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Abstract
The Internet of Things (IoT) envisions a global 

market in which it would be possible to easily get 
data from IoT devices across the globe. However, 
the potential of this idea still needs to be unlocked. 
Centralized architectures fall short due to their lack 
of transparency and tendency to create silos. On 
the other hand, blockchain technology enables the 
creation of distributed and trustworthy systems, 
but its integration with the IoT is still a matter of 
research. IoT-based scenarios often employ numer-
ous devices for the same sensing task, which may 
be heterogeneous and unreliable by purpose. In 
our vision, IoT applications should rely on data and 
its quality rather than on single providers. For this 
purpose, we propose an architecture that enables 
a decentralized IoT global market in which clients 
pay for data and device owners are rewarded for 
providing it. Our solution employs a distributed ora-
cle layer on top of smart contracts powered by a 
distributed global network of IoT devices. The sys-
tem supports IoT data source decoupling since the 
end-user can perform semantic queries bounded to 
specific locations and data types without specifying 
the target devices. In addition, it features automatic 
discovery, interoperability mechanisms, and reputa-
tion algorithms for the selection of trustworthy data 
sources. Our results show that the proposed system 
is robust and consistently provides quality data, even 
with multiple malicious data sources.

Why Do We Need an IoT Global Market?
The global network of computers completely 
reshaped society in the last decades, allowing vir-
tually anyone to be connected to massive sources 
of information instantly and with minimal costs. 
On the other hand, the Internet of Things (IoT) 
has been around for over two decades now 
[1] and, still, the initial vision of a global system
of interconnected devices is far from reality. A
decentralized IoT global market would allow the
end users to easily and seamlessly gather data
from IoT devices connected to a global network.
Additionally, anyone could effortlessly connect its
device and expose its capabilities throughout the
network — monetizing its usage [2]. For instance,
smart insurance companies can utilize reliable
sensory data as automatic triggers to release con-
tract compensation, inherently benefiting from
blockchain security and fraud-proof features —
further description of this use case is provided
later in the manuscript.

Many approaches have been proposed to ful-
fill such a vision. However, they all share similar 
pitfalls. On the one hand, centralized approaches 
inherently bind users to trust a single entity and 
to stick to specific standards and technologies 
[3]. This unavoidably creates silos that are hard-
ly interoperable with one another and do not 
guarantee the necessary transparency to the final 
users. On the other hand, decentralized solutions 
fail to provide the required trust for users to con-
sume data. Trust plays an essential role in the IoT 
global market since clients need to ensure the 
quality of the queried data.

Blockchain technology has the potential to 
become a pivotal enabler for a global IoT market [4], 
as it creates trustworthiness in totally decentralized 
systems by sharing among all the nodes of a network 
a single and immutable history of transactions. How-
ever, many challenges still impede unleashing the full 
potential of blockchain for IoT-based applications. In 
this article, we tackle four of them.

IoT devices have limited processing and stor-
ing capabilities and are often battery-powered, 
imposing energy efficiency constraints. Thus, it 
is unfeasible for IoT devices to be blockchain 
network nodes since they cannot spend energy 
and computation to verify other transactions and 
cannot store the transaction history. Furthermore, 
blockchains themselves are not able to actively 
access external IoT data. 

IoT devices are unreliable per design; they are 
made to be numerous, inexpensive, and inter-
changeable. Moreover, they could be more sus-
ceptible to tampering than traditional devices since 
computational-intensive security mechanisms can-
not be supported. Hence, a substantial overhead 
— imposed by the blockchain — is in place to query 
unreliable data from cheap sensors. 

A common and well-known problem of IoT is 
the lack of interoperability. IoT devices comply 
with several different communication protocols, 
data structures, and interfaces, which contribute 
to a fragmented landscape that hinders the adop-
tion of IoT global markets. 

