
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— The adoption of cloud computing and the

deployment of new services require more and more computing

and networking resources in large datacenters. In particular,

there is a need for faster rich featured switches. Today, switching

integrated circuits can handle more than 50 Tb/s and are expected

to reach 100 Tb/s next year. This trend is likely to continue

approaching Petabit capacities in a few years. At the same time,

switches need to support more advanced packet classification

features. This poses many challenges to the designers of switching

integrated circuits creating a need for innovations to move

forward. One of those challenges is to support programmable

packet classification with large rule sets at wire speed using

limited silicon footprint. Unfortunately, traditional solutions like

Ternary Content Addressable Memories (TCAMs) have high cost

in area and power and therefore, are not a viable option for large

on-chip rule sets and new alternatives are needed. In the last two

decades, researchers have extensively studied the problem of

packet classification proposing many algorithms based on

standard memories, mostly targeting software implementations.

These packet classification algorithms could be a solution to

enable large on-chip classification rule sets using standard

memories. However, porting the standard packet classification

algorithms to a hardware implementation is not a trivial task, due

to the different requirements and the different kinds of memory

and computing resources available on the ASIC switching chips.

This paper describes a packet classification design tailored for

high-speed switching integrated circuits, which is currently used

in the NVIDIA® Mellanox® Spectrum® switching ASIC product

line, illustrating how to solve the mismatch between the usual

software-based classification algorithms and the specific

requirements of a hardware implementation.

Index Terms— Packet classification, Switches, ASICs.

I. INTRODUCTION

HE design of state of the art switching chips has always

been a challenge as they need to handle very large data

rates and support advanced features [1]. In the last decade, the

complexity that designers face has increased exponentially due

to the introduction of programmability as a requirement for the

switches [2] and to the need for larger speeds driven by the

hyperscalers. The throughput of a top of the rack switch

increased more than tenfold in the last decade and it is expected

to keep growing reaching the petabit range during this decade1.

This happens at a time when the downscaling of the

microelectronic technology that has traditionally enabled part

of the gains in speed and scale of switching chips is slowing

down. This forces designers to innovate at the algorithmic or

architectural level to find more efficient solutions [3]. In this

context, industry has a need for innovations and a good option

1https://elegantnetwork.github.io/posts/A-Summary-of-Network-ASICs/

would be to leverage the extensive academic research on packet

processing carried out in the last two decades.

One of the challenges for switch design is to implement

packet classification at line rates for large sets of rules. This has

traditionally been done with Ternary Content Addressable

Memories (TCAMs) [4]. However, TCAMs have a large cost in

terms of silicon footprint and power consumption that limits

their scalability to support large tables. TCAMs also lack

flexibility as differently from SRAM/DRAM they cannot be

used to store other types of data, they can only store rules for

matching. This means that it is of interest to minimize the use of

TCAMs in programmable switching ASICs. Indeed, for exact

match they can be replaced by standard SRAM or DRAM

memories using efficient hashing schemes [2],[5].

Unfortunately, those hashing schemes are not applicable to

more complex packet classifiers that include don’t care bits in

the rules on arbitrary positions. Therefore, it would be of

interest to implement general packet classifiers that are built on

top of the exact matching hashing implementations. This

approach would enable both scalability, since standard

memories are cheaper than TCAM, and flexibility since the

same memory can be used both for exact matching, generic data

storage, and for packet classification. For this, packet

classification algorithms developed for software

implementations could be a starting point. However, there are

major differences between hardware and software

implementations, and an efficient solution can be developed

only after a detailed analysis of the impact of the

implementation of packet classification algorithms in hardware.

In our case, this study led to propose a modified packet

classification algorithm that is well suited for a hardware

implementation highly compatible with a high-end ASIC

switching chip.

The proposed design efficiently combines on-chip SRAMs

and TCAM to efficiently support the matching of general rules

which is a significant improvement over existing architectures

that use SRAM only for exact match rules while all other rules

have to be stored in the TCAM. The proposed hybrid

SRAM/TCAM architecture has also several novel

optimizations that have enabled reaching 51.2 Tb/s of

throughput on a single device while supporting up to 512K

packet classification rules.

