
1

From Design to Deployment of Zero-touch
Deep Reinforcement Learning WLANs

Ovidiu Iacoboaiea, Jonatan Krolikowski, Zied Ben Houidi, Dario Rossi Huawei Technologies France SASU
{ovidiu.iacoboaiea, jonatan.krolikowski, zied.ben.houidi,

dario.rossi}@huawei.com

Abstract—Machine learning (ML) is increasingly used to
automate networking tasks, in a paradigm known as zero-
touch network and service management (ZSM). In particular,
Deep Reinforcement Learning (DRL) techniques have recently
gathered much attention for their ability to learn taking complex
decisions in different fields. In the ZSM context, DRL is
an appealing candidate for tasks such as dynamic resource
allocation, that is generally formulated as hard optimization
problems. At the same time, successful training and deployment
of DRL agents in real-world scenarios faces a number of
challenges that we outline and address in this paper. Tackling
the case of Wireless Local Area Network (WLAN) radio resource
management, we report guidelines that extend to other usecases
and more general contexts.

I. INTRODUCTION

WLAN has become the ubiquitous access technology at
home, in public locations such as train stations, or private
ones such as university or corporate campuses. Especially in
densely populated areas, scarcity of radio resources can easily
lead to congestion and thus bad user experience. Luckily, the
fleets of WLAN access points (APs) in campus networks can
be centrally controlled, opening the way for dynamic and
autonomous configuration of network resources: as many of
such dynamic resource allocation problems are hard, they are
solved in practice using well-thought heuristics.

Inspired by success of Machine Learning (ML), the field
of communication networks has been actively seeking to
exploit such techniques to automate complex network tasks,
paving the way toward the realization of zero-touch network
and service management. In particular, Deep Reinforcement
Learning (DRL) techniques, which learn by interacting
with an environment, are able to achieve complex tasks
with unprecedented skills – top stories include Google’s
AlphaGo [1] beating the Go world champion Lee Sedol
in 2016, or OpenAI Five [2] winning an online computer-
game DOTA2 tournament in 2017, or recent advances in
fully autonomous cars from Tesla [3]. Following similar
path, recent attempts to use DRL instead of heuristics
for automating network resource allocation [4], routing [5],
WLANs configuration [6] and more [7]–[9] have shown
promising results. At the same time, we observe that while it
is relatively straightforward to design and train DRL agents
that work well in synthetic and controlled settings, real-
world deployment of the same DRL agents poses a set
of additional challenges. Indeed, performance evaluation in
simplified settings remains a necessary task (i.e., if a solution

does not work in simulation, it will never work in the real
world), but it is clearly not sufficient (i.e., there are no
guarantees that the DRL solution will work as expected in a
different environment than the ones on which it was trained).
Thus, in order to carry DRL all the way from design to
deployment, a number of practical and often underestimated
challenges must be accounted for. The latter are just as
important as the ML algorithmic design.

Such challenges are rooted in the architectural requirements
that must be fulfilled in order for ML techniques to be
seamlessly applied in the network: these are nailed down
by standardization bodies, as for instance ETSI Zero-touch
Network and Service Management (ZSM)1, that provide
normative architectural references for several tasks. Clearly, as
ML techniques are data-driven, a set of requirements concern
access to telemetry data, notably the ability to stream it (ZSM
requirement #84), enforce access control (#86) and store it in
data lakes (#87). In particular, DRL model training requires
access to data lakes (and likely GPU resources), whereas
DRL model inference requires access to stream telemetry
(and significantly less computational resources). Furthermore,
ML operation requires the ability to deploy and upgrade
trained ML models (#46, #49): while some “default” trained
model may be necessary for generic zero-touch operation,
the same model may be “fine-tuned” to the specifics of
the environment after deployment. Training a generic model
requires historical data gathered from several networks and
available in a data lake, while model upgrading requires fresh
telemetry for the purpose of fine-tuning. Finally, and most
importantly, closed-loop techniques such as DRL need the
ability to enforce actions automatically (#68, #115), depending
on specific conditions determined by the algorithm, in order
to adapt resources allocation better to the instantaneous or
forecast evolution of service load.

