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Semantic Data Sourcing for 6G Edge Intelligence
Kaibin Huang, Qiao Lan, Zhiyan Liu, and Lin Yang

Abstract—As a new function of 6G networks, edge intelligence
refers to the ubiquitous deployment of machine learning and
artificial intelligence (AI) algorithms at the network edge to
empower many emerging applications ranging from sensing to
auto-pilot. To support relevant use cases, including sensing, edge
learning, and edge inference, all require transmission of high-
dimensional data or AI models over the air. To overcome the
bottleneck, we propose a novel framework of SEMantic DAta
Sourcing (SEMDAS) for locating semantically matched data
sources to efficiently enable edge-intelligence operations. The
comprehensive framework comprises new architecture, protocol,
semantic matching techniques, and design principles for task-
oriented wireless techniques. As the key component of SEMDAS,
we discuss a set of machine learning based semantic matching
techniques targeting different edge-intelligence use cases. More-
over, for designing task-oriented wireless techniques, we discuss
different tradeoffs in SEMDAS systems, propose the new concept
of joint semantics-and-channel matching, and point to a number
of research opportunities. The SEMDAS framework not only
overcomes the said communication bottleneck but also addresses
other networking issues including long-distance transmission,
sparse connectivity, high-speed mobility, link disruptions, and
security. In addition, experimental results using a real dataset
are presented to demonstrate the performance gain of SEMDAS.

I. INTRODUCTION

The sixth-generation (6G) mobile networks are expected to
be artificial intelligence (AI) native, featuring the ubiquitous
deployment of machine learning and AI algorithms at the
network edge [1]. On the other hand, data have replaced fuel
to become the most valuable resource in the world [2]. Mobile
data are being generated at an exponentially growing rate that
is expected to increase by three-fold to reach 324 EB/month
by 2028 [3]. The 6G edge intelligence will provide a platform
for continuous distillation of AI to support many Internet-of-
Everything (IoE) applications ranging from sensing to auto-
driving to industrial automation. Compared with “cloud AI”,
edge intelligence has the advantages of efficient processing of
mobile data, preserving user privacy, reducing network traffic,
and providing ultra-low-latency access [4]. The main challenge
in implementing edge intelligence is that the wireless transmis-
sion of high-dimensional data or AI model parameters creates
a communication bottleneck. To overcome the bottleneck, we
propose in this article a novel framework of SEMantic DAta
Sourcing (SEMDAS) for locating semantically-matched data
sources to efficiently enable edge-intelligence operations.

A. 5G Connectivity-Centric Networking

5G’s key innovation lies in providing an infrastructure
that supports heterogeneous types of services and applica-
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tions. Specifically, to meet different requirements in rate,
reliability, and latency, three types of connectivity have been
defined including ultra-reliable-low-latency communications,
massive machine-type communication, and enhanced mobile
broadband. 5G communication techniques have been largely
designed using the rate-centric approach that is rooted in Shan-
non’s information theory. In this approach, data are essentially
treated as a sequence of bits that should be transported from a
source to a destination reliably and quickly. As suggested by
Warren Weaver in his 1953 paper [5], communications should
transcend merely solving this technical problem to address
the semantic issue, namely the accuracy in communicating
meanings of messages and the effectiveness of their use at
the destination to execute a specific task. One would argue
that many mobile applications do have semantic awareness
such as recommendations and advertising. However, the ap-
plications are add-ons to the network and interface only with
its Application Layer. In other words, they are decoupled
from the radio access layers where wireless techniques are
deployed. The traditional computation-communication sepa-
ration approach for designing wireless techniques is believed
to be sub-optimal in terms of end-to-end (E2E) performance.
As a result, the existing semantics-agnostic techniques lack
the maximum efficiencies needed to cope with the exponen-
tially growing mobile data and population of edge devices
and achieve faster-than-human (i.e., 0.1 milliseconds) latency.
Therefore, 6G researchers advocate the new computation-
communication integration approach that tightly couples com-
munication, computing, sensing, and control in designing next-
generation wireless techniques [1].

