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Abstract— The adoption of cloud computing and the 

deployment of new services require more and more computing 

and networking resources in large datacenters. In particular, 

there is a need for faster rich featured switches. Today, switching 

integrated circuits can handle more than 50 Tb/s and are expected 

to reach 100 Tb/s next year. This trend is likely to continue 

approaching Petabit capacities in a few years. At the same time, 

switches need to support more advanced packet classification 

features. This poses many challenges to the designers of switching 

integrated circuits creating a need for innovations to move 

forward. One of those challenges is to support programmable 

packet classification with large rule sets at wire speed using 

limited silicon footprint. Unfortunately, traditional solutions like 

Ternary Content Addressable Memories (TCAMs) have high cost 

in area and power and therefore, are not a viable option for large 

on-chip rule sets and new alternatives are needed. In the last two 

decades, researchers have extensively studied the problem of 

packet classification proposing many algorithms based on 

standard memories, mostly targeting software implementations. 

These packet classification algorithms could be a solution to 

enable large on-chip classification rule sets using standard 

memories. However, porting the standard packet classification 

algorithms to a hardware implementation is not a trivial task, due 

to the different requirements and the different kinds of memory 

and computing resources available on the ASIC switching chips. 

This paper describes a packet classification design tailored for 

high-speed switching integrated circuits, which is currently used 

in the NVIDIA® Mellanox® Spectrum® switching ASIC product 

line, illustrating how to solve the mismatch between the usual 

software-based classification algorithms and the specific 

requirements of a hardware implementation. 
 

Index Terms— Packet classification, Switches, ASICs. 

I. INTRODUCTION 

HE design of state of the art switching chips has always 

been a challenge as they need to handle very large data 

rates and support advanced features [1]. In the last decade, the 

complexity that designers face has increased exponentially due 

to the introduction of programmability as a requirement for the 

switches [2] and to the need for larger speeds driven by the 

hyperscalers. The throughput of a top of the rack switch 

increased more than tenfold in the last decade and it is expected 

to keep growing reaching the petabit range during this decade1. 

This happens at a time when the downscaling of the 

microelectronic technology that has traditionally enabled part 

of the gains in speed and scale of switching chips is slowing 

down. This forces designers to innovate at the algorithmic or 

architectural level to find more efficient solutions [3]. In this 

context, industry has a need for innovations and a good option 

 
1https://elegantnetwork.github.io/posts/A-Summary-of-Network-ASICs/  

would be to leverage the extensive academic research on packet 

processing carried out in the last two decades. 

One of the challenges for switch design is to implement 

packet classification at line rates for large sets of rules. This has 

traditionally been done with Ternary Content Addressable 

Memories (TCAMs) [4]. However, TCAMs have a large cost in 

terms of silicon footprint and power consumption that limits 

their scalability to support large tables. TCAMs also lack 

flexibility as differently from SRAM/DRAM they cannot be 

used to store other types of data, they can only store rules for 

matching. This means that it is of interest to minimize the use of 

TCAMs in programmable switching ASICs. Indeed, for exact 

match they can be replaced by standard SRAM or DRAM 

memories using efficient hashing schemes [2],[5]. 

Unfortunately, those hashing schemes are not applicable to 

more complex packet classifiers that include don’t care bits in 

the rules on arbitrary positions. Therefore, it would be of 

interest to implement general packet classifiers that are built on 

top of the exact matching hashing implementations. This 

approach would enable both scalability, since standard 

memories are cheaper than TCAM, and flexibility since the 

same memory can be used both for exact matching, generic data 

storage, and for packet classification. For this, packet 

classification algorithms developed for software 

implementations could be a starting point. However, there are 

major differences between hardware and software 

implementations, and an efficient solution can be developed 

only after a detailed analysis of the impact of the 

implementation of packet classification algorithms in hardware. 

In our case, this study led to propose a modified packet 

classification algorithm that is well suited for a hardware 

implementation highly compatible with a high-end ASIC 

switching chip.   