This paper reports our experience in designing and
deploying DRL for zero-touch WLAN networks. We build
over our original design of a DRL sequence-to-sequence
architecture, that we limitedly validated for the purpose of
WLAN resource allocation in simulated settings [6], and
that have now been running for months on real operational
deployments. In the path from design to deployment, we
outline and tackle five important challenges related to (i)
safety, (ii) duration and (iii) realism of the training process, as

1https://www.etsi.org/technologies/zero-touch-network-service-management
accessed on 01.07.2022
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well as the (iv) generalization capabilities and (v) the adoption
barrier of trained models. In sharing our experience with the
community, we not only illustrate the specific way in which
we overcome such challenges in the WLAN case, but further
adopt a broader viewpoint: we complement lessons learned
with those gathered from other fields where DRL has been
successful, such as gaming [1], [2] and self-driving cars [3],
[10], testifying the generality of these challenges.

The rest of the paper presents a high-level view of the zero-
touch WLAN resource management problem (§II), articulates
the main challenges from design to deployment (§III), and
summarizes the main lessons (§IV).

II. ZERO-TOUCH DEEP REINFORCEMENT WLANS

Our goal is to autonomously manage WLANs in closed-
loop, continuously adapting allocated radio resources to
changing traffic conditions and demand, to maximize end-to-
end performance. We first briefly cover WLAN management
(§II-A), that we next reconsider under the lens of zero-touch
closed-loop control (§II-B), and finally overview the DRL
technique we employ (§II-C).

A. Wireless LANs

WLANs are defined in the IEEE 802.11 standard2

and its amendments. Zero-touch operation in the general
case [8] and in heterogeneous, industrial and enterprise
WLANs are surveyed in [9]. Here we provide a very
basic overview of WLAN resources and actions from the
viewpoint of autonomous closed-loop control. The most
popular WLAN setup is infrastructure-based, where stations
(such as smartphones, laptops or industrial devices, referred to
as STAs) connect to fixed Access Points (APs) that typically
act as gateways to relay STA traffic. In office buildings or
university campuses, a fleet of APs is deployed over a large
area to connect the numerous STAs to the Internet. Typically,
centralized management decisions are taken to optimally
manage the network: the set of actions include3, for each AP,
selecting a channel, bonding and power configuration.

Each AP is configured to use a specific primary channel
(within the 2.4GHZ or the 5GHz band), performing downlink
and uplink transmissions in a half-duplex manner. Optionally,
an AP may be configured to allow the aggregation (aka
bonding) of several channels, to increase bandwidth and
consequently throughput. Ideally, only one device within
receiver vicinity transmits on one channel at the same time,
avoiding collisions and data loss. This is achieved through the
listen-before-talk mechanism of carrier-sense multiple access
with collision avoidance (CSMA/CA). As a consequence,
APs and STAs on the same channel share airtime: the time
that a transmitter waits while the channel is busy is called
interference (time). Depending on the regulatory region, only
4 (20) channels are non-overlapping on the 2.4 GHz (5 GHz)
band: thus, it is not always possible to allocate different
channels to neighboring APs and, in highly dense areas,

2https://www.ieee802.org/11/ accessed on 01.07.2022
3But are not limited to: e.g., consider low-level configuration parameters

related to antenna parameters, MIMO, backoff timers, etc.
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Fig. 1. Zero-touch WLANs loops: design/train/validation using a digital
replica of the real network (left) and deployment/inference/test in the
operational network (right).

interference cannot be avoided by simple channel allocation.
It follows that on top of channel allocation and bonding [11],
also the AP transmit power [12], [13] can be additionally used
to tradeoff the strength and quality of the received signal vs
the airtime interference.

