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Abstract—This article presents the DeepSense 6G dataset,
which is a large-scale dataset based on real-world measurements
of co-existing multi-modal sensing and communication data. The
DeepSense 6G dataset is built to advance deep learning research
in a wide range of applications in the intersection of multi-modal
sensing, communication, and positioning. This article provides a
detailed overview of the DeepSense dataset structure, adopted
testbeds, data collection and processing methodology, deployment
scenarios, and example applications, with the objective of facil-
itating the adoption and reproducibility of multi-modal sensing
and communication datasets.

I. INTRODUCTION

The synergy between communication, multi-modal sensing,
and positioning is envisioned as a defining characteristic of
future wireless systems in 6G and beyond [1]–[8]. These sys-
tems will likely either implement co-existing communication
and sensing functions or utilize one to aid the other. This
is particularly motivated by the move to higher frequency
bands where the wide bandwidth and large antenna arrays
are attractive features for both communication and sensing.
This synergy has recently been the driver for key research
directions such as multi-modal sensing-aided communication
[4]–[9], integrated sensing and communication [1], [3], [7],
and communication-aided positioning [10]. Machine learning
and deep learning have the potential to play fundamental roles
in many of these problems [4]–[6], [11]. The ability, however,
to develop and evaluate deep learning solutions depends on
the availability of large enough datasets.

Multiple synthetic datasets have recently been developed
with the objective of facilitating machine learning research in
wireless communications. For example, in [12], the authors
developed the DeepMIMO dataset, which is a parametric
data generation framework based on ray-tracing simulations
targeted mainly for MIMO research. In [13], the ViWi dataset
was developed to generate both wireless and visual/LiDAR
data. While providing a path for initial algorithm development,
synthetic datasets may not be sufficient for obtaining realistic
insights about the performance of the machine learning algo-
rithms in real-world deployments.

With this motivation, we developed the DeepSense 6G
dataset 1, the world’s first large-scale real-world multi-modal
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1The DeepSense 6G dataset is publicly available at https://deepsense6g.net/.
Some of the DeepSense 6G scenarios (datasets) have been used before to
enable the deep learning research in [6], [11], [14].

sensing and communication dataset. The DeepSense 6G
dataset is (i) a large-scale dataset of more than 1 million data
points, (ii) based on real-world measurements. The dataset
comprises co-existing and synchronized multi-modal sensing
and communication data and is organized in a collection of
40+ scenarios that cover diverse deployment use cases such
as vehicle to infrastructure, vehicle to vehicle, pedestrians,
drone communication, fixed-wireless, and indoor use cases.
With that, the DeepSense 6G dataset has the potential to
enable a wide range of applications in the intersection of
communication, sensing, and positioning.

The goal of this article is to provide an overview of the
DeepSense dataset structure, testbeds, data collection method-
ology, scenarios, and enabled applications. In particular, the
article describes DeepSense in detail to facilitate the adoption
and reproducibility of the DeepSense testbeds, data collection
process, and datasets.

II. WHY DEEPSENSE 6G?
As discussed in the introduction, machine and deep learning

are rapidly finding applications in the communication, sensing,
and positioning systems and their intersection. The ability,
however, to develop and adequately evaluate the performance
of machine/deep learning approaches and derive meaningful
conclusions is conditioned on having a dataset with the fol-
lowing key characteristics:

• Co-existing sensing and communication: To enable the
targeted research directions, this dataset should comprise
co-existing sensing and communication data that are
synchronized to a sufficient extent. For example, both the
wireless communication and sensing measurements need
to be collected within the same coherence time.

• Multi-modal sensing data: By sensing, we do not mean
only radar, but more broadly multi-modal sensing. This
includes, for example, visual data, LiDAR sensory data,
GPS positions, and weather data captured by sensors
deployed at the infrastructure or mobile devices. Recent
research has shown that a very interesting synergy exists
between multi-modal sensing and communication [4]–[6],
[11], which can be leveraged to benefit both of them.

• Real-world measurements: While using synthetic data,
e.g. [12], [13], can provide initial insights, advancing the
machine learning research and development towards real-
world adoption and deployment requires the availability
of real-world datasets. This is essential as some real-
world and practical imperfections are very hard to model
and capture in the synthetic datasets.
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Fig. 1. This figure presents the DeepSense 6G testbed 1 and the different sensing modalities. It consists of two units: Unit 1 (a stationary unit), which acts
as the basestation, and unit 2 (a vehicle), which represents the mobile user. It also shows the final scenario structure, where the data is eventually stored as a
sequence of data groups with each group containing data collected from all the sensors at the same sampling interval.

