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Abstract—Characteristics like self-managing, self-adaptation,
and self-organization are the main objectives of intelligent
network operation. Artificial Intelligence (AI) and Machine
Learning (ML) algorithms will enable future networks to operate
entirely autonomously. However, current network architectures
are not fully prepared to include and properly handle the
promised Network Intelligence (NI). This article looks at scaling,
one key Management and Orchestration (MANO) operation that
allows the network to adapt to unexpected changes. We show
how different scaling methods can fit the Monitor-Analyze-Plan-
Execute over a shared Knowledge (MAPE-K), a well-established
framework that allows architectural-based adaptation. Using a
cloud-based scenario, we compare and highlight architectural
differences between two prominent scaling methods, one based
on Reinforcement Learning (RL) and the other based on classical
control theory, showing that only the data-driven approach is
adaptable enough to achieve automation. We conclude the article
by pointing toward future research in autonomous, adaptive
networks.

Index Terms—Management and Orchestration, Network Au-
tomation, NFV scaling, Reinforcement Learning, Self-Adaptive
Systems, Zero-Touch Networks.

I. INTRODUCTION

MOBILE networks constantly evolve due to society’s

desire for connectivity, capacity, and newer services.

The fifth (5G) and newer generations of mobile networks rely

on softwarization and cloudification trends, enabled by tech-

nologies like Software Defined Networking (SDN) and Net-

work Function Virtualization (NFV). Therefore, the network is

becoming a general-purpose platform that provides connectiv-

ity to many heterogeneous devices and guarantees Quality of

Service (QoS). However, Network Service Providers (NSPs)

typically manage most network challenges using simple rules,

models, and heuristics. Such approaches still face limitations

when handling new contexts or reacting to new demands, given

their static nature. Therefore, SDN- and NFV-based networks

need to evolve to address this open issue and fulfill the vision

of zero-touch networks, where the network autonomously

adapts to changing conditions [1].

AI, specifically ML, is considered the keystone in this

digital transformation [2], after successfully solving critical

problems like network service management and resource pro-

visioning [3]. Additionally, a series of collaborative AI/ML

algorithms —or Network Intelligent Functions (NIFs) —

will build the so-called NI by swiftly detecting/anticipating
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network changes and then smoothly reacting without human

intervention [4]. Unfortunately, existing management frame-

works often assume already trained AI/ML models operate

independently and do not fully support their lifecycle manage-

ment (i.e., each model is managed individually). Therefore,

it is challenging to ensure End-to-End (E2E) performance

alignment, algorithm convergence, and global optimality of

the zero-touch network management process when including

NI during network operation.

Currently, there are some efforts from European Telecom-

munications Standards Institute (ETSI) to include AI/ML

algorithms and their management in network architectures [1],

[5]; however, these efforts are still in their infancy. Following

the nature of Zero-touch network and Service Management

(ZSM), the EU-funded DAEMON project considers an NI-

native architecture that unifies the NI representation, promotes

the reuse of NIFs, and is fully aligned with emerging designs

in standardization [4]. The key element in DAEMON’s archi-

tecture is the inclusion of multiple closed control loops along

different network micro-domains, breaking the centralized,

human-in-the-loop solutions, which are identified to be slow

and error-prone.

In the context of 5G and 6G networks, where MANO will

be based on NI, this article focuses on scaling, a fundamental

MANO operation in NFV that allows NSPs to automatically

resize Network Services (NSs) at runtime to meet traffic surges

while providing performance guarantees. Furthermore, scaling

methods are mainly designed as closed-loop control, so they

can be mapped to a general architecture-based framework

called MAPE-K, one of the most influential reference control

models for autonomous and self-adaptive systems [6], for

clearer understanding and detailed comparison. Nevertheless,

this framework presents some limitations when contemplating

AI/ML-based solutions. The contributions of this article are

threefold:

• We establish a methodology to describe several NS

scaling methods (e.g., ML-, rule-, and control theory-

based) based on an extended MAPE-K framework. To the

authors’ best knowledge, this is the first article that shows

how NIFs for NFV scaling can be generically defined,

allowing re-utilization and evolution.

