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Abstract—Recently proliferated semantic communications
(SC) aim at effectively transmitting the semantics conveyed by the
source and accurately interpreting the meaning at the destination.
While such a paradigm holds the promise of making wireless
communications more intelligent, it also suffers from severe
semantic security issues, such as eavesdropping, privacy leaking,
and spoofing, due to the open nature of wireless channels and
the fragility of neural modules. Previous works focus more on
the robustness of SC via offline adversarial training of the whole
system, while online semantic protection, a more practical setting
in the real world, is still largely under-explored. To this end, we
present SemProtector, a unified framework that aims to secure
an online SC system with three hot-pluggable semantic protec-
tion modules. Specifically, these protection modules are able to
encrypt semantics to be transmitted by an encryption method,
mitigate privacy risks from wireless channels by a perturbation
mechanism, and calibrate distorted semantics at the destination
by a semantic signature generation method. Our framework
enables an existing online SC system to dynamically assemble
the above three pluggable modules to meet customized semantic
protection requirements, facilitating the practical deployment in
real-world SC systems. Experiments on two public datasets show
the effectiveness of our proposed SemProtector, offering some
insights of how we reach the goal of secrecy, privacy and integrity
of an SC system. Finally, we discuss some future directions for
the semantic protection.

Index Terms—Semantic communications, Semantic Protection,
Inference Attacks, Privacy Leaking, Adversarial Attacks.

I. INTRODUCTION

Existing wireless communication systems, which are built
on the classical Shannon information theory, primarily focused
on how to accurately and effectively transmit raw bits over
channels from a source to a destination. In the past decades,
the achieved transmission rate has been improved tens of
thousands of times to meet the increasing traffic demands,
gradually driving a wireless system capacity to the Shannon
limit. Meanwhile, various newly emerged mobile applications,
such as virtual reality (VR) and Human-to-Machine (H2M)
communications, tend to require more intelligence among
different parties, as well as interpretations of the received
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information to make smart decisions. This motivates us to
rethink a more intelligent and a more efficient wireless com-
munication paradigm beyond the Shannon approach.

Recently proliferated semantic communications (SC) sys-
tems [1], [3], [5], [13] have shown great potential in trans-
mitting the semantics conveyed by the source and accurately
interpreting the meaning at the destination. Such a novel com-
munication paradigm greatly facilitates the aforementioned
mobile applications such as VR and H2M. Specifically, the
transmitter of an SC system relies on neural networks to
extract semantic information from an input and then sends
compressed semantic symbols to noised wireless channels.
At the receiver side, the system reconstructs the received
semantics and interprets the semantics to make intelligent
decisions.

Although promising, SC systems may suffer from more
challenging security issues compared to traditional wire-
less communications, such as eavesdropping, tampering, and
spoofing due to the broadcast nature of wireless communi-
cations and the fragility of deep neural networks [2], [4].
First, anyone within the physical communication range of
a transmitter can receive the wireless signal and potentially
decode the symbols. As an SC system primarily focuses on
the transmission of the meaning conveyed at source rather
than accurate raw bits, it facilitates eavesdroppers to carry out
malicious attempts to semantics, such as inference attacks and
adversarial attacks [8]. Second, as an SC system is learned
from a large volume of data examples, which may consist
of sensitive information from the personal knowledge base,
such as the user’s health status and service access history,
the system may unintentionally reveal sensitive information
in semantic representations to be sent to wireless channels,
potentially leading to privacy leaking of the input semantics
[6]. Third, an SC system is vulnerable to adversaries due to
the blind spots of neural models. The adversarial perturbations
are able to mislead the system to make incorrect semantic
interpretations.