B. 6G Semantic Communications

As a 6G paradigm, Semantic Communications (SemCom)
refers to the computation-communication integrated designs
that optimize the E2E performance metric of semantic accu-
racy or the overlapping metric of task effectiveness. In contrast
with the traditional opaque-data transmission, the semantics-
awareness can be exploited to reduce communication over-
head by avoiding transmitting information lacking relevance
and to improve the radio-resource utilization efficiency (e.g.,
prioritizing packets in resource allocation based on their
data content). Two basic operations in a SemCom system
are semantic encoding, which compresses messages while
retaining their semantics or task utility, and channel encoding
for ensuring reliability in the presence of channel distortion.
In a popular approach known as joint source-channel coding,
these two operations are enabled using separate neural network
models, which are jointly trained for an E2E task such as edge
inference or sensing [6]. For implementation on a layering
network architecture, SemCom involves deep coupling of the
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Fig. 1. The SEMDAS network architecture.

top Application layer and bottom radio access layers [7],
[8]. To illustrate its advantage, consider the transmission of
the message “Einstein’s son, **** ****** ********, was a
professor of ********* ************ at the University of
********************.” with erroneous letters marked using
“*”. It could have been discarded as an unreliable message
in the Physical layer but can be reliably recovered in the
Application layer using a knowledge graph to be “Einstein’s
son, Hans Albert Einstein, was a professor of hydraulic
engineering at the University of California, Berkeley.” The rise
of edge intelligence provides a platform for SemCom where
powerful tools including AI algorithms, knowledge graphs,
and data analytics can automate and streamline the system
operations. Furthermore, given an AI-empowered receiver ro-
bust against perturbation, the graceful degradation of inference
performance with a decreasing number of transmitted features
of source-data samples can also allow received messages to
be useful even in the event of packet loss.

C. Proposed Semantic Data Sourcing for 6G Edge Intelligence

Aiming at efficient implementations of edge intelligence on
a SemCom platform, we propose a novel framework called
SEMantic DAta Sourcing (SEMDAS). The goal of SEMDAS
is to locate among many data sources a subset that can provide
semantically relevant data to enable communication-efficient
edge learning or inference. To this end, the SEMDAS protocol
essentially involves a service requester transmitting a query,
which characterizes a specific edge-intelligence task, to a
controller that searches for matched data sources. Then the
matched sources are connected to the requester to provide a
computing service or their data. As the key component of
SEMDAS, a set of semantic matching techniques are proposed
for three representative use cases of edge intelligence —
Internet-of-Thing (IoT) sensing, edge learning, and inference.
They build on suitably chosen existing learning algorithms
including semantic embedding, uncertainty evaluation, distri-
bution matching, and autoencoder.

The proposed SEMDAS framework has three main advan-
tages. First, SEMDAS overcomes the communication bottle-
neck of edge intelligence by avoiding unnecessary transmis-
sion of semantically irrelevant data. Second, without requiring
E2E connections, SEMDAS exploits the existence of multiple
semantically similar sources to address networking issues in-
cluding long-distance transmission, sparse connectivity, high-
speed mobility, and link disruptions. Last, data source verifica-

tion via semantics checking by SEMDAS controller provides
a mechanism to ensure security and data integrity.

We further propose new principles for designing task-
oriented wireless techniques for SEMDAS. One principle lies
in system optimization based on the tradeoffs between query
size, data overhead, privacy, and semantic matching accuracy.
The other principle is joint semantics-channel matching. We
discuss how the new tradeoffs lead to new designs of task-
oriented wireless techniques including multi-access, over-the-
air computing, radio resource management, and beamforming.

II. OVERVIEW OF SEMANTIC DATA SOURCING

Although SEMDAS applies to a broader range of applica-
tions, we focus on those of edge intelligence. The network
architecture, protocol, and advantages of SEMDAS are de-
scribed separately in the following sub-sections.

