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Abstract

In this article, we advocate for the design of ad hoc artificial intelligence (AI)/machine learning

(ML) models to facilitate their usage in future smart infrastructures based on communication networks.

To motivate this, we first review key operations identified by the 3GPP for transferring AI/ML models

through 5G networks and the main existing techniques to reduce their communication overheads. We

also present a novel communication-aware ML framework, which we refer to as Accordion, that enables

an efficient AI/ML model transfer thanks to an overhauled model training and communication protocol.

We demonstrate the communication-related benefits of Accordion, analyse key performance trade-offs,

and discuss potential research directions within this realm.

INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are becoming ubiquitous in our lives. At

a consumer level, most used applications in our smartphones rely on AI/ML algorithms for image

recognition and video editing. Due to their benefits, vendors and operators are also currently

investing on AI/ML models to plan, design, and operate their fifth generation (5G) networks [1].

From an operational perspective, the integration of neural processing units and the execution

of AI/ML models in smartphones are becoming commonplace to satisfy the latency constraints

of complex applications and/or safeguard their data privacy. Wireless communications play a

central role in this distributed trend, i) enabling training and/or execution of AI/ML models

in edge servers, and ii) making them—or their results—available at the user equipment (UE)

on-demand [2], [3].
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Despite this paradigm, when inspecting popular AI/ML-based applications, we can observe that

they are increasingly becoming computation-intensive, power-hungry, and memory-demanding [4].

For instance, AlexNet [5] and VGG16 [6] require 724M and 15.5G multiply-accumulate (MAC)

operations to classify an image, respectively [3]. AlexNet occupies 240 MBytes in memory,

whereas VGG16 takes up 552 MBytes [3]. AI/ML research is also consistent with this develop-

ment, as it mainly focuses on enhancing model accuracy, which in turn requires more processing

capabilities [4]. Such trend is illustrated by applications where different AI/ML models perform

the same task under different conditions with the intention to select the most accurate result [7].

With this landscape, the need for downloading and executing large AI/ML models within tight

deadlines is translating into stringent capacity and latency requirements on wireless networks,

and is motivating the design of solutions, which keep the communication-related needs at bay [3].

This need has recently inspired a number of industrial and research developments within both

the AI/ML and wireless communities [2]. An important line of work in this direction is the

communication efficient distributed (or federated) learning [8], where communication constraints

mainly impact the training phase of the ML model.

In this paper, we first provide a hands-on view on the design of communication-aware AI/ML

models. We then condense the latest third generation partnership project (3GPP) studies on

the transfer of AI/ML models in 5G networks, and briefly review the main techniques used to

lessen their communication and computational requirements. Thereafter, we introduce Accordion,

a communication-aware ML framework designed for efficient transmission of AI/ML models,

whose accuracy can be tailored on-demand, and importantly, on-the-run. This is achieved by

refashioning the AI/ML model training phase so that UEs can execute a fraction of the AI/ML

models with adequate performance, and incrementally receive additional parts to further enhance

accuracy, whenever necessary. In the remaining of the paper, we dive into the implementation

details of Accordion, illustrate its performance when used with a popular AI/ML model, and

outline ideas meriting further investigation.

AI/ML MODELS IN 5G

The 3GPP has recently investigated AI/ML model distribution and transfer through 5G net-

works [3]. In this study, the 3GPP recognises image/speech recognition, media processing/enhancement,

automotive systems, robotic control, and computational offloading as the most important use

cases. On the other hand, it has identified AI/ML model splitting, AI/ML model downloading,
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and distributed/federated learning as the key operations for the deployment of AI/ML models in

a 5G networks. To show the importance of novel communication-aware AI/ML techniques, this

section summarizes these key operations for the deployment of AI/ML models in 5G systems.

AI/ML Model Splitting

In this technique, the execution of an already-trained AI/ML model is divided into two parts:

A fraction of the model is executed at the UE, while the remaining part runs at a network

endpoint, which then communicates the result to the UE.

• The key benefit: Reduction of the computational complexity and power consumption required

for the inference process at UEs, and/or preservation of the local data privacy. Depending

on the splitting point, the uplink traffic may also be limited with respect to the case where

the UE entirely transmits its local data to the network.

• Practical application: Consider a case where UE take videos, which require AI/ML post-

processing for enhancements. Each UE calculates and transmits an intermediate result to

the relevant network endpoint. The remaining part of the model is then executed at such

network endpoint, which feeds back the result to the UE.