Blockchain and related consensus mechanisms 
rely upon deterministic outputs. IoT sensor mea-
surements are inherently nondeterministic, mean-
ing that IoT data sources may return different 
results even if operating in the same conditions. 
This calls for an accurate method for selecting 
multiple data sources and safely aggregating their 
results to ensure trustworthiness.
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To address such challenges, we propose DESMO, 
a novel architecture — founded by the ONTO-
CHAIN European project — to enable an IoT Global 
Market based on distributed data oracles paired with 
decentralized IoT data sources. Oracles are special 
applications that connect blockchains to the off -chain 
world [5]. In order to increase their trustworthiness 
and maintain decentralization, we adopted a layer 
of distributed oracles and enabled the client appli-
cations to retrieve data from multiple data sources 
that share the same features in a specified geolo-
cation. We need to trust not only the oracles but — 
and mainly — the data coming from the IoT devices. 
For this reason, our architecture includes reputation 
algorithms for the ranking and automatic selection of 
trustworthy data sources. Finally, to address IoT inher-
ent heterogeneity, we utilize a well-known standard 
open interface — the W3C Web of Things (WoT)
[6]. The WoT standard allows us to straightforwardly 
describe the capabilities of the devices by extending 
already existing Web technologies and enabling inte-
gration across platforms and applications domains. 
We do not elaborate on economic aspects related 
to payments, since they are outside the scope of the 
article, although they will be further investigated in 
the future. In the following sections, we provide fur-
ther details of our proposal. We outline its unique 
features and technical characteristics compared to 
existing blockchain solutions. Next, we describe its 
architectural design and showcase two applications 
enabled by the DESMO IoT global market. To exem-
plify its operation, we conducted a case study that 
demonstrated the system’s robustness to malicious 
nodes while maintaining data quality. Finally, the arti-
cle concludes with a discussion about challenges 
and future research directions, such as scalability — a 
fundamental feature for a global system.

orAcle ArchItectures for Iot systeMs
Before diving into the architectural details of our 
solution, we introduce the reader to the key con-
cepts and issues that serve as the foundation for 
fully understanding our work. Blockchains are inno-
vative technologies to store and share data between 
a network of nodes without relying on a single cen-
tralized authority. They are instances of Distributed 
Ledger Technologies (DLTs) that use cryptography 
to create a secure, immutable, and transparent 
record of transactions. These technologies have 
undergone substantial changes recently, evolving 
dramatically from the fi rst Bitcoin-related implemen-
tations. Among the most significant advances, we 
cite the emergence of blockchain-based platforms 
such as Ethereum, which introduced the concept 
of “smart contracts” as executable programs that 
enforce an agreement between two or more par-
ties in a secure and verifi able way. Thanks to their 
pre-defined functions, they can store information, 
process inputs, and write outputs. Their capabilities 
have opened the doors to exploring new synergies 
not only related to decentralized finance but to 
other sectors such as supply chain management, 
insurance, voting systems, health care, and IoT.

Smart contracts only have access to data 
stored on the chain. This limitation is because 
their execution must be deterministic to be fully 
verifiable by other nodes in the network. There-
fore, injecting external data into the blockchain 
requires an off -chain component, the oracle. An 
oracle is a software entity capable of retrieving 

external data and making it available on-chain 
for smart contracts [3]. Hence, the oracle is not 
the data source per se, but the layer that queries, 
verifies, and authenticates external data sources 
and then forwards such information. The use of 
oracles brings back the centralization that block-
chain was supposed to remove from the equa-
tion, reintroducing issues related to architectures 
with a single point of failure (e.g., bringing cor-
rupt, malicious, and incorrect data to the chain). 
This dilemma is known as “The Oracle Prob-
lem.” It deals with the issue of fi nding a balance 
between efficiency and decentralization when 
data is retrieved from the outside through these 
systems [7]. Numerous approaches have been 
proposed to solve this problem, and they can be 
grouped into two macro-categories: centralized 
and decentralized solutions.

