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Abstract—Semantic communication based on machine learning
(ML) techniques emerged as a new transmission paradigm that
can significantly improve spectrum efficiency. It looks promising
for improving the task offloading quality of service (QoS) for
autonomous driving networks (ADNs) where autonomous vehicles
require a significant amount of communication with the vehicle
edge clouds (VECs). However, in practical ADNs, updating the
ML-based semantic communication coder model is affected by
various unique factors such as mobility and privacy consider-
ations. Therefore, in ADNs, the conventional ML frameworks
are not directly applicable to updating semantic communication
coders. In this article, we discuss the unique challenges faced
by updating the semantic communication coder in ADNs and
review the existing ML frameworks. To address these challenges,
we further propose a Privacy-Preserving Personalised Federated
Learning (3PFL) framework for updating the semantic communi-
cation coder in ADNs. Simulation results confirm the effectiveness
of 3PFL for updating the semantic communication coder in
ADNs.

I. INTRODUCTION

HE development of wireless communication systems is

essential for the large-scale adoption of autonomous
vehicles. As a major driving force, the vehicle edge cloud
(VEC) might be considered an integral part of the 6G sys-
tems. VEC further extends cloud services to the edge of the
autonomous driving networks (ADNSs), e.g., roadside units,
base-stations. Such a system supports the provisioning of
resource-intensive applications in autonomous vehicles [1].
VEC provides computational resources to the vehicles thereby
reducing service latency and energy consumption [2] while
significantly improving the Quality-of-Service (QoS) of the
ADN:S.

The emerging automotive applications such as mobile aug-
mented reality (AR)/ virtual reality (VR) are expected to
further increase the required computational and storage re-
sources of the autonomous vehicle. It results in autonomous
vehicles increasingly offloading tasks to the VECs. Therefore,
the spectrum efficiency of the ADNs should be improved to
ensure the required QoS for the offloaded tasks, such as jobs of
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processing images or videos. Nonetheless, autonomous vehicle
communication systems have been designed based on the
conventional Shannon paradigm [3] and operate very close to
the Shannon capacity limit. Therefore, it is an immediate need
to investigate new approaches to extend spectrum efficiency
beyond the conventional capacity limit to ensure the required
QoS of the ADNs.

The recent development of machine learning (ML) tech-
nologies enabled the integration of semantic communication
into ADNs as a promising solution for improving channel
spectrum efficiency. In contrast to the Shannon paradigm that
focuses on the accuracy of symbol transmission, semantic
communication exploits ML to extract the actual meaning of
information to reduce the transmission information quantity
[4]. In semantic communication, the conventional coder is
substituted by a semantic joint source-channel coder that
compresses and transmits semantic information, where the
coder is an ML-based Autoencoder model [5]. It thus goes
beyond the Shannon capacity limit by shifting the proportion
of the work to computational resources from communication
and significantly increases the spectral efficiency [6].

Predictably, vehicles offloading tasks via the semantic en-
coder to the VEC with the semantic decoder could significantly
strengthen the offloading QoS of the ADN. However, in
the case of semantic communication employed in ADNs for
task offloading, goal-oriented ML-based coders need to be
updated in real-time for different types of task content/goals
[4]. Furthermore, the training of the model requires joint
participation of the encoder and decoder, i.e., the vehicles
and the VEC. Therefore, real-time training of semantic coder
models in this distributed semantic communication system
consisting of vehicles and the VEC is a challenging task.

How to update network users’ ML-based semantic coders
in real-time is already considered one of the main challenges
for semantic communication study. Recently, the federated
learning (FL) framework for semantic communication was
proposed as a potential solution [7], [8]. Nevertheless, se-
mantic communication coders updating in ADNSs introduces
several unique challenges that cannot be handled by the
existing FL framework. Therefore, it is of great importance
to design a new real-time distributed training framework for
semantic communication model updating in ADNSs.

In this article, we first discuss the main challenges in
semantic communication for ADNs. We then summarise the
traditional ML model updating frameworks and their short-



comings if applied to ADNs. Next, we propose a privacy-
preserving personalised federated learning (3PFL) framework
for updating the coder model in semantic communication for
ADNSs. The performance of the proposed 3PFL framework is
also evaluated through simulations.

II. KEY DESIGN CHALLENGES

The key challenges in updating the semantic coder model in
ADNSs include collaboration & coordination, mobility, model
variations & personalisation, and privacy.