The following section presents an overview of existing

packet classification algorithms proposed by academia

discussing the challenges and limitations when trying to use

them for silicon implementation. Then in section III, the

proposed architecture is described highlighting the

Algorithmic TCAMs: Implementing Packet

Classification Algorithms in Hardware

Pedro Reviriego, Gil Levy, Matty Kadosh and Salvatore Pontarelli

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

modifications introduced in the algorithms to make them

efficient for hardware implementation. The section also

provides some evaluation results to show the effectiveness of

the proposed scheme. Finally, the conclusions are presented in

section IV.

II. PACKET CLASSIFICATION ALGORITHMS

A. Existing Solutions

Most of the proposed packet classification algorithms focus

on software implementations running on commodity processors.

This is due several reasons. The first one is a disconnect

between the networking and the microelectronics research

communities in academia. It is unusual for both faculty and

students to be knowledgeable in both areas. A second reason is

that evaluating algorithms in software can be done with

standard computing equipment while evaluation on silicon

requires access to Electronic Design Automation (EDA) tools,

ASIC libraries and ultimately fabrication and testing of the

device. This further reduces the ability of students or small

university groups to evaluate silicon implementations of

networking algorithms. A third reason is that algorithms

implemented in software can be easily integrated in existing

packet processing frameworks like DPDK or VPP [6] and used

by the community. This is not yet possible for silicon

implementations. There are initiatives to promote open

hardware, but they are still in their infancy, and it remains to be

seen if they will ultimately succeed. A notable exception is the

NetFPGA initiative that has successfully linked networking

with FPGAs [7]. However, even in this case, the number of

packet classification algorithms mapped to NetFPGA is very

small. Finally, the brute-force TCAM based hardware approach

provides very good performance in terms of throughput and

support for rules with wildcards, which was difficult to achieve

with algorithmic approaches. However, in the last few years the

limitations related to scalability and power consumption have

driven the development of packet classification algorithms in

hardware.

Problem Statement: the goal of packet classification is to

classify packets by applying a set of rules to the header fields of

a packet. Each rule Ri has n components, and the j-th

component of the rule, referred to as Ri,j is a match expression

(i.e. an exact value, prefix or range matching) on the j-th header

field. A packet p matches a rule Ri if all the n header fields of p

match the corresponding Ri,j. If a packet p matches multiple

rules, the matching rule with the highest priority is returned.

Table 1 presents an example of a packet classifier with n=2

header fields and Figure 1 depicts the geometric view of the

ruleset. Two rules are compatible or overlap, when there are

packets that can match both rules. For example, a packet with

field values [1111,1001] would match both R1 and R3. Instead,

other rules do not overlap like R1 and R2 and no packet can

match both. Therefore, after matching, the search can be

restricted to the rules that overlap with the matched rule and

have higher priority. For each rule, the compatible rules with

higher priority can be precomputed and when there are no such

rules, a match on that rule is final and there is no need to

compare with other rules.

Packet classification is a hard problem to solve in its generic

form, thus researchers have tried to exploit the features of

real-life classifiers to reduce the complexity of the problem,

proposing a wide range of solutions. The most used metrics to

evaluate the performance of packet classification algorithms

are [8]:

• Throughput: the number of packets per second that the

algorithm can classify. The target for the ASIC

implementation is above 1 billion of packets per

second. The throughput mainly depends on the

number of memory accesses needed per packet

lookup.

• Memory footprint: the ruleset representation in

memory depends on the classification algorithm used.

Since high throughputs require fast on-chip SRAM

memories, and these memories cost silicon area, this is

an important metric for an ASIC implementation.

• Update speed: a change in the ruleset requires to

update the data structure. Depending on the algorithm,

this can correspond to the update of a few entries or to

the reconstruction of the whole data structure. The

latter kind of algorithms has update times that are

significantly higher than the former. Since we target

fast updates, we need a classification algorithm that

does not require data structure reconstruction for

updates.

Table 1: example of a 2-field classifier

Rule Field 1 Field 2

R1 111* *

R2 110* *

R3 * 1001

R4 01** 10**

Figure 1. Geometric representation of the classifier of Table 1

A widely accepted categorization of packet classification

algorithms is to split them in decision tree-based and

partition-based [9],[10]. These algorithms achieve different

performances with respect to the above-mentioned metrics.

Decision tree-based schemes. Algorithms like HyperCut [11]

and SmartSplit [12] classify a packet recursively cutting the

n-dimensional space of the ruleset to obtain a small subset of

rules compatible with the packet to classify. These subsets

correspond to the leaves of the tree. Therefore, the tree traversal

operation selects a small subset of rules, which are tested

against the incoming packet, and the matching rule with the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

highest priority is selected as output. The performances of these

algorithms are excellent both in terms of throughput and

memory footprint, but they cannot support fast updates since

the insertion of a new rule requires a costly tree update [10].