B. Zero-touch WLANs

We note that the network configuration has to be selected
from a very large state space, that grows exponentially with
the set of available configuration knobs. Additionally, as the
network load evolves over time, it would be desirable for the
WLAN to be able to autonomously adjust its configuration to
best adapt the available resource to the current (or forecast
future) demand. As the utility function to estimate network
quality can be a complex combination of QoS (e.g., signal
strength, coverage, interference, user throughput, latency) and
QoE indicators (e.g. more advanced per-application metrics),
this makes autonomous configuration a desirable capability
of WLAN networks. From this viewpoint, with reference to
Fig. 1, it is envisionable that a zero-touch WLAN is governed
by an ML model taking decisions (e.g. configuration actions)
as a function of observable state (e.g. stream telemetry). Such
a model should be pre-trained (e.g., by using a digital replica4

of the network), but could possibly benefit from specific fine-
tuning from real-data after deployment (to upgrade the model
in the long run).

We observe that the existence of two separate environments
results in a dichotomy inducing three separate loops: a first
design/train/validation cycle (left of Fig. 1) where the ML
model is trained on a digital replica of the network; a second
deploy/inference/test cycle (right of Fig. 1) where the trained
model is used on the actual network; a third refinement loop,
bridging the two environments. The picture also highlights
several important practical aspects that this paper is going to
dissect, notably: pre-training is necessary to 1 train safely and
2 train fast, but note the need for 3 environmental realism

for better fit and 4 generalization capabilities to unknown

4Such a digital replica is commonly referred to as digital twin; however,
twins are very faithful representations while, as we shall see, an approximated
replica suffices for our training requirements, hence the quotes.

https://www.ieee802.org/11/
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Fig. 2. Simplified synoptic of the DRL architecture for WLAN management,
described in more details in our prior work [6].

states. Finally, 5 explainability and trust are key to deploy
zero-touch closed-loop operation.

C. Deep Reinforcement WLANs

DRL techniques are suitable for implementing the closed-
loop control algorithm. To better understand challenges that
DRL agents may face in real-world deployment, we first
briefly remind its most important concepts, and cast them to
WLAN with the help of Fig. 1. Without loss of generality, in
the the context of this work we limit the configuration knobs
to the the selection of primary channel and bonding.

1) Background on RL and DRL: In Reinforcement
Learning (RL) [14], an agent learns from interacting with an
environment: the agent obtains a perception of the environment
through a measurable state (e.g., network configuration, stream
telemetry, etc.) and selects an action (e.g., changing an AP
configuration) based on a policy that it is learning. After
enforcing the action, the agent observes an updated state
and receives feedback about its action, in the form of a
reward (or a regret). Unlike in supervised learning (where
the feedback reflects some distance from the optimum), the
feedback in RL can be rather seen as praise (or critique)
of the action (without any explicit information about the
optimality). Based on this feedback, the agent updates its
policy, observes the new environment state and enforces a
new action, learning to increase its reward (or decrease its
regret). Deep Reinforcement Learning (DRL) is a class of
approaches that are based on a Neural Network (NN), where
the NN is used either to learn the value of the state (i.e.
DQN) or the policy (e.g. A2C, A3C). A recent wave of
DRL approaches have shown interesting results in the solution
of combinatorial graph problems, using various architectures,
such as Graph Neural Networks, pointer networks and graph
attention networks [7].

2) Overview of WLAN DRL agent: In our previous
work [6], we used a similar philosophy to develop a DRL
architecture fit for WLAN channel management. While in [6]
we limitedly validate the approach against state of the art via
simulation (left of Fig. 1), in this paper we are concerned about
the complementary necessary steps for real-world deployment
(bridging the gap between left and right of Fig. 1). As such, we
provide here only a necessary limited overview of the WLAN
DRL in Fig. 2, and refer the reader to [6] for details.

Our design follows a classic actor-critic Neural Network
(NN) architecture, where the critic-NN which learns the value
function guides the actor-NN in learning the best policy,
to which we add a selector-NN, guiding the choice of
the best action among those returned by multiple parallel
runs of the actor-NN. The actor-NN employs an encoder-
decoder sequential architecture, where basically the same NN
is run sequentially multiple times, picking at each step a
decision for one of the APs in the network. In particular,
our encoder-NN employs a careful feature engineering process
to transform variable-size input features (which depend on
network size, number of channels etc.) into a fixed-size
intermediate representation, that is used as input by the
decoder-NN to output a probability distribution over all actions
(i.e. one channel and bandwidth option for each AP), which
makes it suitable for application to arbitrary networks.