The proposed design efficiently combines on-chip SRAMs 

and TCAM to efficiently support the matching of general rules 

which is a significant improvement over existing architectures 

that use SRAM only for exact match rules while all other rules 

have to be stored in the TCAM. The proposed hybrid 

SRAM/TCAM architecture has also several novel 

optimizations that have enabled reaching 51.2 Tb/s of 

throughput on a single device while supporting up to 512K 

packet classification rules.  

The following section presents an overview of existing 

packet classification algorithms proposed by academia 

discussing the challenges and limitations when trying to use 

them for silicon implementation. Then in section III, the 

proposed architecture is described highlighting the 
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modifications introduced in the algorithms to make them 

efficient for hardware implementation. The section also 

provides some evaluation results to show the effectiveness of 

the proposed scheme. Finally, the conclusions are presented in 

section IV. 

II. PACKET CLASSIFICATION ALGORITHMS 

A. Existing Solutions 

Most of the proposed packet classification algorithms focus 

on software implementations running on commodity processors. 

This is due several reasons. The first one is a disconnect 

between the networking and the microelectronics research 

communities in academia. It is unusual for both faculty and 

students to be knowledgeable in both areas. A second reason is 

that evaluating algorithms in software can be done with 

standard computing equipment while evaluation on silicon 

requires access to Electronic Design Automation (EDA) tools, 

ASIC libraries and ultimately fabrication and testing of the 

device. This further reduces the ability of students or small 

university groups to evaluate silicon implementations of 

networking algorithms. A third reason is that algorithms 

implemented in software can be easily integrated in existing 

packet processing frameworks like DPDK or VPP [6] and used 

by the community. This is not yet possible for silicon 

implementations. There are initiatives to promote open 

hardware, but they are still in their infancy, and it remains to be 

seen if they will ultimately succeed. A notable exception is the 

NetFPGA initiative that has successfully linked networking 

with FPGAs [7]. However, even in this case, the number of 

packet classification algorithms mapped to NetFPGA is very 

small. Finally, the brute-force TCAM based hardware approach 

provides very good performance in terms of throughput and 

support for rules with wildcards, which was difficult to achieve 

with algorithmic approaches. However, in the last few years the 

limitations related to scalability and power consumption have 

driven the development of packet classification algorithms in 

hardware. 

Problem Statement: the goal of packet classification is to 

classify packets by applying a set of rules to the header fields of 

a packet. Each rule Ri has n components, and the j-th 

component of the rule, referred to as Ri,j is a match expression 

(i.e. an exact value, prefix or range matching) on the j-th header 

field. A packet p matches a rule Ri if all the n header fields of p 

match the corresponding Ri,j. If a packet p matches multiple 

rules, the matching rule with the highest priority is returned. 

Table 1 presents an example of a packet classifier with n=2 

header fields and Figure 1 depicts the geometric view of the 

ruleset. Two rules are compatible or overlap, when there are 

packets that can match both rules. For example, a packet with 

field values [1111,1001] would match both R1 and R3. Instead, 

other rules do not overlap like R1 and R2 and no packet can 

match both. Therefore, after matching, the search can be 

restricted to the rules that overlap with the matched rule and 

have higher priority. For each rule, the compatible rules with 

higher priority can be precomputed and when there are no such 

rules, a match on that rule is final and there is no need to 

compare with other rules.   

Packet classification is a hard problem to solve in its generic 

form, thus researchers have tried to exploit the features of 

real-life classifiers to reduce the complexity of the problem, 

proposing a wide range of solutions. The most used metrics to 

evaluate the performance of packet classification algorithms 

are [8]: 

• Throughput: the number of packets per second that the 

algorithm can classify. The target for the ASIC 

implementation is above 1 billion of packets per 

second. The throughput mainly depends on the 

number of memory accesses needed per packet 

lookup. 

• Memory footprint: the ruleset representation in 

memory depends on the classification algorithm used. 

Since high throughputs require fast on-chip SRAM 

memories, and these memories cost silicon area, this is 

an important metric for an ASIC implementation.  