This is a sufficient motivation to exclude these algorithms as

candidates for a hardware implementation. The complexity of

realizing a tree-based structure in a system with a fixed memory

allocation (i.e. it is hard to manage the pointers composing a

tree in an ASIC implementation) further suggested to avoid

these methods for our target implementation.

Partition based schemes. These algorithms split a ruleset into

multiple subsets. For each subset, a bitmask (also called rule

pattern) is used to translate the generic rule match expression

into an exact match lookup. The first work proposing this

approach was Tuple Space Search (TSS) [13]. With this

algorithm, the lookup requires to check all the subsets and

selects the matching one with higher priority. Instead, the

update operation requires only an insertion in one subset.

Taking as example the classifier of Table 1, TSS creates 3

subsets ({R1,R2},{R3},{R4}) with masks ([1110,0000],

[0000,1111],[1100,1100]). This permits to store the following

masked rules {[1110,0000],[1100,0000]},{[0000,1001]}

{[0100,1000]} in the three tables of TSS. Since the number of

subsets can be high, several algorithms have been proposed to

improve the throughput of partition-based schemes. As a

complete survey of these algorithms is out of the scope of this

paper, here we just mention TupleMerge (TM) [10], which not

only represents one of the state-of-the-art algorithms for packet

classification but is also related to the ASIC implementation

that we developed2. The idea of TM is to merge subsets with

different bitmasks in the same table. The bitmasks share some

common bits that are used to select the table in which the rules

are stored. While this approach reduces the number of tables,

and therefore increases the throughput, it has as drawback the

so-called “collision problem”. A collision occurs when two

rules with different bitmasks are stored in the same table. A

search in this table is no more a pure exact match since the rule

pattern does not mask all the don’t care bits. Taking again the

example of Table 1, a possible merge is between R3 and R4

applying as mask [0000,1100]. This merge also creates a

collision. Suppose that a packet p=[0101,1001] arrives. The

masked bits to access to the ruleset are [0000,1000], and both

R3 and R4 match this subset. Therefore, only comparing the

original packet p with both R3 and R4 it is possible to select the

final rule. This means that several rules may have to be checked

on a single subset.

B. Differences and challenges for silicon implementation

As discussed in the previous subsection, most algorithms

proposed by academia target a software implementation.

Therefore, the throughput supported is that of one or a few a

NIC cards. This can be today at most around 1 Tb/s. Instead, a

silicon implementation for a switch must support the traffic of

many ports thus requiring a throughput that is orders of

magnitude larger. For example, close to 100 Tb/s. Therefore,

the performance requirements are completely different and

indeed more challenging.

2 We developed and patented our algorithm before TM, but for sake of

clarity we compare it with this algorithm as it is the closest to our work.

Another important difference is that on a server, DRAM

memory is abundant. Instead, in many switching ASIC designs,

no external memory is used and only the one on-chip is

available. This severely reduces the memory available that

should be allocated and used very carefully. On the other hand,

an ASIC implementation provides more flexibility to

instantiate several memories that can be accessed in parallel

whereas on a server, the memory configuration is given.

Similarly, on an ASIC we can also use TCAM blocks if needed,

something that is not possible on a commodity server.

These significant differences in performance and in the

underlying hardware architecture imply that algorithms

targeted to a software implementation will not be optimal for an

ASIC implementation. Therefore, transferring the ideas and

algorithms to switching ASICs is not straightforward and will

benefit from the collaboration of industry and academia. The

main contribution of this paper is to present a scalable packet

classification algorithm that is suitable for ASIC

implementation and that has been implemented and is currently

in used in the NVIDIA® Mellanox® Spectrum® switching

ASIC product line.

III. PROPOSED ALGORITHM AND IMPLEMENTATION

A. Architecture

Since exact match lookups are needed for example for Ethernet

switching, and as discussed before they can be efficiently

implemented using standard memories, it would be beneficial

to build the packet classification engine on top of that. That is,

use an algorithm that performs several exact matches, like for

example Tuple Space Search (TSS) [13]. However, to support

large throughputs, one of the goals of the design is to complete

the classification of a packet in a few exact matches. For

example, an average value that does not exceed four and a

worst case that does not exceed eight. This limits the

applicability of most existing software algorithms. For

example, in TSS the worst case can be significantly larger than

eight as we can easily have more than one hundred rule patterns

in large rule sets. Furthermore, an algorithm derived from TSS

also provides fast insertion times, since the insertion of rules

only requires an insertion in a hash table.