A. SEMDAS Network Architecture

The architecture, as illustrated in Fig. 1, comprises the
following key components.

• Service Requester: The node (either a device or a server)
performs a data-driven task. To this end, it sends a query
that comprises descriptors to the SEMDAS controller to
ask for semantically-matched data that helps effective
task execution.

• SEMDAS Controller: The node coordinates the SEM-
DAS process, serves as the interface between data sources
and requester, and implements the security function, and
manages mobility.

• Semantic Data Sources: Data sources, which can be
edge devices or servers, store and supply sensing/user
data, multimedia files, documents, or AI models. Se-
mantic data are the data that are categorized based
on their semantics (i.e., content and utility). Different
types of semantic information are embedded in a single
data sample, e.g., human faces and behaviors, buildings,
weather, context, and locations in the same image. For a
specific task, only selected information is useful (e.g.,
human faces for surveillance). A semantic dataset is
identified by its semantics regardless of the physical loca-
tion, generation mechanism, and communication method.
The semantic similarity between two datasets can be
measured according to given descriptors such as “smiley
faces”, “German shepherd dogs”, and “hand gestures”.
Descriptors can be also in the form of multimedia objects



3

Source 
Selector

Inference 
Model

SEMDAS 
Controller

Query 
Generator

Reference 
image

Semantic 
Matching

Semantic 
Matching

Matching 
scores

Channel states

Semantic 
Matching

Sensor 1
Sensor 2
Sensor 3
Sensor 4✓

Device Scheduler 
and Receiver

Result: “Missing person found at location N48.14° E17.13° time 12:15pm”

Send query1

Broadcast query

2

Matching score feedback

3

Signalling4 Image uploading5
Sensor 1

Sensor 2
Sensor 4

Sensor 3

Semantic 
Matching

Fig. 2. SEMDAS for AI-empowered IoT sensing.

such as images, video clips, and speech signals (e.g.,
the photo of a missing person in Section V). From the
perspective of task effectiveness, any two semantically
similar datasets are identical in their utility. The nodes
storing semantically similar data can all supply data to
the same requester.

• Semantic Matching: SEMDAS can be viewed as a task-
oriented semantics-based “search engine” for edge intel-
ligence. AI algorithms are applied to real-time matching
between data and a query in terms of semantic similarity.
Specific algorithms are discussed in the next section.

B. SEMDAS Protocol

A typical SEMDAS protocol comprises the following steps.
• Service Requesting: A service requester sends its query

(e.g., text or multimedia objects) to the SEMDAS con-
troller. The query is usually a low-dimensional feature
vector characterizing the desired data. The requester can
be either a user device as in the cases of IoT sensing and
edge inference or a server in the case of edge learning.

• Semantic Source Selection: The controller broadcasts
the query to all data sources in the network. Each source
generates a key of its data and compares it with the
query using a suitable semantic matching technique (see
Section III). The operation generates a matching score
that is fed back to the controller.

• Data Uploading: Using the matching scores, the server
selects the best-matched data sources to upload their data.
The data is forwarded to the requesting node for process-
ing. Alternatively, the computation can be performed at
the controller or servers with the result downloaded to
the user.

C. Advantages of SEMDAS

The proposed SEMDAS framework has the following main
advantages. First, SEMDAS represents a scalable solution of
data sourcing for edge intelligence. It overcomes the bot-
tleneck of peer-to-peer data transportation by evaluating the
semantic similarity between data sources to avoid unnecessary
transmission and exploiting the existence of multiple semanti-
cally similar sources to cope with communication issues such
as long-distance transportation, link disruption, and unreach-
able sites. Second, data source verification via checking of

its semantic content by SEMDAS controller ensures secu-
rity and data integrity. Third, SEMDAS facilitates mobility
management. Unlike 5G connectivity-centric networking, the
SEMDAS approach does not require E2E connections. A
moving user repeats sending the same query, which can be
served by different data sources with semantic similarity.
There is no need to maintain a connection to the previous
source. Thereby, SEMDAS helps to cope with unfavorable
networking conditions, e.g., sparse connectivity, high-speed
mobility, and link disruptions.