• Update speed: a change in the ruleset requires to 

update the data structure. Depending on the algorithm, 

this can correspond to the update of a few entries or to 

the reconstruction of the whole data structure. The 

latter kind of algorithms has update times that are 

significantly higher than the former. Since we target 

fast updates, we need a classification algorithm that 

does not require data structure reconstruction for 

updates. 

Table 1: example of a 2-field classifier 

Rule Field 1 Field 2 

R1 111* * 

R2 110* * 

R3 * 1001 

R4 01** 10** 
 

 

 
Figure 1. Geometric representation of the classifier of Table 1  

 

A widely accepted categorization of packet classification 

algorithms is to split them in decision tree-based and 

partition-based [9],[10]. These algorithms achieve different 

performances with respect to the above-mentioned metrics.  

Decision tree-based schemes. Algorithms like HyperCut [11] 

and SmartSplit [12] classify a packet recursively cutting the 

n-dimensional space of the ruleset to obtain a small subset of 

rules compatible with the packet to classify. These subsets 

correspond to the leaves of the tree. Therefore, the tree traversal 

operation selects a small subset of rules, which are tested 

against the incoming packet, and the matching rule with the 
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highest priority is selected as output. The performances of these 

algorithms are excellent both in terms of throughput and 

memory footprint, but they cannot support fast updates since 

the insertion of a new rule requires a costly tree update [10]. 

This is a sufficient motivation to exclude these algorithms as 

candidates for a hardware implementation. The complexity of 

realizing a tree-based structure in a system with a fixed memory 

allocation (i.e. it is hard to manage the pointers composing a 

tree in an ASIC implementation) further suggested to avoid 

these methods for our target implementation. 

Partition based schemes. These algorithms split a ruleset into 

multiple subsets. For each subset, a bitmask (also called rule 

pattern) is used to translate the generic rule match expression 

into an exact match lookup. The first work proposing this 

approach was Tuple Space Search (TSS) [13]. With this 

algorithm, the lookup requires to check all the subsets and 

selects the matching one with higher priority. Instead, the 

update operation requires only an insertion in one subset. 

Taking as example the classifier of Table 1, TSS creates 3 

subsets ({R1,R2},{R3},{R4}) with masks ([1110,0000], 

[0000,1111],[1100,1100]). This permits to store the following 

masked rules {[1110,0000],[1100,0000]},{[0000,1001]} 

{[0100,1000]} in the three tables of TSS. Since the number of 

subsets can be high, several algorithms have been proposed to 

improve the throughput of partition-based schemes. As a 

complete survey of these algorithms is out of the scope of this 

paper, here we just mention TupleMerge (TM) [10], which not 

only represents one of the state-of-the-art algorithms for packet 

classification but is also related to the ASIC implementation 

that we developed2. The idea of TM is to merge subsets with 

different bitmasks in the same table. The bitmasks share some 

common bits that are used to select the table in which the rules 

are stored. While this approach reduces the number of tables, 

and therefore increases the throughput, it has as drawback the 

so-called “collision problem”. A collision occurs when two 

rules with different bitmasks are stored in the same table. A 

search in this table is no more a pure exact match since the rule 

pattern does not mask all the don’t care bits. Taking again the 

example of Table 1, a possible merge is between R3 and R4 

applying as mask [0000,1100]. This merge also creates a 

collision. Suppose that a packet p=[0101,1001] arrives. The 

masked bits to access to the ruleset are [0000,1000], and both 

R3 and R4 match this subset. Therefore, only comparing the 

original packet p with both R3 and R4 it is possible to select the 

final rule. This means that several rules may have to be checked 

on a single subset.    

B. Differences and challenges for silicon implementation  

As discussed in the previous subsection, most algorithms 

proposed by academia target a software implementation. 