• We design an RL-based algorithm to solve the scaling

problem where a multi-objective function is optimized

regarding the number of replicas and a target delay. We

frame this solution into the NI, going beyond state-of-the-

art [7], where the scaling is merely designed following a

single optimization criterion.

• Using a cloud-based scenario, we compare two scaling
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methods (RL- and control-based). Specifically, we com-

pare them quantitatively and show that, despite several

approaches fitting the methodology, only data-driven al-

gorithms produce the desired adaptation and automation

in network operations.

This article is organized as follows. In Section II, we

describe the scaling problem and list the approaches used to

solve it. Then, in Section III, we explain the methodology

we follow to represent different NIFs in a unified way and

use it to decompose the approaches listed in Section II.

In Section IV, we present our RL-based scaler and show

the comparison results against a control-theory-based scaler.

Finally, we present some open challenges and opportunities

and conclude the article in Section V.

II. BACKGROUND AND RELATED WORK

In NFV, Virtual Network Functions (VNFs) are software

implementations of network functionalities previously pro-

vided as network equipment/devices. Being software com-

ponents, VNFs can be scaled and moved on demand over

general-purpose infrastructure. A composition of multiple

VNFs is called an NS, e.g., remote secured access composed

of a firewall and a VPN gateway. To meet Service Level

Agreements (SLAs), NSPs resize NSs or individual VNFs, i.e.,

change the number of the replicas of a given NS (horizontal) or

change the computing resources assigned to them (vertical), to

fulfill operational and business objectives in a multi-objective

setup [7]. First, the maximum tolerable delay for a given

NS, and second, the infrastructure cost of implementing the

necessary software pieces (i.e., VNF replicas).

Simultaneously, scaling is considered a decision-making

problem as it determines the number of replicas that achieves

both objectives. Decision-making problems are frequently

modeled as Markov Decision Processes (MDPs). An MDP is a

discrete-time stochastic framework that finds an optimal policy

or strategy that maximizes the expected long-term reward, a

discounted sum of immediate rewards. The optimal policy is

found after many interactions with the environment until the

scaler has converged. Several methods have been explored,

regardless of how the scaling problem is modeled.

Traditional approaches for scaling are reactive since

they manually and statically set the number of replicas,

frequently by over-provisioning. Other reactive approaches

include threshold-based methods [8], in which the scaler is told

what to do if the network Key Performance Indicators (KPIs)

are above or below a given threshold, using predefined rules.

This threshold represents an optimal operation point, which is

derived from expert knowledge. Such approaches only work in

small configurations and are difficult to maintain, as either they

are based on open-loop architectures or closed-loop but slow

(e.g., the expert, as human-in-the-loop, needs to redetermine

the threshold).

Control theory can also be used for scaling [9]. Here,

the controller regulates a control variable, e.g., the number

of resources, to keep a (measured) variable controlled, e.g.,

the KPIs specified in the SLA, as close as possible to a

target value within some allowed boundaries. For instance, a

Proportional–Integral (PI) controller calculates an error, which

represents the deviation between the target and the measured

value, and a trend, which captures how the measured value

evolves. Since the objective is to keep the measured variable

close to the target, the correction signal, i.e., the change that

needs to be applied to the control variable, is a weighted

sum of the error and the trend. There is also a third term

for some controllers, but we do not consider it here. One

of the advantages of using PI controllers for scaling is their

steady response to small changes in the input variable (i.e.,

incoming traffic load). Moreover, if the system to be controlled

is linear, the controller’s parameters can be optimally set using

Fourier or Laplace domain analyses. However, for non-linear

systems, tuning the controller’s parameters can be lengthy and

computationally expensive.

Data-driven approaches have also been proposed as scal-

ing techniques. Data-driven approaches employ methods to

extract meaningful features from data, which can later be lever-

aged in decision-making, which emulates human intelligence.

ML algorithms belong to this kind of approaches. Predictive

scaling is the main area where ML is applied [10]. In predictive

scaling, modern Supervised Learning (SL) techniques such

as time-series forecasting are applied to find hidden patterns

in the traffic load. The discovered patterns are then used to

predict the expected load, which could be translated into scal-

ing decisions (e.g., by applying a step activation function) so

that MANO platforms can anticipate and set up the resources

needed for future demand. More complex SL techniques, such

as Convolutional Neural Networks (CNNs), are known for

their automatic feature extraction (e.g., patterns) and function

approximation (e.g., mapping to scaling decisions). To achieve

this, they require enough labeled data to learn to identify such

patterns and adapt accordingly. Data labeling is often a lengthy

and manual process that, in most cases, also requires expert

knowledge.