III. SEMANTIC MATCHING TECHNIQUES FOR EDGE
INTELLIGENCE

A. Semantic Matching for AI-Empowered IoT Sensing

IoT sensing is a new function of 6G that exploits cross-
network collaboration between on-device sensors to form
a large-scale sensor network for surveillance, localization,
tracking, and event detection. The feeding of multi-modal
sensing data into edge-AI models endows on the sensors the
capabilities of object/event recognition and human behavior
detection. Nevertheless, the transportation of high-dimensional
sensing data places a heavy burden on the network. The resul-
tant traffic jams can be alleviated by sensor selection based on
semantic matching. Relevant applications and techniques are
described as follows.

Consider two representative use cases. First, sensing via
crowdsourcing refers to the involvement of the sensors owned
by a group of participating users to collectively perform a
sensing task. A specific task of finding a missing person,
as illustrated in Fig. 2, is considered in the experiment in
Section V. The second use case is networked perception. The
network function involves multiple devices (e.g., vehicles and
robots) cooperating to complete a perception task such as
tracking, localization, and object recognition as coordinated by
an edge server. The use case of networked perception can be
further divided into two sub-cases — peer-assisted perception
and multi-view perception. The former overcomes the issue of
a degraded sensor at a device by using matched data collected
by a helping device. For instance, an autonomous vehicle
with faulty cameras can rely on nearby vehicles to observe
the roads and surrounding environment [9]. On the other
hand, multi-view perception uses a server to aggregate the 2D
observations of multiple camera sensors from different view
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Fig. 3. SEMDAS for federated edge learning.

angles to improve the sensing accuracy (of, for example, object
recognition) or reconstruct a 3D object [10]. For instance, the
query in the case of peer-assisted perception can comprise a
degraded view-image captured by the user’s faulty sensor; in
the cases of multi-view perception, the query can be generated
from an image of a wild hog to locate wild intruders in the
city center.

We propose an efficient semantic matching technique that
aims to find an observation close to the query in the semantic
space. The semantic space is a feature space where samples
(e.g., phrases or images) with similar meanings are clustered
and those with different meanings are separated. In practice,
the semantic space is created using a projection neural network
model that is trained according to the sensing task of interest
and deployed to project the query and keys into the space [9].
The matching score of a query-key pair is then obtained
with the general attention mechanism, which computes the
dot-product or cosine similarity of their projections in the
learned semantic space. For example, the Google RankBrain
system, which powers the Google search engine accessed
by billions per day, matches queries and web pages in the
semantic space instead of plain keyword-searching. It infers
the semantic intent behind the query and identifies web pages
that cover the intent, which can be interpreted as projecting
both into a semantic space and selecting based on similarity
measurements.

The optimal performance of the above semantic matching
technique requires the E2E training of two semantic encoders.
One is the query generator projecting requests into low-
dimensional queries; the other is the key generator computing
keys carrying semantic information from sensing observations.

B. Semantic Matching for Edge Learning

Edge learning refers to the edge-intelligence use case that
trains AI models using mobile data distributed in a wireless
network. It is envisioned to be a key 6G operation that distills
intelligence needed for empowering a wide range of applica-
tions. There exist two main approaches. The first is centralized
edge learning (CEEL) which directly uploads data (or their
features) from devices to a server for model training. The
other approach, federated edge learning (FEEL) is deployed
when the data ownership needs to be preserved [4]. To this

end, FEEL uses a so-called parameter server to download a
global model onto devices for updating using local datasets,
and then upload and aggregate the local models to update
the global model. Implementing the classic iterative algorithm
of stochastic gradient descent, the process is repeated until
the model converges. Both approaches are confronted with
a communication bottleneck as they require uploading of
high-dimensional data or model parameters/gradients from
potentially many devices. The bottleneck can be alleviated
using the SEMDAS approach (see Fig. 3).