• Large-scale: Developing deep learning solutions that are
scalable and robust to data distribution shifts (due to
changes in the environment or deployment) requires the
availability of a large-scale dataset. Therefore, the ideal
dataset should have a large number of data points and
should have sufficient variance in both the communication
and the multi-modal sensing measurements.

• Scalable to various scenarios: The applications and
use cases of integrated multi-modal sensing and com-
munication are countless. From the deployment scenarios
(vehicle to infrastructure (V2I), vehicle to vehicle (V2V),
indoor or outdoor, etc.) to the adopted devices (sub-6GHz
massive MIMO, mmWave, reconfigurable intelligent sur-
faces, etc.), it is not feasible to have one data collection
that covers all applications and use cases. Therefore, the
dataset definition and structure have to be scalable to
enable the continuous growth of the dataset.

To achieve these objectives, we built the DeepSense 6G
dataset, which is a large-scale real-world dataset comprising
co-existing multi-modal sensing and communication data cov-
ering various use cases and enabling many applications in the
interplay of communications, sensing, and positioning.

III. DEEPSENSE DATASET STRUCTURE

The DeepSense 6G dataset is a collection of scenarios. Each
scenario is a standalone dataset comprising the multi-modal
sensing and communication data collected in one, typically
long, data collection session and formatted in a generic way
that is unified across all the scenarios. The data collection of
each scenario is planned to cover an important deployment
scenario and enable one or more applications (the available
scenarios will be discussed in Section VI). This simple struc-
ture achieves a few important objectives: (i) It enables the
scalability of the DeepSense datasets as it can keep growing
to address more use cases by adding more scenarios. (ii) The
unified way is offering the data in each scenario facilitates
combining this data from multiple scenarios (e.g., multiple
sites, different times of the day, etc.) to build a bigger dataset
with the targeted diversity. (iii) It simplifies the access, the

definition, and the reproducibility of the dataset, which are
critical goals for a useful deep learning dataset.

Data structure in each scenario: Each DeepSense 6G
scenario has the multi-modal sensing and communication data
collected in one data collection session. As will be described
in Section IV, each scenario uses a testbed that consists of a
number of units (for example, a basestation and a mobile user
unit in a V2I scenario). Each unit is equipped with a number
of sensors such as wireless receivers, radar, LiDAR, cameras,
and GPS receivers. The data collection and processing are
designed such that the data from all the sensors and units
are collected and synchronized to the same sampling interval.
Therefore, as shown in Fig. 1, the scenario data is eventually
structured as a sequence of data groups, where each data
group has the sensory data collected from all the sensors at
the same sampling interval. To facilitate accessing the data,
the DeepSense 6G website dedicates a page for each scenario
with a detailed description of the adopted testbed, deployment,
available modalities, and scenario folder structure.

IV. DEEPSENSE TESTBEDS

To enable the scalability of the dataset and to cover various
scenarios, we adopt a series of testbeds in the collection of
the DeepSense scenarios. More specifically, each DeepSense
testbed is used to collect the data of one or more scenarios.
Further, we adopt a unified and modular approach in building
and describing these testbeds. Each testbed is composed of a
number of units; each unit is a self-sustained module equipped
with: (i) A set of wireless and environmental sensors such
as wireless communication transceiver in one or more bands
(such as mmWave phased arrays or sub-6GHz MIMO). The
units are also equipped with a suite of sensors, such as an RGB
camera, 2D/3D LiDAR, radar, and GPS RTK kit, to capture
additional information about the surrounding environment. (ii)
A processing unit to initialize and configure the sensors as
well as store the collected sensing data. For each DeepSense
testbed, the units are equipped with the sensors that suit the
targeted application(s). Table I provides a summary of the
testbeds and their adopted sensors.
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Fig. 2. The DeepSense 6G dataset is a collection of scenarios, where each scenario consists of the multi-modal sensing and communication data collected in
one long data collection session. This figure outlines the different steps required to generate the final development (scenario) dataset after each data collection
session. The process comprises three steps: (i) Real-world data collection, (ii) data processing, and (iii) data filtering.