Existing works focus more on the robustness of SC via
offline adversarial training of the whole system, mitigating
the blind spots of the neural models with adversary examples
[14], [15]. These studies are able to harden the system against
adversarial attacks. However, they may not be practically de-
ployed in real-world scenarios as it is infeasible to improve the
robustness of neural models by interrupting a communication
system for re-training. Furthermore, these studies mainly aim
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Fig. 1: Overview of our proposed SemProtector framework. The top of the figure demonstrates an end-to-end semantic
communication system, equipped with our hot-pluggable semantic protection modules residing in the transmitter and receiver. At
the bottom of the figure are hot-pluggable modules, including SemEryp, SemPriv, and SemRect, with the goal of secrecy, privacy,
and integrity, respectively. The three modules can be flexibly assembled based on the customized protection requirements.

to defend against a single attack and hence are unable to
protect an SC system against various threats. Therefore, it is
still unclear how an online SC system can be simultaneously
protected against various malicious attempts such as eaves-
dropping, tampering and spoofing.

To this end, we present SemProtector, a unified framework
that aims to secure the semantic transmission and inter-
pretation of SC systems with three hot-pluggable semantic
protection modules, including SemEryp, SemPriv and Sem-
Rect. Specifically, SemEryp is able to encrypt semantics to
be transmitted by an encryption at the transmitter, securing
the semantics over an open wireless channel, and SemPriv
aims to mitigate privacy leaking via a perturbation generator
that can craft adversaries to distort the malicious actors.
SemRect is capable of ensuring the semantic interpretation by
generating a signature at the transmitter and then calibrating
the distorted semantics via the signature at the receiver. We
conduct experiments on two benchmarks.

In conclusion, our main contributions can be summarized in
three-fold. First, we propose a unified framework to secure the
online deep learning-based semantic communication systems
with the goal of secrecy, privacy and integrity. Second, we
present three hot-pluggable semantic protection modules under
the unified framework. Our framework enables an existing

online SC system to dynamically assemble the three modules
to meet customized semantic protection requirements, facilitat-
ing the practical deployment in real-world SC systems. Third,
we show the superiority of our method in securing semantic
communications against various threats, giving some helpful
insights for online semantic protections. We also discuss some
future directions in the field.

II. END-TO-END SEMANTIC COMMUNICATION SYSTEM

A. Overview

In this section, we describe the end-to-end semantic com-
munication system used in our framework and outline each
component. We refer to the previous work JSCC-OFDM [11]
and DeepSC [5] to implement our SC system. Our system in-
volves a semantic encoder, an Orthogonal Frequency Division
Multiplexing (OFDM) transmitter, an OFDM receiver, and a
semantic decoder. We additionally introduce a semantic inter-
pretation module based on Mobilenetv2 [12]. We formulate
our objective as the weighted sum of the data reconstruction
loss and semantic interpretation loss, training the system under
a multi-task learning paradigm. The top of Fig. 1 demonstrates
the proposed end-to-end SC system.
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B. Semantic Transmitter

Semantic Encoder: We feed the image or text to the semantic
encoder to obtain the semantic representations. We refer to
JSCC-OFDM/DeepSC to jointly consider the source encoding
and channel encoding in our semantic encoder.
OFDM Transmitter: To make efficient use of the spectrum
and reduce the computational overhead, we employ OFDM
as our wireless transmission scheme, which is able to encode
the semantic representations into multiple carrier frequencies
without inter-symbol interference (ISI). It should be noted that
the transmitter also supports the single-carrier OFDM mode
with configurable parameters.

C. Wireless Channel

As discussed in end-to-end communications, deep neural
networks are able to model the wireless physical channels,
including additive white Gaussian noise (AWGN), the erasure
channel, and the Rayleigh fading channel. In this article, we
mainly consider the Rayleigh fading channel as it can better
model the effect of a propagation environment for semantic
communication systems.

D. Semantic Receiver

OFDM Receiver: The OFDM receiver takes received symbols
as the input and performs inverse operations that have been
done in the OFDM transmitter.
Semantic Decoder: We feed semantic representations to the
semantic decoder to reconstruct the input data, which jointly
considers the channel and source decoding.
Semantic Interpreter: This module takes the output of the
semantic decoder as an input, and interprets semantics to make
the corresponding decisions.