III. FROM DESIGN TO DEPLOYMENT

We now report on our deployment experience of DRL
agents in real operational WLANs. In particular, our
DRL-based WLAN channel management solution (agent)
autonomously reconfigures in closed-loop (action) every 10
minutes (so that the need for accurate forecast of future
demand is lessened by the fact that actions are frequently
taken) a real operational WLAN (environment), based on
telemetry data (state) received at sub-minute timescale.

While training and deploying this DRL-based system, we
faced a series of challenges 1 - 5 mentioned in Fig. 1, into
which we now dig deeper – first summarizing our experience
with WLAN deployment, and next contrasting the lessons
learned to other DRL real-world use-cases.

A. Train safely

1) WLAN insights: Training on the real WLAN network
would inevitably lead to the exploration of bad network
configurations harming user experience. As this option is not
viable for business considerations, and while an expensive
WLAN testbed is not available, we are forced to train the DRL
agent using a digital replica of the system, such as a computer-
simulated model of the real environment. While learning from
a digital “twin” solves the safety concerns altogether, it does
however introduce another tradeoff. Namely, the simulator
needs to be realistic enough to favor the transfer of learning
to the real deployment (§III-C) and at the same time simple
enough to allow for reasonable training time (§III-B), which
are both key aspects that are worth digging into deeper.
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Fig. 3. Train fast. Average regret (dashed black line) during training converges
after more than 1 million interactions with the environment: this would require
several years in a real deployment (at the considered timescale) and already
requires about 8 hours worth of GPU time.

2) Beyond WLAN: In autonomous driving, the necessity
to training safely is even more obvious. For example, AWS
deepracer [10], a platform to train and test DRL agent for this
usecase, relies on a cloud based 3D racing simulator as one
key component that helps avoiding the exploration of the most
detrimental states even with model cars. Tesla also trains its
Autopilot offline before allowing it on the road [3].

B. Train fast

1) WLAN insights: Two factors impact the training duration
of our agent: (i) the convergence of DRL weights during the
training process, which affects the number of interactions,
and (ii) the duration of each simulated interaction, during
which the DRL training process remains idle waiting to
receive state and regret feedback from the environment. As
for (i), we calibrated the training phase carefully to avoid
getting stuck in local minima, mainly by adjusting the learning
rate during training such that more aggressive updates (e.g.
larger steps) are performed at the beginning, followed by
smaller steps allowing the system to gradually stabilize. As
for (ii), the duration of a simulated interaction can quickly
become a bottleneck, for which we rule out the use of
packet-level simulations (such as ns-2 or ns-3) and leverage
a fast custom simulator, with low computational complexity.
Fig. 3 illustrates the regret evolution over multiple independent
training runs: the x-axis reports the number of iterations, the
GPU training time (including the simulation time, measured in
hours) and the equivalent duration of the training process had
it been performed at the same timescale in a real environment
(measured in years).

2) Beyond WLAN: Training duration is a clear bottleneck
in any DRL deployment. In the most recent successful DRL
applications, agents need several “lifetimes” of interaction
with the environment, e.g. the 10,000 years equivalent of
gameplay for OpenAI Five [2], which is clearly unrealistic
for training on real systems. Even training offline with real
data can take a significant amount of time: for instance, it
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Fig. 4. Environment realism. Augmenting the simulator models with data
from real environment (fitting the interference threshold according to real
neighborhood data).

takes 70,000 GPU hours to train the full self-driving Tesla
pilot prototype [3], which is around one year for a single node
with 8 GPUs. In some cases, training needs to be offloaded to
a large fleet of data center servers equipped with GPUs and
TPUs, which may be only affordable for a few big players. in
network usecases, depending on the size of the DRL NN, the
digital ”twin” can become the computational bottleneck.