Example - DeepSense Testbed 5: Given the modular
design of the testbeds, providing one example may help
clarify the testbed capabilities and enable the reproduction
of the testbeds and datasets. For this objective, we now
provide more details about a representative testbed, namely
Testbed 5. This testbed targets vehicle-to-infrastructure (V2I)
applications. Therefore, we designed this testbed to have two
units: Unit 1 (a stationary unit), which acts as the basestation,
and unit 2 (a vehicle), which represents the mobile user. Unit
1 is equipped with the following devices:

• A mmWave receiver that includes a 60GHz RF front-end
with a 16-element uniform linear (phased) array (from
SIVERS semiconductors). The mmWave receiver adopts
a combining beamforming codebook of 64 beams that
uniformly scan 90◦ field-of-view.

• RGB Camera with 110◦ field-of-view and 30 frames-
per-second (ZED2 from StereoLabs).

• 3D LiDAR with 32 vertical and 1024 horizontal channels
and with 120 m range and 20 Hz frame rate (from
Ouster).

• Radar that adopts frequency modulated continuous wave
(FMCW). It operates at 76-81GHz and has a maximum
range of 100 m (from Texas Instruments).

• GPS receiver that uses real-time kinematic positioning
(RTK) technology and a 10 Hz rate (from SparkFun).

The mobile user (unit 2) employs a mmWave transmitter
with a 60GHz quasi-omni antenna (from SIVERS semiconduc-
tors) and the same GPS device used by the base station. The
data collected at each time instant comprises the GPS position
of the user, the RGB image, radar I/Q samples, LiDAR point
cloud, and the 64-element power vectors that correspond to
the mmWave beam training done at the basestation.

V. DATA COLLECTION AND PROCESSING FRAMEWORK

As described in Section III, the DeepSense 6G dataset is
a collection of scenarios, where each scenario consists of the
multi-modal sensing and communication data collected in one
long data collection session. Building the dataset of a new
DeepSense 6G scenario comprises two main phases, i.e., data
collection and data processing. Next, we present an overview

of the two phases. Fig. 2 illustrates the different steps involved
in generating the final development dataset.

A. Data Collection

The data collection process comprises two main phases:
Off-field planning and on-field collection. Similar to any
experimental design, the offline planning phase is extremely
critical to the success of any data collection. It primarily
involves clearly defining the set of objectives, such as the
number of units needed and the different sensors that must be
deployed in each unit. It also includes converging on the time
and location of the data collection. The next step is the actual
on-field data collection. It involves deploying the DeepSense
6G testbed in the pre-determined location.

FoV alignment: The different sensors, such as the mmWave
phased array, RGB camera, LiDAR, and radar, have varying
field-of-view (FoV) and range. For example: in the DeepSense
testbed 5, the RGB camera has an FoV 110◦, whereas the
phased array has 90◦ FoV. In order to achieve a high-quality
multi-modal dataset with multiple sensors, it is essential to
align these different sensors before initiating the data collec-
tion process. For this, the testbed has provisions for some
calibration steps to align the sensors considering the different
ranges and FoVs.

Capturing rate alignment: The different sensing elements,
such as the mmWave receiver, RGB camera, GPS RTK kit,
LiDAR, and radar, have varying data capture rates. For in-
stance, the mmWave receiver runs at 10Hz, the camera can
capture data at 30Hz, whereas the 3D LiDAR can complete
a maximum of 20 sweeps in a second. Therefore, in order
to achieve meaningful data, cross-modality data alignment
is necessary. We undertake a series of actions in order to
achieve the necessary alignment. For example, the exposure
of the camera is triggered right after the beam sweeping is
completed. Since the camera’s exposure time is nearly in-
stantaneous, this method generally yields good data alignment
between the camera and the mmWave receiver. Further, the
UTC timestamp of the data capture is stored for all modalities.
The timestamp is then utilized to align the different data
modalities during the post-processing resulting in coherent
data for each time step.
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Fig. 3. The DeepSense 6G dataset comprises 40+ scenarios with realistic datasets to encourage the development of novel applications. The dataset is collected
to enable various deployment scenarios. This figure presents the different deployment scenarios included in the DeepSense 6G dataset. As shown here, the
dataset covers a wide range of deployments such as vehicle to infrastructure, vehicle to vehicle, drone communication, reconfigurable intelligent surfaces,
pedestrians, indoor use cases, to name a few.