To achieve this design goal and provide an efficient silicon

implementation, an architecture that combines a small TCAM

with an optimized version of the TSS algorithm has been

designed. The overall architecture is illustrated in Figure 2. It

can be seen that it is formed by two main blocks: a hash based

exact match engine and a TCAM block. The exact match

engine implements an optimized version of TSS for the patterns

that have more rules while the ones with few rules are stored in

the TCAM. This enables us to keep the number of accesses to

the exact match engine low while storing most of the rules in

this engine and thus on standard memories. Instead, the least

frequent patterns are stored in the more costly TCAM. Those

account for the majority of the patterns but only for a small

fraction of the rules. Therefore, by placing them on a small

TCAM, the overall design is much faster than that of a

traditional TSS and the TCAM cost is kept low. Note that this

would not be possible in a computer as there are not TCAM

blocks, and only standard memories can be used.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

In our proposed architecture, packets are first checked in the

exact match engine and if a match that is final (there are no

overlapping rules with higher priority) is found, there is no need

to check the TCAM. Instead, if no match is found or a match is

found but there can be a higher priority match on the TCAM, it

is subsequently checked. This reduces the bandwidth needed on

the TCAM as only a fraction of the packets would access it

reducing power consumption and enabling further

optimizations and cost reductions in the TCAM design.

Exact Match Engine

eRP
Mem Hash tables

eRP
Mem Hash tables

TCAM

TCAM
Bank

TCAM
Bank

TCAM
Bank

TCAM
Bank

Action

Action

Figure 2. Proposed architecture for packet classification

Unfortunately, this hybrid architecture may still need too many

accesses to store most of the rules on the exact match engine

(thus reducing the size of the TCAM). Therefore, the TSS

algorithm is extended to cover more rules on each exact match

lookup. This is done by introducing the concept of extended

Rule Pattern (eRP). The idea is to cover several patterns on a

single exact match lookup, in a way similar to the approach

proposed in TupleMerge [10]. However, differently from

TupleMerge, we merge only patterns rules that differ only in a

few bits. This choice has two benefits: (i) it limits the collision

effect and (ii) permits to represent the rule inside the hash table

with a limited memory overhead. As a simple example, let us

consider a rule pattern formed by the destination IPv4 address

with a /16 mask and a second one that corresponds to the IPv4

address with a /18 mask. Then both can be stored by hashing on

the /16 bits and adding a delta to cover the last two bits. This

delta is an additional field in the entry that extends the data to

be compared beyond the mask used for the hashing. The delta,

composed by an offset and a few bits mask, permits to merge

several RP in the same eRP while requiring a very small

additional memory footprint (less than 2 bytes). This approach

enables us to cover more rules with fewer exact match lookups.

The downside is that the number of hash collisions may

increase and needs to be adequately managed by the exact

match engine implementation. This can be easily done when

the number of collisions is limited as discussed in [5],[10].

The concept of the eRP is illustrated in Figure 3. In this case,

rules have only eight bits and we have three patterns for the

rules, where ‘u’ are bits that are either 0 or 1 in the rule and ‘x’

are bits that are wildcards. For example, a rule like ‘101xxx00’

would correspond to rule pattern 1 (RP1) and instead rule

‘0010xx00’ to rule pattern 2 (RP2). In the traditional TSS

algorithm, each of the three rule patterns would require an exact

match lookup. Instead, in our implementation, rule patterns that

are different only on a few bits are merged into a single

extended rule pattern and checked with a single exact match

lookup. For example, in the Figure, the three rule patterns are

merged into a single eRP. This is done by creating an eRP mask

that has an ‘x’ on every bit for which at least one of the RPs that

form the eRP has an ‘x’. That mask is then used for the exact

match hashing as illustrated also in the Figure by setting those

‘x’ bits to zero before computing the hash. The logic needed to

compare the key with the stored entries has to be extended to

cover the different rule patterns but that is something that can

be done at low cost in a silicon implementation. The use of

eRPs can significantly reduce the number of exact match

lookups needed as will be seen in the following.

eRP u u u x x x u u

RP1 u u u x x x u u

RP2 u u u u x x u u

RP3 u u u x x u u u

key search

1 0 1 1 1 0 1 1key

u u u x x x u ueRP

1 0 1 0 0 0 1 1hash access

eRP construction

Figure 3. Illustration of the concept of extended Rule Patterns

(eRPs). The ‘x’ corresponds to wildcard bits and the ‘u’ to bits

that are either 0 or 1 in the rule

A number of optimizations were implemented to further

improve performance. Here we describe only two of them.