Therefore, the throughput supported is that of one or a few a 

NIC cards. This can be today at most around 1 Tb/s. Instead, a 

silicon implementation for a switch must support the traffic of 

many ports thus requiring a throughput that is orders of 

magnitude larger. For example, close to 100 Tb/s. Therefore, 

the performance requirements are completely different and 

indeed more challenging.  

 
2 We developed and patented our algorithm before TM, but for sake of 

clarity we compare it with this algorithm as it is the closest to our work.  

Another important difference is that on a server, DRAM 

memory is abundant. Instead, in many switching ASIC designs, 

no external memory is used and only the one on-chip is 

available. This severely reduces the memory available that 

should be allocated and used very carefully.  On the other hand, 

an ASIC implementation provides more flexibility to 

instantiate several memories that can be accessed in parallel 

whereas on a server, the memory configuration is given.  

Similarly, on an ASIC we can also use TCAM blocks if needed, 

something that is not possible on a commodity server.   

These significant differences in performance and in the 

underlying hardware architecture imply that algorithms 

targeted to a software implementation will not be optimal for an 

ASIC implementation. Therefore, transferring the ideas and 

algorithms to switching ASICs is not straightforward and will 

benefit from the collaboration of industry and academia. The 

main contribution of this paper is to present a scalable packet 

classification algorithm that is suitable for ASIC 

implementation and that has been implemented and is currently 

in used in the NVIDIA® Mellanox® Spectrum® switching 

ASIC product line. 

III. PROPOSED ALGORITHM AND IMPLEMENTATION 

A. Architecture 

Since exact match lookups are needed for example for Ethernet 

switching, and as discussed before they can be efficiently 

implemented using standard memories, it would be beneficial 

to build the packet classification engine on top of that. That is, 

use an algorithm that performs several exact matches, like for 

example Tuple Space Search (TSS) [13]. However, to support 

large throughputs, one of the goals of the design is to complete 

the classification of a packet in a few exact matches. For 

example, an average value that does not exceed four and a 

worst case that does not exceed eight. This limits the 

applicability of most existing software algorithms. For 

example, in TSS the worst case can be significantly larger than 

eight as we can easily have more than one hundred rule patterns 

in large rule sets. Furthermore, an algorithm derived from TSS 

also provides fast insertion times, since the insertion of rules 

only requires an insertion in a hash table.     

To achieve this design goal and provide an efficient silicon 

implementation, an architecture that combines a small TCAM 

with an optimized version of the TSS algorithm has been 

designed. The overall architecture is illustrated in Figure 2. It 

can be seen that it is formed by two main blocks: a hash based 

exact match engine and a TCAM block. The exact match 

engine implements an optimized version of TSS for the patterns 

that have more rules while the ones with few rules are stored in 

the TCAM. This enables us to keep the number of accesses to 

the exact match engine low while storing most of the rules in 

this engine and thus on standard memories. Instead, the least 

frequent patterns are stored in the more costly TCAM. Those 

account for the majority of the patterns but only for a small 

fraction of the rules. Therefore, by placing them on a small 

TCAM, the overall design is much faster than that of a 

traditional TSS and the TCAM cost is kept low. Note that this 

would not be possible in a computer as there are not TCAM 

blocks, and only standard memories can be used.       
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In our proposed architecture, packets are first checked in the 

exact match engine and if a match that is final (there are no 

overlapping rules with higher priority) is found, there is no need 

to check the TCAM. Instead, if no match is found or a match is 

found but there can be a higher priority match on the TCAM, it 

is subsequently checked. This reduces the bandwidth needed on 

the TCAM as only a fraction of the packets would access it 

reducing power consumption and enabling further 

optimizations and cost reductions in the TCAM design.   