Examining Fig. 1, we can notice that a central-
ized oracle is based on a single-server architec-
ture and relies on a single data source. Typically, 
these solutions employ Trusted Execution Environ-
ments to secure the critical processes of oracles, 
in combination with technologies for generating 
proofs of data authenticity. An example of an 
oracle that leverages this type of architecture is 
TownCrier [8]. On the other hand, a distributed 
oracle is implemented through multiple nodes 
providing data to the blockchain. Each node usu-
ally relies on one or more specifi c data sources to 
fulfi ll the requests. ChainLink [9], for instance, is a 
decentralized oracle network based on reputation 
mechanisms and can be considered a general-pur-
pose system. Although some of these oracles can 
be used to retrieve IoT data, there are specialized 
solutions that are designed for this task. DiOr-SGX 
[10] uses multiple oracle servers to minimize the
risk of a single point of failure while ensuring data
integrity. STB [4] is a distributed and hierarchical
blockchain architecture with a peer-to-peer ora-
cle network. It has a lightweight consensus algo-
rithm for IoT-constrained devices and specialized
components for scaling and verifying the reliabil-
ity of external information before storing them
on-chain. Finally, OIB [5] is a system to facilitate
the deployment of smart contracts-based Indus-

FIGURE 1. Diff erent oracle architectures and their relationship with data 
sources.
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trial IoT applications. The core of the system lies 
in a distributed oracle network that extends the 
computing capabilities of the contracts.

Looking at the solutions presented, it is possible to 
realize how the risk of centralization is always around, 
especially when it comes to selecting and managing 
data sources [3]. Furthermore, in the specific case 
of oracle architectures for the IoT, the heterogeneity 
of devices is not considered, even if a clear method-
ology for integration and communication would be 
needed, since IoT devices do not usually have com-
patible interfaces with current Web technologies, as 
they employ a diff erent stack of protocols. This article 
advances state-of-the-art by proposing a novel, fully 
decentralized oracle system specialized for retrieving 
IoT data. Diff erently from the cited studies, our solu-
tion detaches the oracles layer entirely from the data 
sources, pushing to the limit the concept of decentral-
ization and trust. Our objectives are threefold:
• Maintain the highest possible level of decen-

tralization of the system enabling multiple
oracle nodes to retrieve data from a set of
diff erent data sources each time.

• Treat the data sources as fi rst-class citizens of
the system, keeping track of their reputation
and rewarding them for the provided data.

• Unify device discovery and communication
through a well-defined interface that can
serve as a homogeneous abstraction layer
for the various actors in our system.

hoW to DesIGN A blockchAIN-bAseD systeM
for AN Iot GlobAl MArket?

In this section, we analyze the DESMO architec-
ture and how it supports the concept of global IoT 

market. As we will see, the DESMO architecture 
spans from on-chain components (smart contracts) 
to off -chain components (oracles, indexers, and data 
sources). All these concur in achieving a fully decen-
tralized system organized in the following layers:
• The Clients are the buyers of IoT data and

can be on-chain or off -chain components.
• The DESMO Protocol layer is composed of

smart contracts that register requests, store
responses and payments and detain the rep-
utation ranking of data sources.

• The Decentralized oracles layer collects the
requests from smart contracts and queries
the designated sources.

• The Decentralized IoT data sources layer
contains the devices that provide the data
and the directories that index them. Users
can register new directories by staking
tokens. In this way, if a directory behaves
fraudulently, the protocol can punish it by
draining from these funds.
As illustrated by Fig. 2, the top layer of the plat-