Given its decision-making nature, RL [11] is also explored

as a scaling solution. In RL, an agent explores and analyzes

the effects of different actions in an environment. This process

can be seen as trial and error, where after many attempts, the

agent learns a strategy that allows it to choose better actions

over time. The main element in this learning process is the

reward function, which tells the agent if the action it took was

appropriate. This function guides the agent towards choosing

the actions that maximize an expected reward, equivalent to

achieving the learning goal. Unlike threshold-based or rule-

based solutions, where a scaler is directly instructed on what

to do, an RL-based scaler proactively adapts the NS instances

according to a learned strategy. This behavior is similar to

that of predictive scalers since, in a given state, the RL agent

can anticipate future changes. However, RL does not require a

priori knowledge of the system or expert knowledge to define

the optimal operation points, making it more adaptable than

static solutions.

III. CLOSED-LOOP CONTROL FOR NI-BASED SCALING

MAPE-K is an architectural framework for autonomic and

adaptive systems consisting of a closed loop of four phases.
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Fig. 1. The (a) general and (b) extended MAPE-K framework for NFV scaling, where the main differences are the learning function (in blue), a training and
an inference loop which inject their outcomes to the network or its digital twin, depending on which loop is considered.

During the first phase, the Monitor function collects data from

the resources through sensors distributed over the system. In

the second phase, the Analyze function correlates the received

information and creates a system model, which could be used

to predict future situations. Then, the Plan function decides

the actions needed to achieve the system’s objectives. Finally,

the Execute function performs the planned actions over the

resources. The Knowledge is represented by the data shared

among the previous functions.

As explained before, scaling is mainly designed following

a closed-loop control, similar to that proposed by MAPE-K.

Thus, the scaling solutions can be naturally elaborated using

the MAPE-K framework, as depicted in Figure 1a, where

we show, in a general way, what every MAPE-K function

expects of a scaling solution. The MAPE-K can represent the

interactions between different components in a unified way,

allowing their coexistence in the same network infrastructure.

Nonetheless, MAPE-K presents some limitations when con-

templating AI/ML-based solutions, especially in determining if

the NI is being trained or used in inference and distinguishing

between different ML types (e.g., SL and RL). Therefore, we

extend the definition of the MAPE-K, as shown in Figure 1b,

to include such specificities coming from the integration of

ML and networked systems. We introduce a learning block

that optimizes an objective function. Notice that the objective

function optimizes the algorithm’s learning (e.g., minimizing

the cross-entropy) according to the learning problem (e.g.,

classification), and it is not necessarily related to the opti-

mal solution of the networking problem (e.g., selecting the

best modulation scheme to minimize interference). Moreover,

depending on which loop is considered, we include different

training and inference loops, which inject their outcomes into

the network or its digital twin. A digital twin network is a

virtual representation of a physical network. Thanks to their

access to real-time data, digital twins can accurately model

complex systems. This way, multiple decisions can be tested

safely without impacting the production network [12].

Regarding this last point, ML algorithms typically have two

operation modes: training and testing/inference. Algorithms

that have been tested on a digital twin can be readily in-

troduced in production networks. In contrast, the outcomes

in training mode cannot be applied directly. Since current

network architectures do not naturally integrate these solu-

tions, they are typically trained in non-production networks

(e.g., simulators, emulators, and testbeds) and deployed in

isolation (e.g., without interacting with other ML algorithms).

Consequently, the gap between reality and simulation in the

networking domain is big and difficult to close.

In Table I, we decompose the most prominent scaling

solutions using this extended version of the MAPE-K. All al-

gorithms monitor similar variables and execute their decisions

similarly by exposing an Application Programming Interface

(API) to communicate with MANO platforms. The Monitor

and the Execute functions represent the algorithms’ inputs

and outputs and are common to all scaling methods. However,

depending on how the infrastructure exposes the monitoring

information and the control parameters, the information these

two functions process may vary.