Data at different devices exhibit a high level of hetero-
geneity. Indiscriminately training a model on all data may be
harmful as the inclusion of out-of-domain data can corrupt
the model. Then, the purpose of SEMDAS is to find data
that match the domain of the learning task. For instance, to
learn French-to-English machine translation, the datasets in
other languages are irrelevant. As another example, to train
a model that recognizes a famous author’s handwriting, not
all handwritten texts with the same meaning are useful except
for those matching the author’s style. Therefore, the semantic
matching in the context of edge learning refers to domain
matching between training data and the learning task.

We discuss in the sequel the domain matching techniques
for two cases where datasets are characterized by labels or
descriptors. The case with data description is relatively simple.
The data-task matching can be performed by the SEMDAS
controller that receives the data description published by data
sources and the task description from the query sent by the
data-seeking sender. Then the controller evaluates the score
of the matching from a particular dataset to the task by
projecting representative data and task descriptors into the
semantic space to evaluate their similarity, which is based
on the same technique as in Section III-A. The domain
matching in the case without dataset description is more
challenging. Recently, researchers have observed that different
implicit semantic characteristics embedded in a cluster of
samples of the same label can cause the cluster to have a
nested sub-clustered distribution [11]. For example, in the
MNIST dataset, the handwritten digits of the same label
form sub-clusters, each of which corresponds to one writing
style [11]. Therefore, domain matching can be translated to
the matching of data distribution and task. To this end, the
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query is generated to contain statistical information on the
data in the desired domain or a representative mini-batch of
such data. Then a matching score of a particular dataset is
generated by evaluating or approximating its Kullback-Leibler
distance from the desired distribution specified by the query.
The controller coordinates selected devices to upload their data
to the requesting server in the case of CEEL or to participate
in FEEL.

C. Semantic Matching for Edge Inference

Edge inference is a basic operation of 6G edge intelligence
that focuses on the efficient provisioning of AI inference
capabilities to edge devices. Depending on whether to offload
computation to edge servers, edge inference can be imple-
mented in two ways, namely on-device inference and split
inference. The former refers to on-demand downloading of AI
models to devices for local inference, depicted in Fig. 4. This
is suitable for small-to-medium model sizes and provides a
faster response speed and better protection of privacy. For the
latter, the computation load is split between users and servers.
The device sub-model extracts intermediate features from data
samples to preserve the data ownership by avoiding sharing
raw data. Then the server receives and feeds the uploaded
features into the server sub-model to perform prediction. By
offloading intensive computation to the server, split inference
provides resource-constrained devices access to large-scale
deep neural network models, for which on-device deployment
is infeasible. There exist a practically infinite number of
models stored in the network. They can be differentiated
in many dimensions, e.g., size, context, task, performance,
and topology [12]. For instance, an object recognition model
can either have a convolutional or recursive topology and
can be trained for an urban, rural, or indoor environment.
In the context of edge inference, a data source refers to
a node (device or server) that stores a particular sharable
model (i.e., its parameters and topology information). Then the
SEMDAS problem is to find data sources whose models meet

the requester’s requirements in terms of inference accuracy,
complexity, and storage.

We discuss the semantic matching techniques for edge
inference as follows. First, the technique for the case with
available model description is similar to those for sensing
and edge learning, for which matching leverages semantic
space. Next, we focus on the case where the model description
is either unavailable or insufficient for semantic matching.
The proposed techniques for this purpose require a requesting
device to generate a query containing test samples of local
data (e.g., sensor observations). Then using the query, the
SEMDAS controller performs semantic matching via either
of the following two techniques. The first is expert gateway.
Assume that the controller has access to a library of popular
AI models called expert models. Each expert has a lightweight
autoencoder pair of the encoder and the decoder apart from
the inference model itself. The controller consults each expert
by providing it with the query. In response, the expert uses
its autoencoder to extract features from the test samples and
generate reconstruction errors [13]. The controller selects the
expert with the minimum errors (i.e., the one best matching the
user’s task) to download its model. As the second technique
called server polling, if no matched model can be found among
expert models, the SEMDAS controller broadcasts the user’s
query to all available servers in the network. Each server tests
the matching level of its model by using it to perform inference
on the test samples in the query and evaluate the generated
confidence scores. The model with the highest overall score
is deemed semantically matching the query. Then the hosting
server is associated with the requesting user to provide the
inference service in the case of split inference. In the case of
model downloading, the model is retrieved and forwarded to
the user.