C. Environment realism

1) WLAN insights: As environment realism remains a
key concern, we can leverage real-world data to enhance
the simulator models – briding the training and validation
environments. To retain scalability while enhancing realism,
we use data-driven approach to refine several models used
in the simulator. To make just a single example in reason of
space limits, our simulator uses a RSSI threshold to decide
which APs are considered as neighbors: we increase realism
by fitting this parameter to maximize similarity between the
interference estimations of the simulator and those measured
in the real network. As can be observed in Fig. 4, the ideal
RSSI threshold under which two APs should be considered
neighbors is at -82dBm, with which we calibrate the simulator
for fine-tuning the DRL agent.

2) Beyond WLAN: Environment realism clearly is key when
an agent trained on simulation is to be transferred into the
real world. When training on a simulator, sufficient resources
need to be invested into its calibration [10]. We point out that
alternatives to simulation exist, which may however not be fit
to network use-cases. For instance, imitation learning is a valid
complementary approach, where instead of interacting with a
real or simulated environment, a database of state-action traces
is used for offline batch-based agent training. For instance,
thanks to its fleet of several hundred thousand self-driving-
ready cars, Tesla now has a huge amount of state-action pairs
(over 1 billion miles with Autopilot-on [3]), which might be
used to learn to mimic human driver behavior.
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Fig. 5. Generalization: Assessment of relative performance degradation
to controlled environmental changes by exposing the DRL agent to states
distribution different than the one explored at training time.

However, data-driven approaches in general, and in
networks in particular, may be vulnerable to data scarcity
and quality issues. For instance, while in WLAN we have
access to live measurements and long historical data from real
networks, since the network is sparsely reconfigured (once
per day in legacy data), our datalake is limited in terms
of number of explored states, which DRL would require
for training. Additionally, the states explored currently (i.e.,
network configurations) are limited to the subset induced by
the existing algorithm, further restricting the boundaries of
what DRL could possibly learn. Thus, simulations, augmented
with data-driven models, are a better option.

D. Generalization

1) WLAN insights: Generalization to conditions unseen
during training means, on the one hand (i) generalizing to
WLAN networks of arbitrary size and density, and on the
other hand (ii) transferring well to the more complex physics
of the real network – which are both necessary as deployment
conditions will never match exactly the training conditions.
We tackle (i) by a novel auto-regressive sequential decoder
whose input features at each step are engineered to reflect the
changing internal state of the decoder that is described in [6].

As for (ii), robustness of the DRL agent to varying
conditions is key: to test the ability of the trained DRL
model to cope with unknown conditions, we train the agent
in an ideal environment and test it in a noisy one. We
systematically apply Gaussian noise with controlled means
and standard deviations to the AP neighborhood (i.e., RSSIs
each AP sees from all others) and observe the impact
on the regret. The left-hand side of Fig. 5 reports the
relative percentual increase of the regret with respect to ideal
conditions (noiseless training and testing) when neighborhood
is defined with a simple threshold. Overall, the picture
confirms DRL to be robust for a wide range of additive
noise. Additionally, consider that a negative noise causes the
corresponding RSSI to fall below the neighborhood threshold,
leading to interference underestimation. Unsurprisingly, the
figure confirms underestimation to be more harmful than
overestimation, which validates our conservative simulator
design choice.

However, in the real network, neighborhood is not exactly
a clear-cut threshold: the right-hand side of Fig. 5 further tests
the algorithm on the same noisy conditions, but using a more
complex neighborhood definition: in particular, neighborhood
interference is smoothly taken into account by using an
S-shaped sigmoid function with a spread of 6dB centered
around the clear-cut threshold. Interestingly, using this “loose”
definition does not degrade the results and leads to even better
resistance to noise, suggesting good generalization ability.

2) Beyond WLAN: In any DRL deployment, when digital
twins are used for training, realism of the simulation is of
primary concern – the less faithful the simulator, the lower
the quality of the agent. In our case, we analyze the response
to the trained model by stress-testing it against environmental
changes. We point out that (i) synthetic noise or (ii) real-world
data can be readily incorporated during the training process,
although the exact way to do so depend on the specific usecase.