III. SEMPROTECTOR FRAMEWORK

A. Overview

In this section, we introduce our proposed SemProtector
framework, which is illustrated in Fig.1. Our framework
consists of three key modules including SemEryp, SemPriv,
and SemRect. The goal of these three modules is to obtain the
secrecy, privacy, and integrity of our SC system, respectively.
We first outline the three modules as follows.

1) SemEryp: The module aims to encrypt the semantic rep-
resentations at the sender side and decrypt the information at
the receiver side. Equipped with our SemEryp, an illegal user
who can receive the wireless signal is unable to reconstruct the
semantic data and hence confidentiality of semantics can be
properly protected, while legitimate users can normally decode
the signal.

2) SemPriv: This module takes the semantic representation
as an input and then generates tiny perturbations that can
mislead an eavesdropper to make an incorrect semantic inter-
pretation. Meanwhile, such an operation will be transparent to
legitimate users for interpretations. Hence the privacy leaking
risks over the wireless channels can be properly mitigated.

3) SemRect: The goal of this module is to ensure the
accurate semantic interpretation of an SC system under the
destructive physical layer adversarial attacks. It generates a
high-dimension random vector based on semantic representa-
tion at the transmitter to calibrate the semantic data against
adversarial attacks at the receiver. We term such a vector as
a semantic signature. By doing so, we are able to protect the
semantic integrity of the source to accurately understand the
meaning for making decisions.

We train these modules independently and then plug them
into the above end-to-end SC system for semantic protection.
Our framework allows an existing online SC system to flexibly
assemble the three modules to meet customized semantic pro-
tection requirements, greatly facilitating practical deployment
in real-world SC systems. Fig.2 shows the training process of
the three modules, and we detail them in the following parts.

B. SemEryp

The primary goal of SemEryp is to protect the confidential-
ity of the semantics underlying the input data. A malicious user
can potentially reconstruct the input data based on semantics
to carry out model inversion attacks [7], [9], in case the
eavesdropper acquires the knowledge of semantic decoder
or trains a surrogate semantic decoder. This type of attack
may lead to privacy leaking issues. We present a semantic
encryption module to protect semantics over the air in our
SemEryp.

Our SemEryp is composed of two components, i.e., seman-
tic encryption (SEC) and semantic decryption (SDC). SEC and
SDC share the same neural structure, and both of them use
multiple convolutional layers for encryption and decryption.
As shown in the top of Fig 2 colored in yellow, we feed the
semantic representation of an input data and a semantic key to
output encrypted semantic data, where the key is generated by
a negotiation between the transmitter and the receiver. SDC
takes the encrypted data and the semantic key as inputs to
obtain the original semantics.

We demonstrate how we build our SemEryp with an
adversarial training method. Specifically, we first introduce
the semantic reconstruction component (SRC), which simply
consists of multiple convolutional layers. We train SRC to
recover the encrypted semantic data without the semantic key.
Such a module can be regarded as a malicious user. Then we
train SEC and SDC to defend against the attacks generated
by SRC. We repeat the above procedure to achieve better
confidentiality protections.

C. SemPriv

The primary goal of SemPiv is to protect the semantic
privacy of inputs over an end-to-end SC system. We adapt
Adversarial Transformation Networks (ATN) to our semantic
communication system to defend against attribute inference
attacks (AIA), a destructive privacy attack that is able to
infer hidden information of the semantics. An eavesdropper
within the physical communication range of the transmitter
can receive the wireless signal and potentially decode the
semantics, leading to the privacy leakage of legitimate users.
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Fig. 2: Training process of the proposed SemProtector, equipped with three semantic protection modules, including SemEryp,
SemPriv, and SemRect.