AI/ML Model Downloading

UEs may not be able to store all the scenario-dependent AI/ML models due to memory

constraints. Consequently, UEs may request a fresh model to the network endpoint to execute

a new task and/or operate under new conditions. As in the previous use case, the models are

pre-trained at an AI/ML server.

• The key benefit: Availability of a large collection of AI/ML models tailored to a multiplicity

of particular tasks and environments, with the resulting accuracy gain and alleviation of the

memory requirements of UEs.

• Practical application: A UE requires identifying a variety of objects from its stored photos,

which were taken with different background and lighting conditions. To achieve the high-

est identification performance, such UE requests scenario-specific models to the network

endpoint.

Distributed/Federated Learning

In federated learning, UEs receive a global model from the network endpoint. After training

with their available local data, UEs transmit their updated models back to the network endpoint,
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which then updates the global model via, e.g., federated averaging [9], and communicates it

back to the UEs.

• The key benefit: Reduction of the communication requirements with respect to the case

where all UEs entirely transmit their training data to the network endpoint, and/or preser-

vation of the UE data privacy at the expense of a computational effort at the UE on local

training.

• Practical application: When an AI/ML-reliant image recognition application deployed in

a large number of UEs reports a poor performance, the network endpoint can upgrade the

related AI/ML model by combining those newly trained by different UEs via federated

learning, without accessing their privately stored data.

Overall, these use cases make apparent the benefits and need for implementing communication-

aware AI/ML techniques, which reduce the network requirements, while keeping performance.
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Fig. 1: Illustration of the Accordion training. The matrix Wj
i describes the model weights of the i-th layer at the

j-th training iteration. (a) In the first training iteration, the weights from all the layers are updated. (b) In the second

training iteration, only the weights of two hidden layers and the output layer are updated. (c) In the third training

iteration, the weights of three hidden layers and the output layer are updated.

REDUCING THE COMMUNICATION REQUIREMENTS OF AI/ML MODELS:

STATE-OF-THE-ART

The main techniques used to reduce the communication requirements and the computational

complexity of AI/ML models are [10], [11]:

• Quantization compresses the AI/ML model by reducing the number of bits per model pa-

rameter. Instead of the typical 32-bit single-precision floating-point format, the quantization

process usually represents each model parameter with a 16-bit half-precision floating-point

format or a 8-bit mini float.
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• Pruning reduces the number of model parameters, e.g., by removing weights in a neural

network (NN). In its simplest implementations, pruning can be performed by removing the

less important model parameters, which usually have small magnitudes.

• Matrix decomposition relies on modelling the parameters of AI/ML models as matrices,

e.g., describing the weights connecting two layers of a feed forward neural network (FNN).

When correlation exists, these parameter matrices are low-rank, and can be decomposed

into smaller matrices with an overall reduction on the number of parameters.

• Early Exit of Inference (EEoI) introduces outputs at different points across a NN. During

the inference process, when an early inference can be performed with high confidence, EEoI

allows obtaining a reliable result without reaching the last layer. Note that these methods

typically incorporate additional trainable layers [12] or a supplementary network, indicating

the layers that may be skipped during inference [13].

• Knowledge distillation (KD) uses the information from a large model (teacher) to train a

small model (student). The student model mimics the teacher model to obtain a competitive

or even a superior performance, with a significantly smaller size.

Although these techniques can reduce the communication overhead when operating with

AI/ML models, they share the following drawbacks:

1) Before the UE can execute them, the AI/ML models need to be either completely downloaded—

for quantization, pruning, KD, and matrix decomposition—or be comprised of additional

trainable parameters with respect to the reference model—for existing EEoI techniques.

Guaranteeing this within the latency deadline set by the application may not always be

feasible due to the large sizes of state-of-the-art AI/ML models and the constraints in the

communication link.

2) When using quantization, pruning, KD, and matrix decomposition, and AI/ML-driven ap-

plications change their performance requirements, the UE needs to download a new model

with the consequence toll on the communication network. Although EEoI can reduce this

issue, it still suffers from a lack of flexibility, as its training complexity increases with the

number of introduced outputs.