E. Explainability and Trust

1) WLAN insights: Lastly, it is essential that network
engineers develop trust in the algorithm decisions before
letting it run unattended on thousands of customer
deployments. As DRL decisions are intrinsically less
interpretable than heuristics, this can firstly be achieved by
human-understandable explanations of the algorithm decisions
and expected gains – so that the WLAN operator can not only
perceive DRL operation as safe, but also understand and value
its benefits.

Additionally, we conducted months worth of tests in
operational WLAN networks to illustrate the DRL agent
viability. In particular, we ran several batches of experiments,
each lasting 1 week, in which we either run the (i) trained
DRL agent every 10 minutes to closely track load changes
vs (ii) a daily static optimization based on historical load
forecast. Here, we show an except of deployment results in
a Campus network in Nanjing, China: Fig. 6 (left) contrasts
the channel utilization on a 30 AP WLAN where we observe
several thousand STAs on a typical day. We construct a
heatmap from the scatter plot where each point represents
the average channel utilization for the same AP during 10
minutes at the same time-of-day and day-of-week for the two
algorithms, over all APs: this allows to assess the impact of
dynamic DRL channel management from a spatial viewpoint,
i.e. from the point of view of the same AP. We can note the
tendency of improvements as the center for the highest density
moves above the diagonal.

Clearly, while the traffic is similar in every week due to
seasonal behavior of the users, the traffic conditions are not
identical, which can bias the comparison. Trust in the solution
can be then gained only over a careful analysis over long-term
campaigns. For instance, we take this confounding factor into
account by comparing in Fig. 6 (right) the breakdown of the
AP utilization (y-axis) for the same average network load (x-
axis): it is easy to see that, as expected, DRL relieves APs with
high channel utilization (notice the 95th percentile decrease)
by shifting load to lightly loaded APs (notice the median
increase), which is desirable from the perspectives of load



6

Fig. 6. Explainability (Left): Channel utilization heatmap , comparing same AP and same time-of-day slots across different algorithms (static and DRL) over
different days. Trust (Right): Statistically unbiased comparison of individual AP load (y-axis) for same average network load (x-axis).

balancing and fairness. Overall, thorough testing under real-
world conditions delivers a strong argument to IT engineers
to trust the DRL agent for network O&M.

2) Beyond WLAN: As a general lesson, human operators
need to gain understanding and build trust in DRL systems to
allow their deployment. Explainability of the algorithm output
helps lowering the adoption barrier. Trust may then be gained
step-by-step: convincing results from extended experiments
on real-world deployment help showing the benefits of the
algorithm – which holds for any use-case.

For instance, Google DeepMind adopted the following
strategy for data center cooling: the first RL algorithm version5

acted only as a recommendation engine for the operator.
Only later they moved to a fully autonomous version6, still
maintaining a failsafe option to revert back to human control
at any time, in addition to rule-based heuristics as backup.

IV. CONCLUSION

DRL is a promising paradigm for controlling complex
systems, improving decision making over human intuition and
classic heuristics. While most network-related DRL research
focuses on ideal scenarios and are evaluated via simulation,
we discuss here the challenges that arise when DRL is
deployed in large-scale operational WLAN to achieve zero-
touch operation.

We generalize and summarize the lessons learned as
follows. It appears that DRL training requires digital “twins”,
such as simulators. Indeed, solely learning from existing
network data may not be feasible (given the sheer number
of samples needed for training) nor desirable (as it does
not offer enough action diversity, so missing unsafe actions).
Conversely, learning from simulation provides the best tradeoff
among safety (i.e. to explore also unsafe actions), simplicity
(for training duration) and realism (e.g. as simulators can be
enhanced with real-world data and be used to assess controlled
generalization). Finally, technical benefits are a necessary (but
not sufficient) condition to adoption: deployment of trained
DRL models for real-time inference still requires a pedagogic

5https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-
centre-cooling-bill-40 accessed on 01.07.2022

6https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-
cooling-and-industrial-control accessed on 01.07.2022

effort toward the human operators interacting with it (in order
to gain their trust), as well as offering fallbacks to legacy
systems until the algorithm gains sufficient trust for true fully-
automated zero-touch operation.
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