adopts a policy network to map the 
environment state into the robot motions and is 
trained to converge to the actions with the max-
imum cumulative reward over several episodes. 
However, the DRL-based approaches are compu-
tationally expensive and sensitive to sensor noises.

Hardware-in-the-Loop for Re-optimization
The key feature of HIL is that algorithms are tested 
in close-to-reality simulators or real-world environ-
ments in order to make re-optimization possible 
[15]. For simulation, we adopt Gazebo [10, 12], 
a high-fidelity robotic evaluation platform that 
adopts Open Dynamics Engine for motion gen-
eration of the robots and Open Graphics Library 
Engine for the visualization of the world. On top 
of the two engines, Gazebo realizes each phys-
ical object as a model that is composed of rigid 
bodies, joints, sensors, and interfaces for client 
programs to control the model. In our experi-
ment, the WET robot is modeled as a combina-
tion of various bodies, where different bodies 
are assigned different mass, friction, and bounce 
features. The hinge joints among the bodies of 
a robot provide the physical mechanism to form 
kinematic and dynamic relationships such as 
rotations. The EHs are modeled as cylinders. The 
Gazebo implementation is shown in Fig. 1.

As for the experiment, we adopt the Turtle-
bot2 platform, equipped with an ultra-wideband 
(UWB) sensor that produces the echo-location 
of the robot. The onboard industrial computer 
controls the chassis as well as the direction of 
Powercast transmitter TX91503. A mobile battery 
powers the chassis, sensor, computer, and trans-
mitter. Communication among these devices is 
implemented via ROS, which is a distributed com-
munication framework supporting integrative and 
heterogenous systems [12]. In ROS, all processes 
that perform computations are implemented as 
nodes, where a master node controls the glob-
al system and slave nodes manage programs on 
each device. ROS offers a message passing inter-
face that provides inter-process communication 
among these nodes via topics. A node sends a 
message by publishing it to a given topic, and any 
node interested in the message can subscribe to 
the associated topic.

Experimental Validation
We consider the task of 1 WET robot charging 20 
EHs. The transmit power of Powercast TX91501 is 
3 W at 915 MHz. The transmit antenna is direc-
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tional, and its beamwidth is 130°. The codebook 
contains 3 beam patterns (i.e., –65° to 65°, 55° 
to 185°, and 175° to 305°). The receiver gain at 
Powercast P2110 is 6 dBi. The maximum velocity 
of the WET robot is 0.2 m/s. The minimum ener-
gy to be harvested at each IoT device is 20 mJ. 
The path loss at 1 m is –31.6284 dB, and the path 
loss exponent is 1.73 according to the In-H chan-
nel model specified in 3rd Generation Partnership 
Project (3GPP) TR 38.901. The sensitivity-based 
energy harvesting model in [14] is adopted, with 
the parameters specified in Fig. 2 of [14].

First, Fig. 3 compares the results of joint optimi-
zation and sequential optimization in the perfect 
case. It can be seen that the anchor points (i.e., 
blue squares) generated by joint optimization are 

slightly shifted from the centroids (i.e., red cross-
es) in order to facilitate the beam design. More-
over, joint optimization only selects a subset of 
anchors from the candidates, allowing the robot 
to charge EHs in other clusters. This is in contrast 
to the conventional sequential method, where 
the robot needs to visit all the anchors, leading to 
excessive motion time. The above results corrobo-
rate discussions from earlier.

Then the task in Fig. 3 is implemented in Gaze-
bo, with five noncooperative robots moving ran-
domly in the same environment. The associated 
result is shown in Fig. 4a. It can be seen that the 
blue route in Fig. 3 and the purple route in Fig. 
4a share high similarity. However, in Fig. 4a, the 
WET robot takes a detour when returning to the 
starting point, while the robot takes a straight way 
in Fig. 3. This is because the robot comes across 
other robots in the way in Gazebo and needs to 
find a trade-off between avoiding collision and 
reaching the next anchor point. Moreover, the 
robot spends additional time to rotate itself in 
Gazebo. Consequently, the motion time in Gaze-
bo is 147 s, which is 50 percent longer than that 
in the perfect case (i.e., 110.369 s). The motion 
time in the real-world experiment is 150 s, mean-
ing that the Gazebo simulator and the real-world 
testbed can together form a digital twin platform.