In the following, we present a novel communication-aware AI/ML technique addressing these

drawbacks.
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ACCORDION: A COMMUNICATION-AWARE AI/ML FRAMEWORK

The cornerstone of Accordion is its new AI/ML model training phase. In a nutshell, the

Accordion training process minimizes the training complexity by considering different config-

urations of an AI/ML model, each one comprising a fraction of the full, e.g., NN architecture.

This process, illustrated in Fig. 1 for a typical FNN recalls the musical instrument played by

compressing or expanding its bellows, while pressing buttons or keys. In more detail, at each

training iteration, Accordion only updates the weights of a subset of hidden layers based on a

given probability distribution function, which can be seen as a model hyper-parameter. Although

the number of trainable hidden layers per training iteration may be selected uniformly at random

in the simplest implementation, techniques to perform such selection based on communication-

and/or application-related requirements can have significant benefits, as described in the following

section. Importantly, the weights of the final layer/s in the original AI/ML architecture are updated

in every training iteration, and no additional trainable parameters are introduced. The non-selected

layers are skipped when computing the training error and updating the weights, resulting in a

reduction of the length of the training phase in average.

It should be noted that the Accordion training process allows the original AI/ML model to be

operated with distinct configurations, each one with a different number of layers, and resulting

in a different performance and communication overhead—all these, without requiring a distinct

training for each configuration. From the proposed methodology, it follows that the larger the

number of hidden layers considered during inference, the better the inference accuracy.

Practical Implementation of Accordion

An implementation example of Accordion is illustrated in Fig. 2. We consider a user attending

a concert, willing to share a live video on social media. Due to poor lighting and sound

conditions, the UE application needs to run AI/ML algorithms such as media enhancement,

face recognition, and song recognition. The size of each of these models typically ranges

from 3MB to 500MB [3]. In this context, the network edge server uses Accordion to train

in advance the relevant AI/ML model (Step 0), where the reduced-size configurations with

less layers in the production phase will result in videos with the target resolution but reduced

visual quality. As mentioned, the network endpoint may use a uniform distribution probability

to determine the number of layers per training iteration. In the following, however, we present

two enhanced, but intuitive, communication-aware approaches, which exploit a priori available
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Fig. 2: Illustration of the Accordion communication protocol.

statistical information on the communication network performance and AI/ML-based application

requirements:

1) Communication-related criterion: Given a priori knowledge on the distribution of the link

throughput/channel capacity and the latency tolerated by the application, the network end-

point can infer the maximum number of layers of the AI/ML models that can be transmitted

within a given deadline. The probability of selecting a given number of layers for each

training iteration in Accordion can be then made proportional to the frequency with which

a given model configuration is expected to be requested, based on said network link

throughput/channel capacity distribution and application latency requirements.

2) Performance-related criterion: It is intuitive that the performance of an Accordion-trained

AI/ML model depends on its size, with larger models offering more accurate results. Since

different UEs may have dissimilar performance requirements, the network endpoint can

collect those requirements and infer the probability of a UE requiring a specific model size,

which can also be used during the training phase for designing the policy that governs the

number of layers to be updated at each iteration.

As shown in Fig. 2, after the AI/ML model has been trained, the UE application requests

the network endpoint an AI/ML model for video enhancement with size 10MB and a latency

requirement of 200 ms (Step 1). Thereafter, the network endpoint first infers the fraction of
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the AI/ML model that needs to be distributed to the specific UE by evaluating the model

performance and the throughput of the wireless link (Step 2), and then transmits it towards

the UE (Step 3). Assume that the UE downlink throughput is 240 Mbps, then, using Accordion,

the network endpoint can send only 60% of the model to meet the application accuracy and

latency requirements.

To achieve Step 2, the network endpoint evaluated beforehand the performance of Accordion,

and built a look-up-table, which maps different model configurations (size and or number of

layers) with the resulting model accuracy. Note that sending the hidden layers after the input

and output ones enables the UE to execute a part of the AI/ML model before it is fully received at

the cost of a reduced accuracy. Subsequently, the UE communicates with the network endpoint to

let it know that it desires to increase the video quality (Step 4). Upon reception of this message,

the network endpoint determines the additional model fraction (e.g., the supplementary NN

layers) required to achieve the requested performance (Step 5), and then sends the necessary

information to the UE (Step 6). In Step 5, the same look-up-table as in Step 2 can be reused.

At a later stage, if the terminal is running out of battery or the accuracy requirement decreases,

the application can decide to operate with a fraction of the overall received model, trading off

accuracy with computational effort.