IV. TASK-ORIENTED COMMUNICATIONS FOR SEMDAS

Task-oriented communication techniques for SEMDAS are
designed using an E2E performance metric such as IoT sensing
accuracy, convergence speed for FEEL, and prediction error
for edge inference. In this section, we introduce this new area
by proposing new design principles and discussing several
research opportunities.

A. Tradeoffs and Optimal Designs

There exist two unique tradeoffs in wireless communica-
tions for SEMDAS. They allow optimization of the edge-
intelligence system and techniques.

The first tradeoff, called the query-data tradeoff, is due
to two opposite trends. On one hand, shortening the query
vector reduces the overhead in broadcasting to all data sources.
On the other hand, less information contained in queries
can lead to less accurate semantic matching and hence more
uploaded data that increase the uplink overhead. The opposite
trend also holds, inducing the said tradeoff between the query
and data overhead. Wireless systems for SEMDAS can be
optimized based on the tradeoff. For instance, the uplink-
downlink division of bandwidth or time can be optimized
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for an E2E performance metric. Furthermore, under a query-
rate constraint, the query can be designed to maximize the
overall semantic matching level at data sources or to minimize
the communication overhead for data uploading for a given
matching level.

The second tradeoff, called the privacy-accuracy tradeoff,
results from the fact that placing more details in the query
(e.g., the number of features of a missing person) reveals
more private information about the requestor (e.g., the per-
son’s identity) or his/her task but improving the semantic-
matching accuracy and hence the communication efficiency,
and vice versa. The tradeoff is of practical interest as in many
practical scenarios, the query contains private information
and its broadcasting over the network can compromise the
requester’s privacy. The consideration of the tradeoff leads
to the need for privacy-preserving communication designs.
In particular, under a privacy constraint on the requester, the
query generation can be integrated with adaptive transmission
(e.g., coding, power control, and beamforming) to maximize
the system efficiency.

B. Joint Semantic-and-Channel Matching (JSCM)

Following a rate-centric approach, selecting data sources
merely based on their channel states can result in a mis-
match between the sourced data and the computing task.
Nevertheless, the consideration of only semantics-matching
in the selection may lead to unreliable communication links.
Therefore, for supporting SEMDAS applications in wireless
systems, it is important to balance both aspects in choosing
data sources, which is called JSCM. Redesigning traditional
rate-centric wireless techniques to feature JSCM creates many
research opportunities. Several selected ones are described as
follows.

• Multi-Access: JSCM-based distributed selection of data
sources for uploading over a multi-access channel can
be implemented using a threshold on their semantic
matching scores and another on their channel gains.
The thresholds can be jointly designed for the dual
objectives of sourcing sufficient relevant data and at the
same time regulating the number of accessing devices to
avoid frequent packet collisions or insufficiency of radio
resources.

• Over-the-Air Computing (AirComp): AirComp exploits
the waveform superposition property of a multi-access
channel to realize over-the-air aggregation of views and
local models/stochastic gradients in the use cases of
sensing and FEEL, respectively [14]. The bottleneck of
suppressing AirComp error lies in those channels of trans-
mitters with unfavorable conditions. JSCM-based device
selection can be designed to balance the suppression of
AirComp error and sourcing sufficient data to optimize
the E2E system performance.