form contains the clients, which can be different: 
smart contracts — for example, protocols — that 
need to access IoT data to perform automatic 
actions, Dapps implementing IoT use cases, serv-
er-side applications in need of retrieving IoT data in 
a trusted and distributed way. Immediately below, 
we find the DESMO distributed protocol, a set of 
smart contracts that cooperate to manage the vari-
ous aspects of the system. The Portal contract is the 
entry point of the client, receiving requests for data 
and initiating the data retrieval process. The Hub is 
the repository for registered data sources and their 
reputation score, which quantifi es the trustability of 
each source. Finally, the Token contract (omitted 
in Fig. 2) holds the currency that powers the sys-
tem’s economy. The amount paid by each client is 
distributed between the oracle nodes and the data 
sources participating in the process. The oracles 
layer contains the worker nodes capable of execut-
ing the DESMO oracle application, which queries a 
defined set of data sources and computes a result 
to the client request through a consensus algorithm 
between oracles, as explained later. The bottom 
layer includes the data sources, and its structure is 
divided into two distinct blocks: directories and end 
devices. Directories are responsible for indexing the 
metadata of physical devices and making them dis-
coverable via a well-defi ned interface that supports 
both semantic and geo-spatial queries. On the other 
hand, to be compatible with the system, devices 
must expose a semantic descriptor that allows both 
directories and oracles to interact with them. We 
decided to use the emerging W3C WoT standard 
in our implementation as it extends existing web 
technologies and provides a homogeneous inter-
face to access IoT devices that abstract from their 
particular interfaces and heterogeneous network 
protocols. Specifically, directories, namely Thing 
Description Directories (TDDs), will have to imple-
ment the W3C WoT Discovery specifi cation[6] with 
the addition of support for spatial queries. Devic-
es will have to be described by a W3C WoT Thing 
Description (TD)[6] and be registered on one of the 
TDDs to be found and used by the system. To store 
off -chain, accessible, nondeterministic data we make 
use of IPFS (InterPlanetary File System) [11]. IPFS 
is a decentralized, peer-to-peer fi le system that pro-
vides storage and retrieval of data on the Internet. 

FIGURE 2. The DESMO layered architecture with the steps required in the query resolution process..
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It replaces traditional methods with a content-based 
addressing system for files and their versions. IPFS 
allows for saving arbitrarily big fi les and, by writing 
only their hash on the actual blockchain, we ensure 
always to store a constant amount of data on-chain.

The complete fl ow of a single data request is 
then depicted in Fig. 2.

Step 1: A client submits a new request to the 
system by calling a function of the Portal smart con-
tract. The payload of a request includes the seman-
tic query for identifying the desired data type and 
the geospatial fi lter — for example, the temperature 
in the metropolitan area of New York City.

Step 2: The Portal contract asks the Hub for 
the TDDs to associate with the request. TDDs, as 
said, can become part of the system (i.e., includ-
ed in the list detained by the Hub) by staking a 
certain amount of tokens. Each of them starts with 
a neutral reputation value — we set it to 0 — and 
gets selected by the Hub to reply to a data request 
through a round-robin selection process. The pro-
cess uses reputations as weights, so high-reputation 
TDDs are more likely to be selected.

Steps 3 and 4: A subset of oracle instances 
takes on the request and queries the selected 
TDDs. It is essential to highlight that each oracle 
makes the same query on each of the elected 
TDDs and collects the descriptors of all devices 
that semantically match the request.

Step 5: The oracles retrieve sensor data from 
the end devices and need to reach a consensus 
on which data point best represents reality and 
how good and reliable the sensor data is. The 
process that implements the above actions (the 
“consensus process”) is depicted over fi ve phases 
in Fig. 3, and supports the explanation of steps 5, 
6, and 7 of the query resolution process. We can 
abstract from the concept of TDD and assume 
that each oracle queries the same data sources 
— that is, the sensors — and obtains from each 
of them a single data point corresponding to the 
sensor reading. In Fig. 3, data points generated 
by different sources — phase I of the consensus 
process — are depicted as squares of different 
colors. In this case, each oracle, within a single 
request round, ends up with as many data points 
as the number of queried data sources, represent-
ed in phase II of the consensus process. Note that 
two oracles may obtain two diff erent data points 
from the same source. This inherently belongs to 
the nature of IoT and can be dictated by several 
factors: for instance, oracle queries could have 
taken place at two diff erent moments in time, thus 
triggering two diff erent sensor readings, causing 
nondeterminism. Nonetheless, within a single 
request round, we expect a data source to reply 
consistently to multiple oracles, meaning that data 
points shall diff er negligibly. The subsequent steps 
will address the nondeterminism problem.