We demonstrate how we train our SemPriv as follows, as
shown in the middle of Fig.2 colored in purple. Specifically,
we introduce an attacker’s semantic interpreter (ASI) module.
The module is a multilayer perceptron (MLP) and can be
regarded as an eavesdropper. Then we feed the semantic
representations to ATN to learn to craft the adversarial privacy
perturbations by maximizing the cross-entropy loss of the ASI,
so that the perturbation can mislead the eavesdropper to make
an incorrect prediction. However, such a privacy perturbation
will not affect the semantic interpretation of legitimate users,
and hence the privacy leaking issue can be properly mitigated.

D. SemRect

Our SemRect aims to protect the integrity of semantics for
accurate semantic interpretation at the receiver side. Here,
an attacker relies on FGSM [10] to generate an adversarial
perturbation against the semantic information to mislead the
interpretations, where the perturbation will be added to the
semantic data. Meanwhile, we also produce a random vector
(RV), which is termed as a semantic signature, to calibrate
such a perturbation, so that the impact of the attacks can be
properly mitigated for legitimate users.

The detailed training process of SemRect is described as
follows. We introduce a semantic generator (SG), which is
adapted from the previous Defense-GAN. First, we train
generative adversarial networks (GAN) to produce semantic
representations based on a random vector. Such a process is

illustrated at the bottom of Fig.2 colored in blue. We deploy
the generator RV to both the sender and receiver. At the
sender, RV learns to generate and then optimize semantic
signatures. At the receiver, RV learns to calibrate the semantics
with the signature, subtracting the adversarial perturbations for
accurate semantic interpretations. By doing so, our SemRect
is able to protect the integrity of semantics against adversarial
perturbations over the end-to-end SC system.

E. Summary
In the above SemEryp, SemPriv and SemRect, we only

select some attacks to demonstrate how each single module
defends against a certain type of threat. By dynamically
assembling these hot-pluggable modules, our SemProtector
framework is able to defend against various attacks and
meet the customized protection requirements, such as secrecy,
privacy and integrity. Our unified framework is flexible for
a further extension and can be generalized to defend against
other attacks, facilitating semantic protection in a real-world
SC environment. Due to the space limitation, we will not give
more discussions for such an extension.

IV. EXPERIMENTS

We conducted experiments on three popular datasets,
MNIST, CIFAR10 and SST-2. The first two datasets are used
for image classification, and the last one is used for text classi-
fication. We trained the SC system and the pluggable semantic
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protection modules on these three datasets and performed
attacks on the SC system before and after adding the pluggable
semantic protection modules to evaluate the effectiveness of
SemProtector against various attacks. Although we employ the
Rayleigh fading channel in our SC system, our SemProtector
can also be applied in other wireless environments, and we
will not give the details due to the space limitation. We then
detail the attack methods and evaluation metrics, and give
some insightful conclusions based on our observations.

A. Attack Methods

To evaluate the effectiveness of our framework, we re-
implement three attack methods and outline them as follows.

• Model Inversion Attacks: In this attack, the attacker
needs to intercept the semantic data and convert it to the
original information. There are two ways for the attacker
to get the original information by semantic data, one is
to train the surrogate model and the other is to steal the
semantic decoder of the receiver. Here we re-implement
the second one, as it is more destructive.

• Attribute Inference Attacks: For this attack, the goal
of the attacker is to infer privacy information from the
semantic data. Specifically, the attacker trains a semantic
classifier that is targeted to interpret semantic data. In our
implementation, the classifier trained by the attacker is an
MLP. We use the accuracy of the attacker’s classification
of semantic data to evaluate the protection effectiveness
of the attack.

• Adversarial Attacks: The goal of an adversarial attacker
is to mislead the receiver by adversarial perturbations.
Here we integrate FGSM to our SemRect module. We
train the FGSM with a substitute model to mimic the
SC system. The FGSM attacker is able to generate
perturbations under a black-box setting and hence can be
directly used in an online deep learning-based semantic
communication system.

B. Evaluation Metrics

We use Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) to measure the impact of
the optional pluggable semantic protection modules on the SC
system.