The Key Benefits of Accordion

When compared with the conventional training and model distribution, Accordion brings the

following key benefits:

• For application-specific accuracy requirements on the AI/ML model, the network only needs

to transmit the fraction of the model required to meet such requirements.

• When applications require an enhanced accuracy of the AI/ML model, they can ask for it,

ad-hoc, and the network endpoint share the already-computed, additional parts of the AI/ML

model, without the need to train and share a new model or additional model parameters.

• Applications with stringent latency constraints can execute a fraction of the model prior to

its complete reception whenever necessary, at the cost of reduced performance.

• Even when having access to the complete AI/ML model, devices with limited e.g., battery

capabilities can still execute a fraction of the AI/ML model.

• The computational complexity of the AI/ML model training is reduced, as Accordion

requires no additional trainable parameters, and in each training iteration, only a subset



9

CIFAR-100

32×32×3 

• Convolutional layer

o Kernel size = 3×3

• Batch normalization

Data input Input layer

16

32

32

Inner block 1 Inner block 2 Inner block 3 Output layer

Output size

32×32×16 

Output size

16×16×32 

Output size

8×8×64 
Output size

32×32×16 

…

Basic residual 

learning 

structure 1-1

3

×
3

1

6

3

×
3

1

6

3

×
3

1

6

3

×
3

1

6

Basic residual 

learning 

structure 1-18

…

Basic residual 

learning 

structure 2-1

3

×
3

3

2

3

×
3

3

2

3

×
3

3

2

3

×
3

3

2

Basic residual 

learning 

structure 2-18

Stride 

2
…

Basic residual 

learning 

structure 3-1

3

×
3

1

6

3

×
3

1

6

3

×
3

1

6

3

×
3

1

6

Basic residual 

learning 

structure 3-18

Stride 

2

•Average pooling

o Kernel size = 8×8

•Flatten

•Fully-connected layer

o Size = 64×100

•Softmax

Airplane…

…

Fig. 3: Illustration of the ResNet-110 architecture for the CIFAR-100 dataset [14].

of hidden layers is trained.

• Standard approaches to reduce communication and computational requirements of AI/ML

models can be implemented together with Accordion in a transparent manner.

PERFORMANCE EVALUATION OF ACCORDION

In this section, we illustrate the performance of Accordion over the standard ResNet-110 (resp.

ResNet-56) architecture when classifying the CIFAR-100 (resp. CIFAR-10) dataset. We chose

these architectures to demonstrate that the Accordion principle can be readily applied to modern

AI/ML frameworks. The CIFAR-100 dataset includes 100 classes and 600 32× 32 color images

per class. The CIFAR-10 dataset includes 10 classes and 6000 32× 32 color images per class.

The ResNet 110 (resp. ResNet 56) architecture is comprised of 110 layers (resp. 56 layers)

decomposed in basic residual learning structures (BRLSs): 1 input layer, 1 output layer, and 3

inner blocks of 18 BRLSs (resp. 9 BRLSs), each with 2 consecutive convolutional layers and an

identity shortcut. The architecture of ResNet-110 is illustrated in Fig. 3 [14]. Overall, ResNet

110 (resp. ResNet 56) has a total of 1.7 million (resp. 862 thousand) parameters and a size of

111 Mbits (resp. 55 Mbits), and requires 255 millions (resp. 127 millions) of MAC operations.

Using these architectures, we compare the following 3 schemes, which trade off classification

accuracy for model size to deal with the communication network constraints and AI/ML appli-

cation requirements: baseline ResNet, CoML, and BlockCoML. The training phase in ResNet

always involves all the BRLSs, while in CoML and BlockCoML, at each training iteration, the

number of trained BRLSs follows a random distribution, which governs how the performance of

these schemes is impacted by the fraction of the model available at the UE. Specifically, in our

experiments, we consider two simple distributions for training CoML and BlockCoML. In the

first one, referred to as CoML-05 and BlockCoML-05, the probability of training the full model

is 50%, while in the second one, referred to as CoML-03 and BlockCoML-03, this probability
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is 30%. In both cases, when the full model is not trained, the number of BRLSs to be trained

is selected according to a uniform distribution.