A. Collaboration & coordination

In a VEC’s service range, multiple vehicles transmit of-
floading tasks via individual semantic encoders to the same
VEC’s semantic decoders. Different coders serve different
mission-specific transmission contents. The vehicles’ semantic
coders need to be updated when new task content appears
in the environment. Otherwise, the semantic accuracy during
transmission would degrade considerably, thus reducing the
QoS of offloading. However, the semantic coder is a joint
source-channel coder based on ML. Updating the semantic
coder requires the participation of the encoder and the decoder
on both the vehicles’ side and the VEC’s side. Joint training
of multiple vehicles and VEC together is challenging. Hence,
in updating the models, effective coordination and cooperation
in the training process are essential.

B. Mobility

At the time the coder models require updating, the vehicles
should interact and cooperate with the VEC for training.
However, due to the traffic situations and circumstances of
the vehicles, they are likely to be located in different VECs’
service ranges moving at various speeds. Therefore, some
vehicles might depart the service range of a VEC during the
training and thus not participate in the full training process.
This may result in wasted computational and communication
resources for these vehicles.

C. Model variations & personalisation

VECs cannot independently develop personalised seman-
tic decoders for all autonomous vehicles in such dynamic
environments. Because the vehicles would use their private
semantic encoders to offload their tasks by transmitting to
their corresponding VEC’s semantic decoder. Updating dif-
ferent encoder models for various vehicles at the same time
significantly increases the VEC computational workload. In
addition, storing the corresponding decoder models for each
vehicle imposes a storage burden. It is therefore challenging
to train a personalised encoder for each vehicle and a joint
VEC semantic decoder for the vehicles.

D. Privacy

For each vehicle, the training data may include sensitive
information and thus its privacy should be preserved. Fur-
thermore, for a vehicle, the privatised encoder determines the

accuracy of all transmitted data. Vehicles’ encoder models
are also typically trained by vehicles consuming their internal
resources and vehicles are not always comfortable sharing
models publicly. The ML-based semantic encoder thus should
also be considered one of the most important pieces of private
data in the vehicle. Hence, the privacy of the semantic encoder
must be preserved.

III. CONVENTIONAL LEARNING FRAMEWORK

We introduce two potential ML frameworks for updating
the semantic coders in ADNs and discuss their constraints.

A. Central learning

Central learning (CL) is a collaborative learning approach
developed based on the conventional approach of training
neural networks on a single server. The training data from dis-
tributed users are collected by a central server. Subsequently,
all training data on the central server is integrated and used as
input to jointly train a machine learning model. The trained
model is then returned to the participating users. Since in CL,
the training data are trained directly by the machine learning
model, it is therefore capable of obtaining higher accuracy
relative to other distributed learning methods. In ADNSs, the
VEC with powerful computational capacity acts as a central
node, collecting training data from the vehicles in the service
area and executing the CL. The semantic encoder model is
returned to the vehicles after the training is completed. As
the training process is performed on the VEC, the vehicle
computational load is therefore reduced.

However, the training data and encoder models from au-
tonomous vehicles are private. Hence they might not always
prepare to share them with a third party. Nevertheless, in
CL, the vehicles’ semantic encoders have the same model
and model weights. Furthermore, the transmission of training
data from vehicles to the VEC may introduce new overheads.
For instance, if the semantic coders’ service for such data is
interrupted, the vehicles would have to choose the traditional
transmission method, hence increasing the service delay. Such
a large amount of training data might also cause network traffic
congestion.

B. Federated learning

Federated learning (FL) is a distributed learning frame-
work for collaborative training [9]. In each training epoch,
distributed users first train the entire model on the user side
using their individual training data and then upload the model
weights to a central server for aggregation. The aggregated
model is then sent back to the participating users. This enables
individual clients to keep their private training data locally,
hence preserving their data privacy and avoiding the problems
associated with centralised data collection. Therefore, in an
ADN with the FL framework, the vehicles need to be inde-
pendently trained and then their models are uploaded to the
VEC for aggregation.

As mentioned above, using the FL framework in ADNs is
unable to address some of its unique challenges. For instance,
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FL cannot proceed where different vehicles have different
types of encoder models. Because personalised model weights
cannot be federated aggregated due to various model sizes.
Furthermore, for each vehicle, FL needs to share its individual
trained encoder models. Shared model parameters, however,
may also result in privacy leakage as well as a great security
risk as they could be utilised to infer private data [10]. Vehicles
may be reluctant to share their models to prevent the encoder
model exposure and the data being inferred. Therefore, the
design of an effective training framework addressing the above
four key design challenges for updating the semantic coders
in ADNs remains an open problem.