Exact Match Engine

eRP
Mem Hash tables

eRP
Mem Hash tables

TCAM

TCAM
Bank

TCAM
Bank

TCAM
Bank

TCAM
Bank

Action

Action

Figure 2. Proposed architecture for packet classification  
 

Unfortunately, this hybrid architecture may still need too many 

accesses to store most of the rules on the exact match engine 

(thus reducing the size of the TCAM). Therefore, the TSS 

algorithm is extended to cover more rules on each exact match 

lookup. This is done by introducing the concept of extended 

Rule Pattern (eRP). The idea is to cover several patterns on a 

single exact match lookup, in a way similar to the approach 

proposed in TupleMerge [10]. However, differently from 

TupleMerge, we merge only patterns rules that differ only in a 

few bits. This choice has two benefits: (i) it limits the collision 

effect and (ii) permits to represent the rule inside the hash table 

with a limited memory overhead. As a simple example, let us 

consider a rule pattern formed by the destination IPv4 address 

with a /16 mask and a second one that corresponds to the IPv4 

address with a /18 mask. Then both can be stored by hashing on 

the /16 bits and adding a delta to cover the last two bits. This 

delta is an additional field in the entry that extends the data to 

be compared beyond the mask used for the hashing. The delta, 

composed by an offset and a few bits mask, permits to merge 

several RP in the same eRP while requiring a very small 

additional memory footprint (less than 2 bytes). This approach 

enables us to cover more rules with fewer exact match lookups. 

The downside is that the number of hash collisions may 

increase and needs to be adequately managed by the exact 

match engine implementation. This can be easily done when 

the number of collisions is limited as discussed in [5],[10]. 

The concept of the eRP is illustrated in Figure 3.  In this case, 

rules have only eight bits and we have three patterns for the 

rules, where ‘u’ are bits that are either 0 or 1 in the rule and ‘x’ 

are bits that are wildcards. For example, a rule like ‘101xxx00’ 

would correspond to rule pattern 1 (RP1) and instead rule 

‘0010xx00’ to rule pattern 2 (RP2). In the traditional TSS 

algorithm, each of the three rule patterns would require an exact 

match lookup. Instead, in our implementation, rule patterns that 

are different only on a few bits are merged into a single 

extended rule pattern and checked with a single exact match 

lookup. For example, in the Figure, the three rule patterns are 

merged into a single eRP. This is done by creating an eRP mask 

that has an ‘x’ on every bit for which at least one of the RPs that 

form the eRP has an ‘x’. That mask is then used for the exact 

match hashing as illustrated also in the Figure by setting those 

‘x’ bits to zero before computing the hash. The logic needed to 

compare the key with the stored entries has to be extended to 

cover the different rule patterns but that is something that can 

be done at low cost in a silicon implementation. The use of 

eRPs can significantly reduce the number of exact match 

lookups needed as will be seen in the following. 

eRP u u u x x x u u

RP1 u u u x x x u u

RP2 u u u u x x u u

RP3 u u u x x u u u

key search

1 0 1 1 1 0 1 1key

u u u x x x u ueRP

1 0 1 0 0 0 1 1hash access

eRP construction

  
Figure 3. Illustration of the concept of extended Rule Patterns 

(eRPs). The ‘x’ corresponds to wildcard bits and the ‘u’ to bits 

that are either 0 or 1 in the rule 
 

A number of optimizations were implemented to further 

improve performance. Here we describe only two of them.  

Early stop: The first optimization exploits the observation that 

in most of the examined rulesets most of the rules are not 

overlapping. This means that a match in an eRP can stop the 

search since there are not compatible rules with higher priority. 

This information can be used for example to minimize the 

number of eRPs checked for each packet lookup. In fact, the 

developed system can configure the order in which the eRPs are 

checked so that the eRPs that are more frequently matched are 

placed first. This can be done during operation by measuring 

the number of hits per eRP and adjusting the order based on the 

results.  