The main differences emerge in the Analyze and Plan func-

tions, where intelligent and non-intelligent methods differ. For

SL-based scalers, the intelligence is in the Analyze function,

where they identify the common patterns between the incom-

ing traffic load and the scaling decisions. On the contrary,

the intelligence of RL-based scalers is in the Plan function,

where they translate network states into scaling decisions,

freely deciding when to increase or decrease the number of NS

instances. Notice that a combination of algorithms is also pos-

sible by using the same MAPE-K representation. For example,

a scaling solution may combine an RL method to estimate the

derivative term of a PI controller, which determines the number

of replicas needed to meet the SLA [13].

Another difference among the scaling methods is how the

Knowledge is acquired. In non-intelligent methods, the knowl-

edge is extracted from the network and resides in behavioral

rules (e.g., increasing the replicas by two if the threshold is

surpassed), typically designed by NSPs, which are external
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TABLE I
MAPE-K DECOMPOSITION OF DIFFERENT SCALING METHODS

MAPE-K Component
Scaling Method

Threshold-based Control-based SL-based RL-based

Monitor

Resource State: CPU utilization
Network State: service latency,
E2E delay

Network State: service latency,
E2E delay

Traffic Demands: Traffic load
Resource State: CPU utilization,
number of replicas
Network State: service latency,
E2E delay

Resource State: CPU utilization,
number of replicas
Network State: service latency,
E2E delay

Analyze

Comparison between the
monitored variables and the
predefined thresholds

Computation of how the control
variable needs to be changed as
a weighted sum of an error term
and a trend

The monitored variables are passed
by a time series forecasting
algorithm to learn hidden patterns

The monitored variables are
averaged to compose the State.

Plan
Predefined actions according
to the thresholds

Apply a mathematical formula
to translate future patterns
into scaling decisions

An agent takes the best action
according to the learned strategy
and current network state

Execute An API to the MANO platform to communicate scaling decisions

Knowledge
External: Human knowledge to
define the threshold

Control terms’ values Model of the expected traffic load
Strategy with the actions to be
taken according to the network state

Training Loss
State/Actions/Rewards

N/A Cross-Entropy
States: Avg CPU utilization, Avg latency
Rewards: Resource utilization tolerance

agents. In contrast, in NIFs, the knowledge can be automati-

cally incorporated into the network by including the learning

function explained above. However, the way the scalers obtain

this knowledge is entirely different. While intelligent scalers

obtain their knowledge by training, the control-based tune the

control parameters by running brute-force heuristics.

IV. USE CASE: NI FOR NFV-SCALING USING

CLOSED-CONTROL LOOPS

From the scalers presented in the previous section, only

two of them inherently include closed-control loops in their

internal working: the RL- and the control-based. We assume

that the scalers are deployed in the control plane of edge-cloud

domains so they can control NSs replicas in such domains.

This section shows the internal design of these two algorithms

for NS scaling and compares them.

A. Scalers

1) RL-based scaler: The scaler interacts with the network

in discrete time steps. It observes the network state at every

step, composed of the tuple {number of VNF replicas, average

Central Processing Unit (CPU) utilization, perceived peak

latency}. Then, based on these observations, the agent decides

to increase (by one), decrease (by one), or maintain the number

of replicas. The executed action changes the network from

state. The objective of this RL agent is to fulfill the agreed

SLA with the minimum amount of replicas. Therefore, in every

time step, the agent pays an immediate cost depending on how

good or bad the action it took is. The cost of taking action

when the environment moves from one state to another can

be defined as a weighted function, including the following

contributions.

• If the agent cannot fulfill the SLA, it incurs a performance

cost, with an associated wperf , which is paid every

time the perceived peak latency exceeds a predefined

threshold. The cost is zero otherwise.

• If the agent must deploy a new replica, a resource cost is

paid, with an associated wres; this can be seen as a rental

cost in cloud environments or the consumed energy of the

replica while it is running.

These two contributions are combined into a weighted

function, where the respective non-negative weights define an

optimization profile. The weights (wperf and wres) multiply

an indicator function that varies between 1 and −1 depending

on whether or not a condition is met. For instance, if the

perceived peak latency is above a threshold, the indicator

function is 1 or 0 otherwise; if a new replica is instantiated,

the indicator function is 1, or −1 if the replica is removed.