More details on the training and transmission of the AI/ML models based on these schemes

are provided in the following:

• ResNet: At each training iteration all the BRLSs are updated to minimize the classification

error of the complete model. When the network endpoint wants to transmit a model of

reduced size to satisfy application requirements and/or network constraints, it removes

BLRSs from the inner blocks—from right to left—, i.e., ignoring first the layers of the

third inner-block, then those of the second block, and finally those of the first block.

• CoML: Trained to minimize the average classification error over different configurations

by skipping BRLSs from right to left. At each training iteration, based on the number of

selected BRLSs, CoML first skips the necessary BRLSs of the third inner-block, and then

those of the second and first blocks, if needed be. The network endpoint follows the same

approach when aiming to transmit a fraction of the complete model to the UE, i.e., skipping

BLRSs starting from the third inner-block. For instance, if only 66% of the full model has

to be sent, the full third inner-block is not transmitted to the UE.

• BlockCoML: Trained to minimize the average classification error over different configura-

tions by skipping a subset of layers in each inner block. This means that, at each training

iteration, the same number of BRLSs is trained in each inner-block. The same approach

is followed when a fraction of the complete model is transmitted to the UE. For instance,

when wishing to transmit 66% of the full model, 12 and 6 BRLSs for each of the three

inner blocks are transmitted in ResNet 110 and ResNet 56, respectively.

As shown in Fig. 3, the layers of the third inner block have four times more parameters

than those of the second, which in turn, has four times more parameters than those of the first

inner block. Therefore, by skipping first the layers of the last inner block, CoML favors smaller

models than BlockCoML. Specifically, we can order the models according to their size, from the

smallest to the largest, as follows: CoML-03, CoML-05, BlockCoML-03, and BlockCoML-05.

However, this is not true in terms of computational complexity, since all layers require the same

number of MAC operations.

It is well known that the tuning of the hyper-parameters plays a pivotal role in modern

AI/ML. It is as crucial as the choice of architecture, and the most time-consuming task of the

NN training phase. To highlight the practicality of the Accordion training strategy, we use the
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standard hyper-parameters of ResNets, showing that the proposed training procedure can be used

without requiring additional hyper-parameters optimization. Specifically, we train the parameters

with stochastic gradient descent with 164 epochs, a mini-batch size of 124 images, and an

initial learning rate of 0.1, which is divided by 10 at iteration 82 and then again at iteration

123. At the last epoch, we have observed that all the tested models have converged, indicating

that Accordion does not negatively affects the convergence rate. Not only that, since Accordion

requires to update less parameters at each training iteration, it takes less time to converge than the

baseline solutions. Specifically, the gain in training time is inversely proportional to the average

number of layers trained in each iteration.

Performance Results

Fig. 4 illustrates the classification error of the different schemes over CIFAR-10 and CIFAR-

100 datasets as a function of the size of the model transmitted to the UE. For each of them, we

show the mean and standard deviation of the error computed using 5 independent runs. Note

that the sizes and the architectures of the complete models for each of the schemes are the same,

as they coincide with the ones of ResNet 110 (111 Mbits) and ResNet 56 (55 Mbits), but that

their performances differ, due to the specific training processes described in the previous section.

Although ResNet has been trained to maximize the performance of the complete model, CoML

and BlockCoML are trained to perform even when their respective full models are not available

at the UE. Accordingly, we can see that, in CIFAR-10 and CIFAR-100, the classification errors

of ResNet 110 and ResNet 56 quickly increase when the full models are not available at the

UE, e.g., with 50% of the full model, ResNet 110 and ResNet 56 achieve 88% and 63% of error

with a loss of 208% and 89%, respectively. Importantly, we can observe that, when only a small

fraction of the models is available at the UE, the empirical results validate our intuition, and the

approaches using Accordion significantly outperform the state of the art. As example, to reach a

classification error rate of 50% on CIFAR-100, and with respect to a scheme requiring to share

the complete model, ResNet 110, BlockCoML-05, BlockCoML-03, CoML-05, and CoML-03

can afford a 25%, 66%, 75%, 89%, and 90% network throughput reduction for model sharing,

respectively, due to the reduced model size. In terms of the MAC operations required at the UE for

the inference, such models lead to a computational complexity reduction of 11.5%, 69.2%, 73.1%,

57.7%, and 61.5%, respectively. Note that, due to the way in which layers are skipped during the

training, BlockCoML outperforms CoML in terms of computational complexity reduction, while



12

CoML outperforms BlockCoML in terms of throughput reduction. Accordingly, during lightly

loaded hours, when network capacity is larger than the traffic load, the network can reduce the

overall computational complexity training ML models using BlockCoML. In contrast, during the

peak traffic hours, CoML is preferable.