IV. THE 3PFL FRAMEWORK FOR SEMANTIC
COMMUNICATION-BASED ADNS

In this section, we propose a novel framework, 3PFL, for
autonomous vehicles’ semantic communication that addresses
the abovementioned challenges.

A. The proposed 3PFL framework components

In the proposed framework, the coder model is split into
three components as follows (Fig.1):

1) Vehicles’ Encoder Side: The encoder models of au-
tonomous vehicles are locally stored for training and updating.
Nevertheless, the training data and encoder models are not
transmitted to the VEC. The vehicles are trained based on
private data and models, enabling preserving the privacy of
the vehicles and further facilitating personalisation.

2) Part of the VEC Decoder Side: Inspired by the split
learning in [11], in 3PFL, semantic coders are not trained
in the same location. Instead, the semantic coders are first
split according to the division of encoders and decoders. The
decoder is further split and the majority of the decoder’s model
part is kept on the VEC for training.
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Fig. 1: The 3PFL framework.

3) VEC Last Few Layers: The last few layers of the
split decoder are transmitted by the VEC to the autonomous
vehicles involved in the training. They are returned to the
VEC for efficient semantic communication after completing
the training.

B. Model training process

Fig. 2 illustrates an epoch of the training process in 3PFL
consisting of the following five steps. The training process is
performed by vehicles and the VEC together.

1) Step 1: The vehicles in each VEC service region calcu-
late their expected residency time according to their velocity
and location. After coordinating with the VEC, it is decided
whether or not to engage in the updating of the semantic
communication coder model with other available vehicles and
the VEC. The VEC then transmits the last few layers of the
semantic decoder model to the available participating vehicles.

2) Step 2: The participating training vehicles use their
training data as the model inputs and train the encoder using
forward propagation. The outputs obtained by the encoder are
transmitted to the VEC.

3) Step 3: After receiving all the training data that has gone
through step 2, the VEC takes the information received as its
input. Using this input, the previous layers of the semantic
decoder continue the training using forward propagation. The
subsequent outputs are then sent to the respective vehicles
involved in the training.

4) Step 4: After receiving the information from the VEC,
vehicles train the last layers of the decoder. The finalised
results are then compared with the vehicle’s training data to
obtain the loss value. The training network is trained once
using back-propagation based on the opposite direction of the
same path.

5) Step 5: At the end of vehicle back-propagation, the
vehicle transmits the last few layers of the semantic decoder to
the VEC for federated aggregation. The aggregated model is
then returned to the individual vehicles involved in the training
for the next training epoch.



In the last epoch, the VEC transmits the last few layers
of the semantic decoder to the vehicles after completing the
federated aggregation. The split decoders are integrated again
to provide high-quality semantic communication services to
the vehicles within the service range.
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Fig. 2: The training process of 3PFL.

In terms of computational and communication overhead,
we utilise the FL framework as an example for comparative
evaluation. Different from the FL, in the proposed 3PFL,
the personalised encoder always remains on the vehicle and
the last few layers of the decoder need to be trained on
the vehicle. For computation overhead, the vehicle intuitively
reduces the computation of the previous layers of the semantic
decoder compared to FL. For communication overhead, at
each epoch, the vehicle and VEC only interacted with the
last few layers of the decoder and the compressed training
data from the personalised encoder. Therefore, the 3PFL has
less communication overhead in case of the compressed data
bits transmitted in each epoch are smaller than the data bits
of the un-federated aggregation layers. Otherwise, FL has less
communication overhead.

Splitting and federated aggregation, enable the training of
different personalised encoder models and a jointly trained
decoder model through collaboration between vehicles and
VEC. Furthermore, during the entire training process, the
training data and the semantic encoders are preserved on
the autonomous participating vehicles. The vehicles are thus