Finally, the reward function is defined as the negative cost

function.

2) Control-based scaler: This scaler is inspired by a tradi-

tional PI controller. At the end of every time step, the scaler

calculates a parameter φ by adding two terms: (1) a term

proportional to how much the current latency deviates from

a target θ and (2) a term proportional to the trend in latency

(i.e., the latency difference in the current and previous step).

The proportional coefficients for the first and second terms

are α and β, respectively. At the beginning of the next step,

the scaler changes the number of replicas depending on the

calculated φ. If φ is more than one unit larger than the current

number of replicas, a new replica is added. Otherwise, a replica

is removed if φ is more than one unit smaller than the current

number of replicas.

For training the PI scaler, we use the same reward function

as above. For each combination of the values for the parame-

ters:

α = 0.015625, 0.0625, 0.25, 1, 4, 16

β = 50, 100, 200, 400

θ = 10ms, 15ms, 20ms

we calculate the (time-varying) value, defined as the accumu-

lated, discounted reward (with discount factor γ = 0.9), as

we run through the training trace, thus obtaining 6 × 4 × 3
value traces. Of those value traces, we take the step-per-step

minimum. The parameter combination (θ, α, β) associated

with the value trace that deviates the least from that minimum

is selected as the best combination.

B. Simulation scenario

To evaluate the performance of the scalers, we simulated

a simple use case based on a cloud system. The incoming
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Fig. 2. Complete workload trace

traffic load enters a load balancer which distributes it among

the VNF replicas. The number of replicas must be dynamically

and efficiently changed to meet a given SLA without incurring

in under- or over-provisioning. To be as general as possible,

we assume horizontal scaling, where the processing capacity

is increased/decreased by instantiating/removing a replica.

Horizontal scaling can be exploited by distributed services

where the workload is shared among different instances of

the same service, leveraging the virtually infinite computing

capacity of the cloud. We consider a monitoring block that

constantly reports usage metrics to a decision-making agent.

The agent automatically determines the number of replicas

based on the received information. This use case contains all

the functions proposed by MAPE-K, explained in Section III.

The proposed scenario was simulated using Simulation

of Discrete Systems of All Scales (Sim-Diasca), a general-

purpose, parallel, and distributed discrete-time simulation en-

gine for complex systems written in the Erlang language [14].

Using ZeroMQ, we communicate Sim-Diasca with high-level

programming languages like Python. The scalers proposed in

the previous section were implemented in Python and interact

with the environment (i.e., the simulator in Sim-Diasca) on

a time-step basis. In a time step, Sim-Diasca simulates all

the defined functionalities and waits for the scaler’s decision.

Subsequently, the time manager increases the time step by one,

and the simulation goes to the next step. We also defined an

initial scenario composed of a server with two NSs and a load

balancer between them. This initial scenario is deployed every

time the simulation is restarted.

We considered as incoming traffic load a datacenter-like

pattern, where the traffic is low during off-work hours and

high during working hours. However, as seen in Figure 2, we

introduce some randomness to this pattern to test the ability of

the scalers to react to sudden changes. Moreover, we decided

that a time step represents one second, which means that a

point in the workload trace represents the incoming traffic

during a second. Thus, the trace represents a week’s workload

for a given service. For processing this workload, a VNF can

process up to 300 jobs each time step, representing a CPU’s

capacity. Similarly, the server can host a maximum of 40 NSs.

Regarding the RL-based scaler, we implemented a Proxi-

mal Policy Optimization (PPO) agent using Stable-Baselines3

(SB3) default values. SB3 is a framework that implements

popular RL algorithms for benchmarking purposes. PPO is a

model-free algorithm that does not require knowledge of the

system dynamics. Moreover, PPO is an on-policy algorithm

which means that the algorithm improves the strategy that

is used to make decisions, resulting in more stable learning

during training [15]. PPO is also easier to implement and

tune than other RL algorithms. We trained the PPO scaler

using one day (86 400-time steps), two days, and three days

of the workload trace. We evidenced during some exploratory

experiments that the agent needed at least 172 800 samples

to learn a strategy resulting in good behavior during testing.