As an example, if we consider a 5G link with a throughput of 100 Mbps and an AI/ML-based

application that requires a model trained on CIFAR-100 to be download within 0.3 s, ResNet 110,

BlockCoML-05, BlockCoML-03, CoML-05, and CoML-03 would reach a classification error of

96%, 69%, 46%, 43%, 38% respectively. This clearly shows the shortcomings of ResNet 110

and benefits of the proposed schemes. One can argue that these trends change when we increase

the available throughput or relax the latency constraint, thus increasing the available fraction of

the models at the UE. However, notice that the loss of the proposed schemes with respect to

the standard ResNet with the full model is relatively limited in this case, as the error increase

ranges from 3% to 9% when using BlockCoML-05 and CoML-03, respectively.

It is worth highlighting that when accuracy requirements and communication constraints are

static and known in advance, standard approaches for reducing the model size are more effective

than Accordion. For example, using quantization, and compressing the model parameters from

32bits to 8bits, i.e., reducing the model size by 75%, ResNet achieves an error rate of 8% on

Cifar10. Similarly, when pruning 75% of the weights with the smallest absolute value in the

original model, and then further training the remaining 25% of the weights, ResNet achieves an

error rate of 10%. For comparison, CoML-30 and CoML-50 result in approximately 12% error

with 75% model size reduction. Nevertheless, as previously mentioned, the main advantage of

our proposed framework lays in its enhanced flexibility with respect to these classic mechanisms,

as it enables the system to efficiently adapt —in real time— the transmitted layers to the UE’s

requirements without the need to send a new model from scratch, as it would be required by

the mentioned state of the art. Besides, we conclude highlighting that, in principle, Accordion is

fully compatible with other model size reduction methods to further reduce the communication

overhead.

FUTURE WORKS ON COMMUNICATION-AWARE AI/ML MODELS

In this section, we highlight further research to pave the way to communication-aware AI/ML

techniques.
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(a) CIFAR-10 (b) CIFAR-100

Fig. 4: Classification error as a function of the portion of the model available (in Mbits) using CoML, BlockCoML,

and ResNet for the datasets a) CIFAR-10 and b) CIFAR-100. The solid lines represent the mean over five runs, the

shaded area illustrates the performance standard deviation.

Accordion in Deep Learning Architectures with Dimensionality Mismatches

A key feature of Accordion is that the weights of the final layer/s present in the original AI/ML

architecture are trained at every iteration. In a large variety of architectures such as ResNets,

VGGs, AlexNets, and DenseNets, Accordion can be directly implemented by just removing one

of the many intermediate layers with the same number of inputs and outputs, as shown in the

previous section. When integrating Accordion in ResNets, we use average pooling for down-

sampling before each inner block, which does not require additional trainable parameters. In other

architectures where removing intermediate layers necessarily leads to dimensionality mismatches,

Accordion may still be applied by introducing additional—trainable or non-trainable—linear

layers.

Generalization to AI/ML Models

Although the training part of the Accordion framework focuses on deep learning models due

to their pervasiveness, its communication protocol (see Fig. 2) is general, and may be adapted

to a variety of AI/ML models. A prime example is that of ensemble AI/ML methods based

on bagging, like random forests or boosting, such as adaptive or gradient boosting techniques

[15]. These methods are particularly efficient from a communication perspective, as they consist

of multiple learners that combine their outputs to provide better performance than each of the
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individuals. Since fully trained ensemble learning methods can be executed with a fraction of

the learners, and their performance generally grows with the number of available learners, their

implementation is Accordion friendly, and may be preferred over NNs whenever feasible. In con-

trast, more complex neural network architectures like attention based models, e.g. transformers,

require more careful investigation to integrate Accordion principles.

Derivation of Accordion policies with performance guarantee

In this manuscript, we have presented solutions to derive distribution probabilities, which

determine at each training iteration of Accordion the layers to be updated. However, in future

works, it is necessary to design policies with performance guarantee, in terms of convergence

time, accuracy, and communication requirements. In addition, it is necessary to understand the

end to end energy efficiency for each of these policies and related baseline solutions, considering

the cost of training, communication, and inference phases. The availability of use-case specific

policies with proved performance will facilitate the deployment of Accordion in future intelligent

systems.