• PSNR is a measure of the quality of an image or video.
It is typically used to assess the fidelity of a compressed
image or video file. The higher the PSNR, the better the
quality of the image or video.

• SSIM is used to show how closely two images resemble
one another. In contrast to PSNR, SSIM is more in
accordance with how the human eye naturally perceives
an image.

C. Implementation Details

We implement our SemProtector based on Pytorch, one of
the most popular machine-learning libraries. We adapt JSCC-
OFDM [11] and DeepSC [5] to our end-to-end SC system.
Considering the computing resources and energy efficiency of

Model Inversion 
(Secrecy)

Attribute Inference
 (Privacy)

Adversarial Attack
 (Integrity)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

en
es

s o
f A

tta
ck

s

Image
MNIST Online SC
MNIST SemProtector
CIFAR10 Online SC
CIFAR10 SemProtector

Fig. 3: Protection effect on image.

mobile devices, we use Mobilenetv2 [12] and TextCNN as the
semantic interpreter of the SC system. For SemEryp, we use
a simple neural network with five convolutional layers, which
can encrypt and decrypt the semantic data very well at the
same time taking into account the efficiency. For SemPriv,
we use the modified ATN, which aims to craft semantic
perturbations based on semantic data with six linear layers.
For SemRect, we use the modified Defense-GAN, which
can produce semantic signatures based on semantic data.
These three hot-pluggable protection modules can be flexibly
assembled based on customized protection requirements.

TABLE I: Parameters in experiments.

Category Parameter Value

Input

Shape(MNIST, CIFAR10,SST-2)
Num of class type (MNIST, CIFAR10,SST-2)
Num of train/test(MNIST)
Num of train/test (CIFAR10)
Num of train/test (SST-2)

(1,28,27),(1,32,32),(1,64)
10,10,2
60,000/10,000
50,000/10,000
67.350/1,821

ESC system Num of residual block(image)
Num of transformer block(text)

4
2

OFDM Module

Num of pilot symbols
Num of subcarriers per symbol
Length of Cyclic Prefix
Exponential decay
SNR (dB)

1
64
16
4
10

Classifier Types of Classifiers Mobilenetv2, TextCNN

SE Module
Num of Conv layers of the Encryption Module
Num of Conv layers of the Decryption Module
Num of Conv layers of the Reduction Module

4
4
4

PAJ Module Num of linear layers of ATN 6

SR Module
Num of ConvTranspose layers of SemGenerators
Num of Conv layers of SemDiscriminator
The dimension of the random vector

3
4
100

Training
Batch size
Learning rate
Optimizer

256
1.00E-04
Adam

D. Experimental Settings

We conduct experiments on a server with Ubuntu 18.04
operating system, equipped with 90GB RAM and an RTX3090
GPU card. The Pytorch and Python versions are 1.7.0 and
3.7, respectively. For drivers, the CUDA and cuDNN versions
installed in the server are 11.0 and 8004, respectively. The
parameters of neural networks are randomly initialized and
then iteratively updated by the Adam optimizer. Table I shows
the detailed parameters for models used in SemProtector.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Model Inversion 
(Secrecy)

Attribute Inference
 (Privacy)

Adversarial Attack
 (Integrity)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ef

fe
ct

iv
en

es
s o

f A
tta

ck
s

Text
Online SC
SemProtector

Fig. 4: Protection effect on text.

E. Main Results

Fig.3 and Fig.4 demonstrate the effectiveness of our Sem-
Protector on both image and text datasets, respectively. We
assemble the three modules, i.e., SemEryp, SemPriv, and
SemRect, to harden the online SC system against various
attacks. The results show that the proposed SemProtector
can significantly reduce the injuries under various destructive
threats on both text and image modalities. Fig.3 shows that an
eavesdropper can use the model inversion attacks to success-
fully infer the semantic data of an MNIST image, achieving
as high as 98.3% accuracy based on its semantic symbols
over the air, while the attacker can only obtain a 13.4%
accuracy for the online SC system under the protection of our
SemProtector. Fig. 4 shows that our framework can effectively
protect the text-based SC system against various attacks, e.g.,
an adversarial attacker can only achieve a 6% successful
rate equipped with our SemProtector. These results confirm
the effectiveness of our framework in protecting semantic
confidentiality. We also observe that the protections on MNIST
are better than the ones on CIFAR10. One possible reason is
that the semantics in the images of CIFAR10 are much more
complex than the ones in MNIST.