Consequently, the results reported in this section are of a PPO

scaler trained during the first two days of the trace.

Regarding the PI-based scaler, we used the method de-

scribed in Section IV-A2 to determine the optimal PI parame-

ters during the first two days of the trace. It turns out that for

the considered sets of weights, the same PI parameters yield

the lowest cost, i.e., (θ, α, β) = (10ms, 0.0625, 400).

C. Simulation results

To show the agents’ ability to react to unseen workload

traces, they were tested using the last two days of the trace

(i.e., the last 172.8K workload values). We evaluated different

cost function weights ((wperf , wres) = (0.99, 0.01), (0.5, 0.5),

and (0.01, 0.99)) to show how the scalers can adapt their

behavior based on what they are focused on optimizing. For

instance, by optimizing performance over resources, the scaler

will more likely pay attention to fulfilling the SLA while

disregarding the number of replicas. Since the RL behavior

during training highly depends on the initial weights of the

neural network, we trained the PPO scaler several times with

different seeds. In each training, the same weight configuration

is used. Notice that, despite training and testing the RL in

separate processes, RL can still learn during the testing phase,

similar to an online learning method. On the contrary, once

the PI parameter values are set, its behavior is deterministic.

Moreover, for the reward function defined here, the best set

of PI parameters is insensitive to the weights.

The results of the evaluation using the testing trace are

shown in Figure 3. Figure 3a shows the behavior of the

proposed scalers in terms of the peak latency where the red line

identifies the SLA. In this case, the SLA specifies a service’s

maximum tolerated peak latency (24ms). Similarly, Figure 3b

shows how many violations are made by the scalers.

As it can be seen, when the PPO is trained with a reward

function that optimizes the resources over the performance

(i.e., green dots), the average amount of replicas is always

lower than five; however, there is no guarantee of the achieve-

ment of the SLA. For instance, the darker green dot in Figure 3

creates, on average, 4.003 replicas, obtaining an average peak

latency of 600.75ms, which translates into violating the SLA

about 91.7% of the time.

On the contrary, when the scaler is trained with a reward

function that optimizes the performance over the resources

(i.e., blue dots), the violations are reduced to their minimum
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Fig. 3. Testing results showing the trade-off between (a) peak latency, and (b) fraction of violations and number of replicas.

at the expense of creating more replicas. The scaler on the

darker blue dot creates an average of 5.544 replicas, obtaining

an average of 8.5ms of peak latency, minimizing the violation

of the SLA to 0.0023% of the time.

It also can be observed how the PPO tries to find a balance

between both objectives when the weights are equal (i.e.,

orange dots). This clearly indicates that the PPO performs

plausibly, optimizing the objective it should optimize and

trying to balance both objectives when indicated. On average,

the solution in dark orange creates 5.04 replicas, having an

average of 10.24ms of peak latency and violating the SLA

just 1.1% of the time.

Nevertheless, without having an optimal strategy, which

indicates the optimal number of replicas achieving the SLA,

there is no simple and fast comparison between the designed

strategies. In that sense, we use the control-based scaler as

a reference point to the RL-based scaler since it provides a

solution that shows a good trade-off between both objectives

(i.e., minimizing the number of replicas while fulfilling the

SLA). The solution shown as a black diamond in Figure 3

creates, on average, 4.82 replicas, having an average of 9.62ms
of peak latency and violating the SLA 0.0098% of the time.

D. Discussion

In the previous sections, we have shown how two ap-

proaches for scaling can be mapped in a common framework

to support self-adaptation and how they behave when evaluated

using the same environment. Notice that, despite this fact,

they are intrinsically not comparable since they have different

requirements for learning.

On the one hand, the control-based approach is determin-

istic, which implies that its output will likely be the same

if the tuned control parameters are the same. Nevertheless,

the tuning process is long and computing expensive since it

requires brute force to determine the appropriate values for

the control parameters.

On the other hand, the RL-based approach is non-

deterministic, meaning that different outputs can be obtained

for the same parameter configuration due to the random

initialization of the neural network’s weights used in the state-

action approximation. However, as shown, RL algorithms can

change or learn the model during runtime. This is especially

powerful since the algorithm does not require complete re-

training to learn new patterns when the workload changes.