• Radio Resource Management (RRM): Traditional RRM
techniques such as sub-channel allocation, power con-
trol, and scheduling have been designed using a rate-
centric metric. To be task-oriented for SEMDAS, these
techniques should be redesigned to prioritize devices not

only based on their channel states but also their semantic
matching scores.

• Random Beamforming: The existing random beam-
forming schemes exploit multiuser channel diversity to
maximize the data rate by selecting among many users
those with beam-aligned channel vectors and large chan-
nel gains. Such schemes can be modified to simultane-
ously exploit the diversity in both channel and semantics
over multiple data sources.

V. EXPERIMENTS

A. Experiment Design

We demonstrate SEMDAS using the sensing application
of finding missing people (e.g., a child or an elderly) via a
network of wirelessly connected surveillance cameras. The
underpinning operation, technically known as re-identification
(ReID), attempts to associate camera views, which are cap-
tured in different occasions, with the same person that is
specified by the reference photo in the query sent by the
person’s families. The real-time location information shared
by the matched cameras would help locate the person. To
implement semantic matching, we adopt the LightMBN model
trained on the well-known CUHK-03 training set [15] for
semantic feature extraction and use the matching function
discussed in Section III-A. Thereby, the query photo and each
camera view are compressed into translated into 3584-by-1
feature vectors for the purpose of semantic matching. For
communication, the query broadcast to sensors is at 32-bit
resolution per dimension; the matched sensors upload their
raw data (i.e., photos) for their views with an Acknowledge
of “person found”. We simulate a network of 20 cameras and
generate the query and camera views by drawing samples from
the CUHK-03 dataset. In each trial, among 20 camera views,
4 contain the target identity while the others are associated
with different persons. In total, the experiment contains 1229
random trials. The channels from sensors to the SEMDAS
controller are modeled as i.i.d. Rayleigh fading and being
orthogonal with a total uplink bandwidth of 5 MHz. The
performance metric, called missing rate, is defined as the
probability of ReID failure, namely that none of the matched
cameras views actually contains the target person. The missing
rate is evaluated as a function of average uplink communica-
tion load (in Mbits) and average uplink communication latency
(in milliseconds) per request. We consider the following JSCM
and benchmarking schemes in experiments.

• (Proposed) JSCM: A given number of matched sen-
sors are selected using the criterion of maximizing the
weighted sum of semantic matching score and communi-
cation rate, where their weights are optimized numerically
as 1 and 0.09, respectively.

• Best-semantics selection (BSS) based on the criterion of
the maximum semantic matching score.

• Best-channel selection (BCS) based on the criterion of
the maximum communication rate.

• Random selection (RS) of uploading sensors.
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B. Performance Evaluation

The performance of JSCM is compared with that of BSS,
BCS and RS. Fig. 5 depicts the curves of missing rate versus
communication latency that grows as the number of selected
sensors increases. We can observe that BCS, a rate-centric
scheme, and RS both have unacceptable performance due to
their lack of semantic awareness. On the other hand, with
such awareness, the missing rates of the JSCM and BSS
schemes achieve much lower missing rates than the preceding
schemes, for example, more than 2-order magnitude lower at
30-ms latency. Between JSCM and BSS, the proposed design
significantly outperforms the latter. This demonstrates JSCM
being a promising solution and the need for task-oriented
wireless design.

VI. CONCLUDING REMARKS

We have proposed the SEMDAS framework to solve the
problem of communication bottleneck of 6G systems caused
by data sourcing in edge-intelligence use cases. Its basic
principle is to transport only data whose semantics match the
computing tasks so as to avoid redundant network traffic due
to transmission of irrelevant data. Based on the principle, a
comprehensive framework has been presented that comprises
the architecture, protocol, learning-based semantic matching
techniques, as well as new design principles for task-oriented
wireless techniques. At the high level, SEMDAS represents
a contribution to the ongoing development of 6G semantic
communication systems. In particular, the new framework
points to the new direction of revolutionizing the wireless net-
work architecture to enable highly efficient edge-intelligence
operations and applications.
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