Early stop: The first optimization exploits the observation that

in most of the examined rulesets most of the rules are not

overlapping. This means that a match in an eRP can stop the

search since there are not compatible rules with higher priority.

This information can be used for example to minimize the

number of eRPs checked for each packet lookup. In fact, the

developed system can configure the order in which the eRPs are

checked so that the eRPs that are more frequently matched are

placed first. This can be done during operation by measuring

the number of hits per eRP and adjusting the order based on the

results.

Pruning: The second optimization analyzes for each rule,

which are the compatible eRPs (i.e. the ones with overlapping

rules with higher priority) and stores this information together

with the rule as a vector of compatible eRPs. When a match is

found on a rule, the engine knows on which eRPs there can be

rules with higher priority and can use this information to prune

the eRPs that need to be checked after the match. These

optimizations enabled significant reductions in the average

number of eRPs checked per packet.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

File Number

of rules

Number of

Rule

Patterns

1

eRP

2

eRPs

3

eRPs

4

eRPs

8

eRPs

acl1 39964 412 52.55% 65.44% 75.40% 79.39% 87.62%

acl2 39807 403 26.66% 35.39% 45.68% 52.62% 69.75%

acl3 39654 458 27.44% 39.76% 48.87% 57.98% 71.12%

acl4 27513 178 42.68% 52.98% 63.51% 71.80% 83.70%

fw1 38975 504 36.06% 45.34% 57.32% 64.09% 80.14%

fw2 39480 135 20.06% 39.54% 44.71% 48.98% 71.63%

fw3 38268 417 27.97% 47.15% 58.40% 66.02% 84.14%

fw4 37529 139 25.78% 39.40% 49.76% 54.81% 86.78%

fw5 37952 487 27.33% 38.93% 55.31% 65.70% 77.16%

ipc1 40004 43 28.03% 50.93% 69.85% 73.74% 92.99%

Table 2. Classbench generated rule databases and extended rule pattern coverage in percentage

B. Performance Evaluation

Rule coverage. To evaluate the benefits of the proposed packet

classification architecture, it was evaluated both using rule sets

generated with Classbench [14] and with real rulesets deployed

in the field by customers and made available for this project by

non-disclosure agreements (NDAs). Here we restrict the

discussion to the Classbench rulesets to comply with the NDAs.

Classbench generates packet classification databases that

should resemble typical real packet classification databases. In

more detail, Classbench generates databases that correspond to:

- Access Control List (ACL): standard format for

security, VPN, and NAT filters for firewalls and

routers (enterprise, edge, and backbone).

- Firewall (FW): proprietary format for specifying

security filters for firewalls.

- IP Chain (IPC): decision tree format for security,

VPN, and NAT filters for software-based systems.

Using Classbench a set of 10 databases were generated with 30

to 40 thousand rules. The rules generated by Classbench have

the following format: Source IP, Destination IP, Source Port,

Destination Port, Protocol, Flags. This corresponds to the

classical five tuple extended with 16-bit flags making a total of

120 bits per rule. The flag bits model for example TCP flags

that are used to determine if a packet is the start of a connection.

The details of the generated rule sets are summarized in Table

2. This includes the number of rules and rule patterns. It can be

seen that the number of rule patterns is in most cases larger than

a hundred. This number of exact match lookups per packet

would be clearly unacceptable for our target silicon design. The

table also shows the percentage of rules covered when using

different numbers of eRPs. It can be seen that with 8 eRPs most

rules are covered. Those would be stored in the exact match

engine. Therefore, a compromise can be made between the

number of exact match lookups needed per packet and coverage

(that determines the TCAM size). In particular, it seems that

using a TCAM of size ¼ that of the rule set can be sufficient in

most cases. This is a very significant reduction that enables a

scaling of the rule sets that can be supported. If further

reductions on the TCAM size are needed, a larger number of

eRPs can be used at the cost of increasing the number of exact

match lookups per packet. Therefore, by implementing a

generic architecture that supports a programmable number of

eRPs, different trade-offs can be made depending on the rule

set.