We also quantify the side effects of our SemProtector to the
image reconstruction for legitimate users. Table II reports the
performance of our SemProtector under various settings. For
example, “Online SC + SemPriv” indicates that the SemPriv
module is plugged into our online SC system, and “Online
SC + SemEryp + SemPriv + SemRect” represents that we
assemble all three modules to harden the communication
system. The results show that our SemProtector can lead to
slight performance decreases in terms of SSIM and PSNR on
the two datasets. It is reasonable that there will be a larger
performance decrease with more protection modules involved.
For customized protection requirements, one may need a trade-
off between the security level of semantic secrecy, privacy,
integrity, and transmission quality.

V. FUTURE DIRECTIONS

Our SemProtector addresses some fundamental challenges
of securing semantics for online SC systems over open

TABLE II: The impact of pluggable semantic protection
modules on our SC system.

MNIST CIFAR10
PSNR SSIM PSNR SSIM

Online SC 27.88 0.99 25.49 0.87
Online SC + SemEryp 24.09 0.94 22.91 0.78
Online SC + SemPriv 27.75 0.97 25.04 0.86
Online SC + SemRect 26.69 0.93 23.19 0.77

Online SC + SemPriv + SemRect 26.67 0.93 23.08 0.76
Online SC + SemEryp + SemPriv 24.06 0.93 22.94 0.79
Online SC + SemEryp + SemRect 23.87 0.92 22.90 0.76

Online SC + SemEryp + SemPriv + SemRect 23.77 0.92 22.85 0.76

wireless channels. We further discuss two important research
directions for the security of semantic communications.

A. Certified robustness of semantic communications

Although our SemProtector secures online SC with a unified
framework and significantly hardens the system against vari-
ous attacks, we still lack a theoretical analysis under what con-
ditions the system keeps stable. A further step we can take is
certified robustness, which provides the lower bound of robust
accuracy against attacks under certain conditions. Robustness
verification holds the promise of building reliable the end-
to-end SC systems with a theoretical guarantee. Compared
to traditional certified robustness, we need to additionally
consider the physical layer adversarial attacks in fluctuated
wireless channels, as well as the adversarial perturbations to
the source data to derive a tight bound. These studies are still
at an early stage, and developing certifiably robust approaches
for an online SC system is still an open research problem.

B. Security of distributed semantic communications

Massive machine-type communications (mMTC) proposed
in 5G is one of the key enablers for future cellular-based fac-
tory automation, using smart sensors and actuators to enhance
manufacturing and industrial processes. Distributed semantic
communications facilitate the above industrial IoT applications
with a highly reliable and minimal latency communication
paradigm. However, we will face challenging security issues
due to the massive connected devices that can sense, commu-
nicate and store information about themselves. These devices
are deployed in heterogeneous wireless networks and need to
make intelligent decisions, and hence they are more fragile to
various attacks. Securing distributed semantic communications
in industrial IoT remains an open research problem.

VI. CONCLUSION

This paper introduces SemProtector, a unified framework
that aims to secure an online SC system with three hot-
pluggable semantic protection modules. These protection mod-
ules are able to encrypt semantics, mitigate privacy risks
from wireless channels and calibrate distorted semantics at
the destination. Our framework can also enable an existing
online SC system to dynamically assemble the three modules
to meet customized semantic protection requirements, greatly
facilitating the practical deployment in real-world SC systems.
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Although SemProtector is tested on an image-based semantic
communication system, we believe that our framework can
also be further extended to video-based SC systems.
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