Moreover, the reward function guides learning by determining

the actions that reach the (multi-)objective function. In each

state, the RL-based scaler can find the action that suits that

state; thus, we are not instructing the scaler what action to take;

instead, the scaler takes that decision autonomously, following

a learned strategy.

The previous point also relates to the inability of threshold-

based algorithms to adapt since the operation thresholds must

be determined using expert knowledge, which cannot be

introduced during runtime without tearing down the service.

Therefore, the operational thresholds are valid for a given

network configuration and traffic load. Once they change, the

thresholds must be calculated again. Moreover, the operational

thresholds might be challenging to define in more complex

cases, like the ones involving multi-objective optimization

problems. On the contrary, ML-based approaches automati-

cally learn the operation thresholds from the data they receive,

even in multi-objective problems.

However, the learning behavior of an RL-based scaler

heavily depends on the reward function definition. As shown,

two slightly different reward functions may result in very dif-

ferent behaviors. Thus, the reward function must be carefully

designed, and its effects on the stability of the RL algorithm

must be studied.

V. CONCLUSION AND OPEN CHALLENGES

Automating scaling is investigated in this article to decide

the number of NS replicas required to achieve operational,

business, and economic goals for multiple stakeholders. There-

fore, it is considered a decision-making and multi-objective

problem. This perspective proposes closed-loop architectures

for next-generation networks as they are more likely to adopt

data-driven approaches. Using and extending the MAPE-K

framework, intelligent (SL- and RL-based) and non-intelligent

(threshold- and control-based) scalers can be swiftly integrated

as NIFs in future network infrastructures. To conclude, two

scalers are compared, and we observe that only the data-

driven approach is adaptable enough to achieve automation,

as it adapts correspondingly to system dynamics.
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To move forward, some open challenges still need to be

addressed. For instance, a flexible architecture is desired to

support both ML operation modes (i.e., training and testing) in

production networks. To achieve this, new kinds of algorithms

must be developed that are transferable to other domains,

for example, by training in simulators and transferring that

knowledge to real-world networks or by improving the quality

of the simulators so that the reality-simulation gap is non-

existent [12].

Moreover, a network-wide intelligence orchestrator is also

desired to efficiently manage intelligent and non-intelligent

algorithms. Among other tasks and responsibilities, this in-

telligence orchestrator must monitor the NI performance and

trigger re-training procedures or replacement by legacy and

non-intelligent algorithms if the NI is underperforming. There-

fore, the way non-intelligent scalers obtain their knowledge

should also be considered in future architectures. For instance,

the lengthy process of tuning the PI controller can be seen as

the training process of an ML algorithm. Finally, we need a

better understanding of the stability effects of NI solutions

based on RL since their learning behavior heavily depends on

the reward function definition.
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is currently a senior research engineer at Nokia Bell Labs, Belgium. He
has more than 12 years of experience in algorithm/protocol research on
communication systems and network applications in academic and industrial
laboratories, including EURECOM Research Institute, MediaTek, Huawei
Swedish Research Center, and Nokia Bell Labs. His research interests include
wireless communication, computer networking, low-latency low-loss scalable
throughput (L4S), and AI/ML-supported network control.

Juan F. Botero is an Assistant Professor in the Electronics and Telecommu-
nications Engineering Department at the University of Antioquia, Medellin,
Colombia. In 2013 he received his Ph.D. in Telematics Engineering from
the Technical University of Catalonia, UPC, in Barcelona, Spain. In 2013,
he joined GITA (research group on applied telecommunications) at the Elec-
tronics and Telecommunications Engineering Department. His main research
interests include Network Management, Software Defined Networking, Net-
work Virtualization, Network Functions Virtualization and resource allocation.

Steven Latré received a Ph.D. in computer science engineering from Ghent
University, Belgium, in 2011. He has authored over 100 papers in international
journals/conferences. His research expertise focuses on machine learning for
low-power environments. He is a recipient of the IEEE COMSOC Award for
the Best Ph.D. in Network and Service Management (2012), the IEEE NOMS
Young Professional Award (2014), the IEEE COMSOC Young Professional
Award (2015), and the Laureate of the Belgian Academy (2019).