Finally, it is important to note that the proposed packet

classification algorithm is used by the NVIDIA® Mellanox®

Spectrum® switching ASIC family since its second generation

and is deployed today in many datacenters and enterprise

environments. In most of those deployments, the rule coverage

is better than the one reported in Table 2 for the synthetic

Classbench databases, thus proving that in practical systems

rules tend to have a regular structure that can be exploited by

the proposed architecture.

Update speed. Adding or removing a rule stored in an eRP

requires simply accessing the corresponding table and

performing an insertion removal on it. In our implementation

cuckoo hash tables are used [5] that support more than ten

thousand updates per second. This is sufficient in most

applications as rule changes are not frequent. Adding or

removing eRPs is more complex but it can be done gradually

while the switch continues to operate normally and thus is not

critical. For example, when creating a new eRP, rules from the

TCAM can be moved one by one to the new eRP and lookups

will still match the rules regardless of whether they are already

in the new eRP or still in the TCAM.

Throughput. The time needed to process a packet depends on

the number of eRPs that have to be checked. The search order is

optimized so that eRPs with more packet matches are searched

first. The search order is thus adapted to the traffic but changing

the order only requires updating the early stop and pruning

vectors of the rules which can be easily computed. On the other

hand, making the search order traffic aware reduces the number

of checks significantly. As an example, the results for the same

databases are summarized in Table 3 when using 8 eRPs and a

random packet per rule. It can be observed that significant

reductions are achieved by using the frequency-based search

order versus the expected 4.5 eRP checks of a non-optimized

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

search order. Further reductions can be achieved with the two

optimizations (early stop and pruning) used in the proposed

design, so that the average number of eRPs checked is closer to

one.

The throughput of the hash tables can be scaled by using

multiple banks. Instead, that is not easily done for the TCAM

which can become the bottleneck of the system. The absolute

value of the throughput depends on many factors such as the

packet size, the technology node of the ASIC, the speed of the

memories, or the optimizations used. However, to give an idea

of the scalability of the proposed architecture, it has been

implemented on the Spectrum-4 device with a 51.2 Tb/s

throughput.

File Average Number

of eRPs checked

acl1 2.6

acl2 2.5

acl3 2.5

acl4 2.5

fw1 2.7

fw2 3.1

fw3 3.1

fw4 2.8

fw5 3.1

ipc1 2.7

Table 3. Average number of eRPs checked per packet when

using a traffic aware search order

Circuit area and power. Another important metric is the

overhead needed in the exact match engine to support eRPs.

This includes the additional logic for matching entries against

all the rule patterns that form the eRP and also the management

of the collisions in the hash created by rules that map to the

same hash value on different eRPs. The architecture described

has been implemented in several advanced technology nodes

and the additional circuit area was negligible compared to the

plain exact match engine. In fact, this small overhead was

completely outweighed by the reduction in TCAM size, and the

additional flexibility provided by the proposed architecture. In

particular, for the databases considered of approximately forty

thousand rules, the area and power of the proposed architecture

using a ten thousand entries TCAM and a thirty thousand

entries SRAM reduces the area and power by a factor of two

approximately compared to a forty thousand entries TCAM3.

Scalability. The use of the proposed algorithmic TCAM

enables switching ASICs to support a much larger number of

TCAM-like rules, especially when the rules have a regular

structure with most concentrated on a few eRPs. This is

commonly the case in datacenters. In those scenarios, scaling

factors of 10x are easily achieved.

3 Further details cannot be provided due to confidentiality restrictions.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have described a packet classification

architecture for high-speed silicon implementation. The design

process was driven by the need to support large rule sets and

storing most of the rules in standard memories while supporting

very high speeds. To achieve this, innovations were introduced

and optimized for implementation resulting in a hybrid solution

that stores most rules in standard memories using hash based

exact matching and the rest on a small TCAM. The exact

matching engine is augmented so that each lookup can cover

more rules than in existing implementations. The evaluation

results over different packet classification rule sets show that

the proposed architecture can indeed store most rules in

standard memories and complete packet classification with a

small number of exact match lookups. Additionally, the

overhead introduced in terms of silicon area over a plain exact

match implementation is very small. The end-result is an

architecture that has introduced an unprecedented scale in

terms of the number of packet classification rules that can be

supported on-chip in switching ASICs and that is currently

deployed in many datacenters.