Pruning: The second optimization analyzes for each rule, 

which are the compatible eRPs (i.e. the ones with overlapping 

rules with higher priority) and stores this information together 

with the rule as a vector of compatible eRPs. When a match is 

found on a rule, the engine knows on which eRPs there can be 

rules with higher priority and can use this information to prune 

the eRPs that need to be checked after the match. These 

optimizations enabled significant reductions in the average 

number of eRPs checked per packet.  
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File Number 

of rules 

Number of 

Rule 

Patterns 

1 

eRP 

2 

eRPs 

3 

eRPs 

4 

eRPs 

8 

eRPs 

acl1 39964 412 52.55% 65.44% 75.40% 79.39% 87.62% 

acl2 39807 403 26.66% 35.39% 45.68% 52.62% 69.75% 

acl3 39654 458 27.44% 39.76% 48.87% 57.98% 71.12% 

acl4 27513 178 42.68% 52.98% 63.51% 71.80% 83.70% 

fw1 38975 504 36.06% 45.34% 57.32% 64.09% 80.14% 

fw2 39480 135 20.06% 39.54% 44.71% 48.98% 71.63% 

fw3 38268 417 27.97% 47.15% 58.40% 66.02% 84.14% 

fw4 37529 139 25.78% 39.40% 49.76% 54.81% 86.78% 

fw5 37952 487 27.33% 38.93% 55.31% 65.70% 77.16% 

ipc1 40004 43 28.03% 50.93% 69.85% 73.74% 92.99% 

Table 2. Classbench generated rule databases and extended rule pattern coverage in percentage 
 

B. Performance Evaluation 

Rule coverage. To evaluate the benefits of the proposed packet 

classification architecture, it was evaluated both using rule sets 

generated with Classbench [14] and with real rulesets deployed 

in the field by customers and made available for this project by 

non-disclosure agreements (NDAs). Here we restrict the 

discussion to the Classbench rulesets to comply with the NDAs. 

Classbench generates packet classification databases that 

should resemble typical real packet classification databases. In 

more detail, Classbench generates databases that correspond to: 

- Access Control List (ACL): standard format for 

security, VPN, and NAT filters for firewalls and 

routers (enterprise, edge, and backbone). 

- Firewall (FW): proprietary format for specifying 

security filters for firewalls. 

- IP Chain (IPC): decision tree format for security, 

VPN, and NAT filters for software-based systems. 

Using Classbench a set of 10 databases were generated with 30 

to 40 thousand rules. The rules generated by Classbench have 

the following format: Source IP, Destination IP, Source Port, 

Destination Port, Protocol, Flags. This corresponds to the 

classical five tuple extended with 16-bit flags making a total of 

120 bits per rule. The flag bits model for example TCP flags 

that are used to determine if a packet is the start of a connection.  

The details of the generated rule sets are summarized in Table 

2. This includes the number of rules and rule patterns. It can be 

seen that the number of rule patterns is in most cases larger than 

a hundred. This number of exact match lookups per packet 

would be clearly unacceptable for our target silicon design. The 

table also shows the percentage of rules covered when using 

different numbers of eRPs. It can be seen that with 8 eRPs most 

rules are covered. Those would be stored in the exact match 

engine. Therefore, a compromise can be made between the 

number of exact match lookups needed per packet and coverage 

(that determines the TCAM size).  In particular, it seems that 

using a TCAM of size ¼ that of the rule set can be sufficient in 

most cases. This is a very significant reduction that enables a 

scaling of the rule sets that can be supported. If further 

reductions on the TCAM size are needed, a larger number of 

eRPs can be used at the cost of increasing the number of exact 

match lookups per packet. Therefore, by implementing a 

generic architecture that supports a programmable number of 

eRPs, different trade-offs can be made depending on the rule 

set.  

Finally, it is important to note that the proposed packet 

classification algorithm is used by the NVIDIA® Mellanox® 

Spectrum® switching ASIC family since its second generation 

and is deployed today in many datacenters and enterprise 

environments. In most of those deployments, the rule coverage 

is better than the one reported in Table 2 for the synthetic 

Classbench databases, thus proving that in practical systems 

rules tend to have a regular structure that can be exploited by 

the proposed architecture.   