Accordion in Federated Learning

We believe that Accordion can provide significant advantages in the the federated learning

setting. Consider the case where multiple UEs with local data have different computational

and communication capabilities. With Accordion, each UE could train a different (fixed) model

configuration tailored to its capabilities, e.g., a different number of layers. As a result, agents

with limited capabilities would need to communicate and update only a small fraction of the

layers. However, new challenges arise to achieve this goal with respect to the baseline Accordion

logic presented in the paper, where training is realized at the network side. More specifically,

open research challenges are related to the impact of the wireless channel on the training phase,

the power consumption at the end users due to the distributed model training, and the need for

accurate aggregation of data from different sources, potentially in an asynchronous manner.

CONCLUSIONS

The integration of AI/ML models and wireless networks is progressing at a rapid pace. In

this manuscript, we have introduced a novel communication-aware ML framework, which we

refer to as Accordion, tailored to enable efficient distribution of NN models in a network.
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Specifically, thanks to an innovative training, in contrast to standard ML models, Accordion

supports stringent application latency constraints and adequate accuracy performance by allowing

UEs to execute a fraction of the original AI/ML model. In addition, it enables to improve the

application performance by transferring additional parts of the AI/ML model, online, when

required.

BIOGRAPHIES

Fadhel Ayed is a Senior Researcher with Huawei Technologies, France. His research interests include resource efficient machine

learning, stochastic processes, and mathematical foundations of deep learning.

Antonio De Domenico is a Senior Researcher with Huawei Technologies, France. His research interests include heterogeneous

wireless networks, machine learning, and green communications.

Adrian Garcia-Rodriguez is a Senior Researcher with Huawei Technologies, France. His research interests include heteroge-

neous wireless networks, machine learning, and UAV communications.

David Lopez-Perez is an Expert and a Technical Lead with Huawei Technologies, France. His interests are on both cellular

and Wi-Fi networks, network performance analysis, network planning and optimization, as well as technology and feature

development.



16

REFERENCES

[1] Huawei Technologies Co., Ltd, “ADN Solution White Paper, Autonomous Driving Network,” available

https://carrier.huawei.com/en/adn, 2020.

[2] J. Park et al., “Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications,”

Proceedings of the IEEE, vol. 109, no. 5, pp. 796–819, 2021.

[3] 3GPP, “Technical Report 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer

in 5GS (Release 18),” V18.2.0, Dec. 2021.

[4] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” Communications of the ACM, vol. 63, no. 12, pp. 54–63,

Dec. 2020.

[5] A. Krizhevsky et al., “Imagenet classification with deep convolutional neural networks,” in Proc. of NIPS, vol. 25, Dec.

2012, pp. 1097–1105.

[6] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in Proc. of 3rd ICLR, May

2015.

[7] B. Taylor et al., “Adaptive Deep Learning Model Selection on Embedded Systems,” in Proc. of the 19th ACM

SIGPLAN/SIGBED LCTES, June 2018, p. 31–43.

[8] Y. Shi et al., “Communication-efficient edge ai: Algorithms and systems,” IEEE Communications Surveys & Tutorials,

vol. 22, no. 4, pp. 2167–2191, 2020.

[9] S. Niknam et al., “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE

Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.

[10] Y. Cheng et al., “Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and

Challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 126–136, 2018.

[11] L. Deng et al., “Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey,”

Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[12] S. Teerapittayanon et al., “Distributed deep neural networks over the cloud, the edge and end devices,” in Proc. of the

37th IEEE ICDCS, June 2017, pp. 328–339.

[13] Z. Wu et al., “BlockDrop: Dynamic Inference Paths in Residual Networks,” in Proc. of the IEEE/CVF CVPR, June 2018,

pp. 8817–8826.

[14] K. He et al., “Deep residual learning for image recognition,” in Proc. of the IEEE CVPR, June 2016, pp. 770–778.

[15] S. González et al., “A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms,

software tools, performance study, practical perspectives and opportunities,” Information Fusion, vol. 64, pp. 205–237,

2020.


	Biographies
	Fadhel Ayed
	Antonio De Domenico
	Adrian Garcia-Rodriguez
	David Lopez-Perez

	References