Real-time monitoring: The final step in the on-field data
collection is the real-time monitoring of the collected data.
Apart from the manual check, we have also implemented data
plotting capabilities in the testbed to enable us to monitor the
data in real-time to ensure their quality and correctness.

B. Data Processing

The initial data collected using the testbed is referred to as
the raw data. The raw data further undergoes a post-processing
pipeline to generate the final development dataset. The post-
processing steps include data synchronization and filtering.
Next, we present the details of each of the steps.

Data Synchronization: The adopted sensing elements have
different data capture rates, which might lead to an incoherent
dataset. As described in Section V-A, the data capture flow in
the testbed is designed to limit such misalignment. However,
the provision in the testbed alone might not be sufficient. To
avoid such inconsistency in the final dataset, the testbed is
designed to record the UTC timestamp along with the actual
captured data. The saved timestamps act as the pivot point
and help in aligning the different data modalities. We have
developed scripts that can utilize the saved timestamps and
generate a synchronized and aligned multi-modal dataset.

Data Filtering: Depending upon the particular scenario, an
optional data filtering step might be required. It is essential to
highlight here that during the data collection process, once the
collection has been started, the testbed continuously captures
data until the process is stopped manually. Therefore, for any
scenario with a mobile user, the continuous data collection
process might result in samples where the user is outside
the FoV of the basestation. For instance, in a V2I scenario

developed to study sensing-aided beam prediction, only the
data samples with the mobile user (unit 2) in the FoV of the
basestation are preferred. Therefore, such a filtering process is
needed to ensure that the final development dataset has only
the desired data samples.

Data Verification: The final step of generating the devel-
opment dataset is verifying the synchronized and filtered data.
For that, we have developed in-house tools that assist in this
verification process. One such tool is the data visualizer, which
plots all the data modalities in the same GUI. It helps to filter
out synchronization issues between different modalities and
identify any missing or corrupted data. Overall, these tools
help us ensure and maintain the highest quality of the datasets.

VI. DEEPSENSE 6G SCENARIOS

DeepSense 6G dataset consists of real-world multi-modal
datasets from collected multiple locations. As described in
Section III, the data is provided as different scenarios where
each scenario is one long data collection. It consists of
40+ scenarios (and continuously growing) with realistic and
challenging datasets to encourage the development of novel
applications. Further, the scenarios are collected to enable
varied deployments with sufficient variance. In this section,
we highlight the inherent diversity of these scenarios and
emphasize the value they add to the development of sensing-
aided wireless communication applications.

Multiple sensors: Each sensing modality has its advantages
and limitations. For example, radar data is primarily suitable
for uncrowded scenarios. Similarly, common positioning sen-
sors generally do not provide accurate positions. The publicly
available GPS data has an average error of 1− 5m. Utilizing
multiple sensing modalities, i.e., data fusion, is a promising
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TABLE I
DEEPSENSE 6G DATASET: TESTBEDS, SCENARIOS, AND EXAMPLE APPLICATIONS

Testbed Scenarios Deployment Data Modalities No. of Samples Example Applications

1

1-7, 13-15

V2I

RGB images, GPS, mmWave receive power 14,322
Beam prediction,

user identification, positioning

8
RGB images, GPS, mmWave receive power,

and 2D LiDAR measurements
4,043 Beam prediction

9
RGB images, GPS, mmWave receive power,

2D LiDAR and radar measurements
5,964 Beam prediction

10-12 Pedestrian RGB images, GPS, mmWave receive power 1,528
Beam and blockage prediction,

user identification, positioning

2 16 Fixed Wireless RGB images, GPS, mmWave receive power 9,827 Blockage identification and prediction

3

17-22

Fixed Wireless

RGB images, GPS, mmWave receive power 460,838 Blockage identification and prediction