Update speed. Adding or removing a rule stored in an eRP 

requires simply accessing the corresponding table and 

performing an insertion removal on it. In our implementation 

cuckoo hash tables are used [5] that support more than ten 

thousand updates per second. This is sufficient in most 

applications as rule changes are not frequent. Adding or 

removing eRPs is more complex but it can be done gradually 

while the switch continues to operate normally and thus is not 

critical. For example, when creating a new eRP, rules from the 

TCAM can be moved one by one to the new eRP and lookups 

will still match the rules regardless of whether they are already 

in the new eRP or still in the TCAM.  

 

Throughput. The time needed to process a packet depends on 

the number of eRPs that have to be checked. The search order is 

optimized so that eRPs with more packet matches are searched 

first. The search order is thus adapted to the traffic but changing 

the order only requires updating the early stop and pruning 

vectors of the rules which can be easily computed.  On the other 

hand, making the search order traffic aware reduces the number 

of checks significantly. As an example, the results for the same 

databases are summarized in Table 3 when using 8 eRPs and a 

random packet per rule. It can be observed that significant 

reductions are achieved by using the frequency-based search 

order versus the expected 4.5 eRP checks of a non-optimized 
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search order. Further reductions can be achieved with the two 

optimizations (early stop and pruning) used in the proposed 

design, so that the average number of eRPs checked is closer to 

one.  

The throughput of the hash tables can be scaled by using 

multiple banks. Instead, that is not easily done for the TCAM 

which can become the bottleneck of the system. The absolute 

value of the throughput depends on many factors such as the 

packet size, the technology node of the ASIC, the speed of the 

memories, or the optimizations used. However, to give an idea 

of the scalability of the proposed architecture, it has been 

implemented on the Spectrum-4 device with a 51.2 Tb/s 

throughput.  
 

 

File Average Number 

of eRPs checked 

acl1 2.6 

acl2 2.5 

acl3 2.5 

acl4 2.5 

fw1 2.7 

fw2 3.1 

fw3 3.1 

fw4 2.8 

fw5 3.1 

ipc1 2.7 
 

Table 3. Average number of eRPs checked per packet when 

using a traffic aware search order 

 

Circuit area and power. Another important metric is the 

overhead needed in the exact match engine to support eRPs. 

This includes the additional logic for matching entries against 

all the rule patterns that form the eRP and also the management 

of the collisions in the hash created by rules that map to the 

same hash value on different eRPs. The architecture described 

has been implemented in several advanced technology nodes 

and the additional circuit area was negligible compared to the 

plain exact match engine. In fact, this small overhead was 

completely outweighed by the reduction in TCAM size, and the 

additional flexibility provided by the proposed architecture. In 

particular, for the databases considered of approximately forty 

thousand rules, the area and power of the proposed architecture 

using a ten thousand entries TCAM and a thirty thousand 

entries SRAM reduces the area and power by a factor of two 

approximately compared to a forty thousand entries TCAM3.   

 

Scalability. The use of the proposed algorithmic TCAM 

enables switching ASICs to support a much larger number of 

TCAM-like rules, especially when the rules have a regular 

structure with most concentrated on a few eRPs. This is 

commonly the case in datacenters. In those scenarios, scaling 

factors of 10x are easily achieved.   

 

 
3 Further details cannot be provided due to confidentiality restrictions. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we have described a packet classification 

architecture for high-speed silicon implementation. The design 

process was driven by the need to support large rule sets and 

storing most of the rules in standard memories while supporting 

very high speeds. To achieve this, innovations were introduced 

and optimized for implementation resulting in a hybrid solution 

that stores most rules in standard memories using hash based 

exact matching and the rest on a small TCAM. The exact 

matching engine is augmented so that each lookup can cover 

more rules than in existing implementations. The evaluation 

results over different packet classification rule sets show that 

the proposed architecture can indeed store most rules in 

standard memories and complete packet classification with a 

small number of exact match lookups. Additionally, the 

overhead introduced in terms of silicon area over a plain exact 

match implementation is very small. The end-result is an 

architecture that has introduced an unprecedented scale in 

terms of the number of packet classification rules that can be 

supported on-chip in switching ASICs and that is currently 

deployed in many datacenters. 
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