not exposing private data directly. It also reduces the risk
of privacy leakage and security risks. This is due to that it
enhances the privacy of the training model and thus the raw
data is hard to be indirectly inferred. Based on the above
discussion we argue that 3PFL can address the challenges in
updating the semantic communication coder model.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed 3PFL, we
consider an autonomous vehicle object/image recognition of-
floading scenario with 10 trainable participating vehicles.
Autonomous vehicles transmit images to the VEC through
semantic encoders trained by various training frameworks.
The VEC performs object/image recognition of the received
images. The transmitted images’ recognition accuracy is com-
pared with the recognition accuracy of the pre-transmission
images to derive the performance of the different semantic
encoders for image offloading. As a performance metric of
various semantic communication coders, we consider the
semantic communication coder “accuracy” as the proportion
of the received object/image recognition accuracy to the pre-
transmission object/image recognition accuracy. We compare
3PFL with two baseline approaches including CL and FL. It
is also assumed that all autonomous vehicles utilise the same
convolutional autoencoder semantic coder model based on
[12]. It is to ensure that CL and FL can be utilised successfully
with the same trained model in ADNs. We use a standard
image dataset, namely, CIFAR 10 [13], in our experiments.
This dataset consists of 50000 images for the training set and
10000 images in the test set. The images have 3 x 32 x 32
pixels and both the training and test sets include 10 different
image classes for semantic extraction. The transmitted image
data is recognised by the trained Densenet 201 [14] which is
a commonly used ML algorithm for object/image recognition.
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Fig. 3: Convergence speed of different ML frameworks.

Fig. 3 shows the training convergence speed of the semantic
coder for various ML frameworks. By increasing the number
of epochs, it is seen that all three frameworks gradually
converge. Further, CL has the fastest convergence speed and



the lowest loss value. It is because CL increases the accuracy
by collecting all the data and training them uniformly. The
proposed 3PFL framework converged almost as fast as the FL
framework but with slightly lower loss values.

TABLE I: Privacy leakage of different ML frameworks

CL FL
100% | 45.2%

Proposed 3PFL
0.26%

Table 1 demonstrates the contributions of different models
in preserving data and model privacy during coder updating
transmission. We utilise a general data privacy leakage eval-
uation model from [15]. The training data, encoder model
data and decoder model data are all considered. Moreover,
the training data and training model are considered to have
the same privacy significance. The results are normalised. It
can be observed that the CL exposes all of the privacy content
during transmission because it requires the sharing of all the
data and the final model. The FL keeps the data local but also
results in a partial privacy leakage as it exposes the entire
final model parameters. Our proposed 3PFL privacy leakage
value, however, is much smaller than other frameworks. This
is because our proposed model maintains the training data, the
users’ personalised encoder models, and part of the decoder
model locally which are not shared/exposed. Further, It also
guarantees the privacy of the users’ training data and the en-
coder model by preventing them to be indirectly inferred. The
proposed 3PFL thus enhances the privacy of the users’ training
data and the encoder model’s privacy and personalisation.
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Fig. 4: Accuracy of different ML frameworks in case of
AWGN.

Fig. 4 and Fig. 5 illustrate the impact of testing accuracy on
various frameworks in different communication environments.
This embodies the key performance indicator (KPI) of the ef-
fectiveness of the semantic communication encoder in execut-
ing semantic communication [7]. We set the semantic encoder
output layer to 10 neurons. In Fig. 4, we evaluate the influence
of additive white Gaussian noise (AWGN) on the trained
semantic communication coders. It is seen that as the signal-
to-noise ratio (SNR) increases, the performance of the coders

slightly increases. The CL achieves the highest performance
for different SNR settings. Furthermore, our proposed 3PFL
performance is slightly higher than FL. In Fig. 5, the effect of
Rayleigh fading is shown. It can be observed that the semantic
coder model trained under different frameworks increases
with increasing SNR same as Fig. 4. Moreover, the accuracy
of our proposed framework continues to perform excellently
after CL in various SNR environments. Nevertheless, it is
notable that in contrast to 3PFL applicability to a variety
of vehicle offloading environments, the baseline frameworks
are only implementable in extremely special scenarios. For
instance, in the case of vehicles having the same encoder
models and without privacy considerations. The above results
confirm that the proposed framework is effective for semantic
communication applications in autonomous driving and either
outperforms (or is equally efficient as) the baseline frameworks
while preserving the privacy of the vehicles’ data.
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Fig. 5: Accuracy of different ML frameworks in case of
Rayleigh fading.

VI. CONSLUSION

We investigated the application of semantic communication
in the VEC for offloading tasks by autonomous vehicles. We
discussed the technical challenges in updating the semantic
communication model in ADNs. We then briefly reviewed
the existing solutions to these challenges and discussed two
promising ML frameworks. It was found that the existing
ML frameworks are unable to satisfy the requirements of
the ADNs. We then proposed a novel 3PFL framework for
updating the semantic coders in ADNs. In 3PFL a coder is
split into three parts for training and only requires the last
few layers of the decoder for federated aggregation. Simulation
results confirmed the effectiveness of 3PFL for updating the
semantic communication coders in ADNS.
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