24-29
RGB images, GPS, mmWave receive power,

2D LiDAR
500,000

Blockage identification and prediction,

object detection/classification

30
RGB images, GPS, mmWave receive power,

2D LiDAR, and radar measurements
14,660

Blockage identification and prediction,

object detection/classification

4 23 Drone Comm. RGB images, GPS, mmWave receive power 11,387 Beam prediction

5
31-34

V2I
RGB images, GPS, mmWave receive power,

3D LiDAR, and radar measurements
18,667

Beam prediction,

user and blockage identification

35
RGB images, GPS, mmWave receive power,

and radar measurements
3,045

Beam prediction,

user and blockage identification

6 36-39 V2V
RGB images, GPS, mmWave receive power,

3D LiDAR, and radar measurements
30,000

Beam prediction,

user and blockage identification

7 40 RIS
RGB images, GPS, mmWave receive power,

3D LiDAR, and radar measurements
5,000

Beam prediction,

user and blockage identification

way to overcome such limitations. It is possible to develop
more robust solutions by simultaneously leveraging multiple
data modalities. However, developing such robust solutions
requires the availability of large-scale multi-modal datasets.
DeepSense 6G dataset takes the first step towards enabling
the development of such novel solutions. It consists of 40+
publicly available real-world scenarios with co-existing com-
munication and multi-modal sensing data collected with a set
of sensors such as RGB camera, 2D/3D LiDAR, radar, GPS
RTK kit, or a subset of them.

Multiple locations: Data collection location plays a critical
role in determining the quality of wireless and sensing data.
In particular, both stationary and dynamic objects in the
environment impact the performance of the 5G and beyond
wireless communication systems. Therefore, it is essential to
select locations that can help in collecting meaningful and
diverse data. The 40+ scenarios in DeepSense 6G dataset were
collected in two countries (USA and Spain) with more than
15+ indoor and outdoor locations. Each location was carefully
selected to capture challenging and realistic scenarios. The out-
door locations have diverse characteristics; from quiet parking
lots to busy downtown streets, the scenarios feature varying
densities of pedestrians and vehicles, their mobility speeds,
and environment geometry. Similarly, for the indoor locations,
we increase diversity by selecting locations with different
shapes and sizes, such as conference rooms, corridors, etc.

Different times of the day: Similar to the locations, the
time of data collection plays an important role in determining
the overall quality of the collected data. For example, cameras
are susceptible to lighting conditions resulting in noisy images
in low-light/dark scenarios. Such degradation in image quality
can significantly impact the downstream tasks. Developing
robust sensing-aided solutions that can perform efficiently in
different lighting conditions requires the availability of large-
scale real-world diverse datasets. For that, we collected data at
different times of the day to incorporate such diversity in the
DeepSense 6G dataset. In particular, scenarios 2, 4, 14, 17 −
19, 33, and 34 are all collected during the night, with plans
to add more scenarios shortly. The remaining scenarios were
all collected during the day but at different times to increase
variance. With data collected from early morning to late night,
the scenarios of DeepSense 6G cover the entire spectrum.

Different weather conditions: The performance of the
different sensing modalities is affected by the weather condi-
tions. For example, LiDAR data is severely impacted by poor
weather conditions such as fog, dust, rain, and snow. Similarly,
the visibility of cameras significantly reduces in foggy or rainy
weather. Such challenges raise questions about the robustness
of the solution developed based on these modalities. Develop-
ing efficient and reliable sensing-aided solutions and evaluat-
ing them requires data during different weather conditions. For
this, we collect data in sunny, cloudy, windy, and rainy weather



6

Train: Scenario 5 || Test: Scenario 5 Train: Scenario 1 || Test: Scenario 5
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Fig. 4. This figure plots the confusion matrices for the top-1 predicted beam indices. It shows the following two cases: (a) Training and testing on scenario
5 development dataset and (b) training on scenario 1 data and evaluating on scenario 5 test dataset. The figure on the right, (b), shows that even without no
training data of scenario 5, the proposed solution can predict the optimal beam indices with sufficient accuracy.

conditions and at various temperature and humidity levels.
With our collaborators in other places, we plan to continue
adding scenarios with diverse weather conditions.

Different types of UEs: Variance in object classes, object
instances, and object speeds are crucial features of a dataset.
Object classes and speeds are expected to significantly impact
several downstream tasks, such as sensing-aided beam predic-
tion, blockage prediction, and handoff. Developing solutions
that can adapt and generalize across different deployment sites
require dataset consisting of different real-world object classes
(types). To that end, the different scenarios in DeepSense 6G
dataset are designed to capture this inherent variability of
real-world locations. To provide UE variability in the dataset,
the scenarios capture people on their skateboards, bike, or
scooters, traveling along the sidewalk, and crossing the street.
Also, certain scenarios were collected on some of the busiest
downtown streets, which helped capture various types of
vehicles, such as sedans, SUVs, trucks, buses, etc., traveling at
different speeds. All that diversity in traffic makes the dataset
diverse from both sensing and wireless perspectives.