REFERENCES

[1] R. Rojas-Cessa, “Interconnections for Computer

Communications and Packet Networks,” CRC Press. 2017.

[2] P. Bosshart, G. Gibb, H. S, Kim, G. Varghese, N. McKeown, M.

Izzard, F. Mujica, and M. Horowitz, “Forwarding

metamorphosis: fast programmable match-action processing in

hardware for SDN,” in Proc. of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM), pp. 99-110, 2013.

[3] J. L. Hennessy and D. A. Patterson, “A New Golden Age for

Computer Architecture,” in Communications of the ACM 62, 2,

pp. 48–60, 2019.

[4] F. Yu, R.H. Katz and T.V. Lakshman, “Efficient multimatch

packet classification and lookup with TCAM,” IEEE Micro, vol.

25, no. 1, pp. 50-59, 2005.

[5] G. Levy, S. Pontarelli and P. Reviriego, "Flexible Packet

Matching with Single Double Cuckoo Hash," in IEEE

Communications Magazine, vol. 55, no. 6, pp. 212-217, June

2017.

[6] D. Barach, et al. "High-speed software data plane via vectorized

packet processing." IEEE Communications Magazine 56.12

(2018): 97-103.

[7] N. Zilberman, Y. Audzevich, G. Covington and A. Moore,

“NetFPGA SUME: Toward 100 Gbps as research commodity,”

IEEE Micro, vol. 34, pp. 32-41, 2014.

[8] P. Gupta and N. McKeown. "Algorithms for packet

classification," IEEE Network 15.2, 2001, pp. 24-32.

[9] D. E Taylor. 2005. Survey and taxonomy of packet classification

techniques. ACM Computing Surveys (CSUR) 37, 3 (2005),

238–275.

[10] J. Daly et al. “Tuplemerge: Fast software packet processing for

online packet classification,” IEEE/ACM transactions on

networking 27.4, pp. 1417-1431, 2019.

[11] S. Singh, et al. "Packet classification using multidimensional

cutting." Proceedings of the conference on Applications,

technologies, architectures, and protocols for computer

communications. 2003.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

[12] P. He et al. “Meta-algorithms for software-based packet

classification,” 2014 IEEE 22nd International Conference on

Network Protocols. IEEE, 2014.

[13] V. Srinivasan, S. Suri and G. Varghese "Packet classification

using tuple space search," Proceedings of the conference on

Applications, technologies, architectures, and protocols for

computer communication. 1999.

[14] D.E. Taylor and J.S. Turner "ClassBench: a packet classification

benchmark," INFOCOM, pp.2068,2079 vol. 3, 13-17 March

2005.

BIOGRAPHIES

Pedro Reviriego (revirieg@it.uc3m.es) holds a master and a

Ph.D degrees in telecommunications engineering, both from

the Universidad Politécnica de Madrid. He is currently with the

Universidad Carlos III de Madrid. He previously worked for

LSI Corporation (now part of Broadcom) on the development

of Ethernet transceivers, and for Teldat implementing routers

and switches. His current research interests are high speed

packet processing and probabilistic data structures.

Gil Levy (gill@nvidia.com) holds a BSCE in Electrical

engineering from the Tel-Aviv University. He is currently

working at Nvidia on Ethernet switches architecture. He

previously worked for Marvell and Broadlight (now

Broadcom) on the development of Ethernet switches and

network processors for metro and data center. His focus is

high-speed packet processing probabilistic data structures,

packet buffering, and telemetry.

Matty Kadosh is a principal architect at Nvidia. His areas of

interest range from IP networking, Network programmability,

HW acceleration, switch and NIC silicon HW architecture, P4

and Linux kernel. He worked in the development and

architecture of the NOS and drivers of several Nvidia products

and in particular on the last generation Nvidia switch and NIC

ASICs. Matty Kadosh holds B.Sc in Computer Science from

the University of Haifa, Israel.

Salvatore Pontarelli (salvatore.pontarelli@uniroma1.it) is

currently Tenure-track Assistant Professor at Department of

Computer Science, Sapienza University of Rome. Before

joining Sapienza, he worked as senior researcher with the

CNIT, the National Inter-University Consortium for

Telecommunications. He also held several research positions at

Telecom Paristech, University of Bristol, Italian Space Agency

and University of Rome Tor Vergata. His research interest

focuses on the design of high-speed hardware architectures for

programmable network devices.