The route evolves into a triangle after HIL 
re-optimization. This implies that the re-optimized 
design automatically chooses to reduce the 
robot’s movements and navigates the robot away 
from the dense traffic area. The associated result 
is shown in Fig. 4b. Compared to the result in Fig. 
4a, the route evolves from a polygon to a triangle, 
whose route length is significantly smaller. This 
implies that the re-optimized design automatically 
chooses to reduce the robot’s movements and 
navigates the robot away from the “dense traffic” 
area (i.e., the lower left of Fig. 4).

Finally, to verify the effectiveness of the pro-
posed framework, we consider the same task and 
compare the amount of WET mission completion 
time for different schemes. The major findings are 
summarized below:
•	 The scheme with a fixed energy transmitter 

cannot accomplish the charging task within a 
reasonable amount of time, since the transmit 
power of TX91503 is only 3 W, and remote 
EHs can only receive mW-level power, which 
is below the sensitivity threshold.

•	 If the robot does not perform anchor point 
selection and reaches all the anchors, 
although the charging time can be reduced 
for each IoT, the total time consumption 
increases. This is because moving costs extra 
time, and there is a trade-off between spend-
ing time on moving vs. on charging in the 
robotic WET system.

•	 By jointly optimizing the anchor, route, 
time, and beam, the total amount of time is 
reduced to 184.3 s. Note that the task com-
pletion time (including flying and charging) 
for the UAV WET scheme is only 78.38 s. 
This is because the UAV does not need to 
avoid obstacles in the sky, and it adopts an 
air speed of 5 m/s. However, the UAV ener-
gy consumption is 78.38  100 = 7838 J, 
which is significantly larger than the robot 
energy consumption (i.e., 184.3  9.3 = 

FIGURE 4. Routes in Gazebo when 1 WET robot charges 20 EHs while avoid-
ing collision with 5 non-cooperative robots: a) before HIL re-optimiza-
tion; b) after HIL re-optimization.
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FIGURE 3. Comparison between the proposed joint optimization and conven-
tional sequential optimization algorithms.
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1714 J).
•	 With the same joint optimization scheme, the 

time spent in Gazebo is longer than that in 
the perfect case. This is because in Gazebo, 
the robot needs to:

	 1. Gradually rotate itself at transition points
	 2. Take detours to avoid collision with EHs
	 3. Accelerate/decelerate between two con-

secutive anchor points.
•	 Increasing the number of robots from 1 to 

6 in Gazebo leads to an obvious increment 
in the amount of time. This implies that the 
traffic condition of the environment would 
have a non-negligible impact on the system 
performance.

•	 The task completion time in the real world 
is slightly longer than that in Gazebo. This is 
because Gazebo implementation is central-
ized, while the real-world implementation is 
distributed, which involves various uncertain-
ties such as position inaccuracies and time 
asynchronization.

•	 Compared to joint optimization without HIL, 
the completion time of HIL joint optimization 
is slightly longer in the perfect case, but is 
significantly shorter in the real-world experi-
ment (or Gazebo simulator). This implies that 
a good theoretical scheme may break down 
in practice due to the mismatch between 
models and environments and vice versa. 
This also demonstrates the significance of the 
HIL framework, which achieves robust perfor-
mance in real-world dynamic environments.

Conclusion
This article reviews existing robotic WET algorithms 
and proposes a new HIL system design frame-
work. By comparing the results in a perfect case, 
Gazebo, and real world, it is found that the robotic 
charging time may significantly increase from ideal 
to practical environments due to robotic dynamics 
and collision avoidance. It is shown that HIL re-op-
timization could improve the robustness of robotic 
WET against practical uncertainties.

When multiple robots serve as WET chargers, 
exploiting their interactions and collaborations 
can significantly enhance the system perfor-
mance. Moreover, if the environment is absolutely 
unknown, the robot needs to create a global map 
of the environment, which can be time-consum-
ing. Integrated sensing and communication (ISAC) 
is a promising technique to accelerate the map 
merging procedure, as ISAC allows each robot to 
build and share its local map simultaneously.
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