Deployment scenarios: The DeepSense 6G dataset covers
a wide range of deployment scenarios. In Fig 3, we show
some of the adopted deployment scenarios and the associated
testbeds. In particular, as shown in this figure, the DeepSense
6G dataset includes the following deployment scenarios: Ve-
hicle to infrastructure (V2I), drone communication, vehicle
to vehicle (V2V), reconfigurable intelligent surfaces (RIS),
indoor use cases, and pedestrians, to name a few. The sheer
range of the deployment scenarios that the DeepSense 6G
dataset incorporates highlights its potential for enabling vari-
ous critical use cases and applications.

VII. ENABLED APPLICATIONS AND ML TASKS

The DeepSense 6G dataset, with its diverse scenarios,
enables a wide range of applications in the interplay of
communications, sensing, and positioning. This includes, as
examples, multi-modal sensing aided beam and channel pre-
diction, proactive blockage prediction and hand-off, waveform
design for ISAC systems, radar/LiDAR object detection and

classification, and mmWave-based positioning. To accelerate
the machine learning research in these directions and to facil-
itate results reproducibility, benchmarking, and comparisons,
we also provide, as part of the DeepSense 6G dataset, task-
specific development datasets for a number of key applications.
It is important to note here that thanks to the unified approach
in collecting and structuring the data of the different scenarios,
the task-specific datasets can be constructed via combining
data from multiple scenarios. This enables advanced machine
learning research in transfer learning, generalizability, scala-
bility, robustness, and distribution shift analysis, among others.

Example - Generalizability evaluation for ML-based
beam prediction. Now, we describe how to use the dataset in
studying one important research problem, namely multi-modal
vision and position-aided beam prediction. In particular, we
study the generalizability of the developed beam prediction
solution: Can a machine learning model be trained on a
scenario dataset and then successfully generalize to other
scenarios the model has not seen before? Therefore, given a
multi-modal dataset consisting of communication and sensing
data collected at different locations, the objective is to develop
a machine learning-based solution that can adapt to unseen
scenarios that are not part of the training dataset. We adopt the
machine-learning model proposed in [14] with a slight mod-
ification. Instead of utilizing a convolutional neural network
(CNN)-based model for extracting meaningful features from
the visual data, we utilize a state-of-the-art object detection
model, YOLOv3 [15], to detect and extract the bounding-box
center coordinates of the different objects of interest in the
visual data. The bounding-box coordinates and the normalized
position data are then provided as input to a 2-layered feed-
forward neural network to predict the optimal beam indices
from a pre-defined beamforming codebook.

Performance: To evaluate the performance of the proposed
solution, we adopt scenarios 1 and 5 of the DeepSense 6G
dataset. These scenarios consist of diverse wireless, visual,
and position data. They were collected at two locations and at
different times of the day and in different lighting conditions,
making them good candidates for studying this generalizability
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problem. The final development dataset consists of 2411 and
2300 samples from scenarios 1 and 5. It comprises pairs of
visual and position data along with the ground-truth beam
indices. The data from each scenario is further divided into
training and validation sets following a split of 70−30%. Fig. 4
plots the confusion matrices for the following two cases: (a)
Training and testing on scenario 5 development dataset and (b)
training on scenario 1 data and evaluating on scenario 5 test
dataset. This figure shows that even with no training data from
scenario 5, the proposed machine learning-based solution can
still predict the optimal beams with sufficient accuracy (more
than 70% top-3 accuracy). Fig. 4 also shows that even when
the model predicts a wrong beam index, this index is with high
probability close to the optimal ground-truth beams and hence
may still have good receive power. These results highlight the
value of using the DeepSense 6G dataset to obtain practical in-
sights about the performance of a developed machine learning
solution in realistic communication environments.

VIII. CONCLUSION

This article presented the DeepSense 6G dataset, which is
a large-scale real-world dataset comprising co-existing and
synchronized multi-modal sensing and communication data
from more than 40 deployment scenarios, including vehicle-
to-infrastructure, vehicle-to-vehicle, reconfigurable intelligent
surfaces, pedestrians, and drone communication. The article
described the motivation behind the dataset, its scalable struc-
ture, the modular testbed definition, the available scenarios,
and some of the machine learning applications enabled by the
dataset. The goal of the DeepSense 6G dataset project is to
advance the deep learning research and development in a wide
range of applications in the interplay of communication and
sensing to enable the reproduction and benchmarking of their
datasets and research results.
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