Step 6: Oracles store the reply they obtained 
from data sources onto IPFS. In phase III of the 
consensus process, the collection of replies on 
IPFS is represented as a matrix, where each row is 
associated with a single oracle and each column 
with a single data source. Upon saving the reply 
on IPFS, each oracle also hashes its content and 
saves the hash onto the blockchain. This ensures 
the amount of space that a single client request 
occupies on-chain to be solely dependent on the 
number of selected oracles (which is constant), 

not on the number of queried sources (which can 
be arbitrarily high, depending on how much the 
client pays). In phase IV of the consensus pro-
cess, oracles can use the hashes stored on the 
Portal to retrieve the full matrix from IPFS. At this 
point, each of them executes two actions: The 
Truth Inference algorithm, which outputs a single 
data point in the matrix — the “inferred truth” — 
that is believed to be the closest to the ground 
truth, and The Rating algorithm, which outputs a 
score for each data source on top of their output 
with respect to the inferred truth. The score will 
be integrated with the overall reputation of the 
data source. The Truth Inference algorithm is a 
function  that takes in input the matrix of results 
M and returns a single sensor reading   M. The 
Rating algorithm is a function  that takes in input 
M and returns an array of n scores S, where n is 
the number of queried data sources. Each score 
must be constrained to a defi nite interval, in our 
case we defi ned scores to be between –1 and 1.

Step 7: Finally, in phase V of the consensus pro-
cess, oracles need to reach a consensus by all execut-
ing (M) and (M) and perform majority voting, then 
the two results are written on the Portal contract. 
Note that both functions are deterministic, which 
means that, if all oracles execute them onto the same 
matrix M, they should end up with the same results. 
The Portal then stores the result of (M), which is 
the reply to the client request, and uses the result 
of (M) to update the reputation of the sources in 
the Hub contract. This is done, for each source, by 
linearly combining its score with its previous reputa-
tion, which is constrained between –1 and 1 as well, 
in order to obtain again a reputation value between 
–1 and 1. Upon performing this operation, the Hub
contract may choose to blacklist a source, if its repu-
tation falls below a certain threshold. This operation,
as we will see in the section about the Case Study, is
necessary to mitigate the chances for attacks as well
as untrusted or defective data sources.

The interaction of DESMO with the blockchain 
is a crucial aspect of its architecture, specifi cally 
regarding the transactions generated from data 
queries. When a user makes an initial query, both 

FIGURE 3. DESMO data gathering and consensus process.
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the query and the fi nal result are recorded on the 
blockchain, resulting in two separate transactions. 
Further, each oracle involved in a query stores 
the hash of the queried data on the blockchain 
to make it available for other oracles to calcu-
late the Truth Inference algorithm — as outlined 
in Step 6. The output generated by each oracle is 
also recorded in the blockchain to enable the pro-
cess described in Step 7. Current scalable block-
chains have a high throughput of thousands of 
transactions per second (TPS) and are pushing 
to keep increasing those numbers — for example, 
Solana can process more than 8,000 TPS [12]. 
Considering those numbers and an average of 
fi ve oracles involved in each query, theoretically 
DESMO could support millions of daily queries. A 
fi rst implementation of the diff erent components 
of the architecture can be found on GitHub[13].

ApplIcAtIoNs of A blockchAIN-bAseD Iot 
GlobAl MArket

In this section, we explore new applications that 
are enabled by DESMO. We selected one insur-
ance scenario that leverages sensor data and one 
urban scenario related to noise pollution.

sMArt INsurANces
Currently, insurance claims are a long and costly 
process. Insurances companies desire to combat 
fraud, at the same time, to reduce time and costs 
by automating the claim-related administrations 
and execution process. On the other hand, cus-
tomers want rapid compensation and clear insur-
ance terms. A trustworthy automatic process for 
insurance will be benefi cial for both parties.

An example application enabled by DESMO 
is insurance in the intelligent farming domain. 
Suppose that a given company commercializes 
insurance for farmers to protect their crops against 
extreme environmental hazards — for example, 
storms. The customer and the company agreed 
on specifi c terms to trigger the farmers’ payment. 
Those conditions and their associated triggers are 
established on a smart contract that acts as a client 
of DESMO — interacting with the Portal contract.

The insurance company smart contract defi nes 
features — for example, wind speed — to be que-

ried in a specific geolocation without specifying 
the set of devices that provide such data. The 
data sources providers could be both sensors 
deployed by a trusted partner of the insurance 
company, as well as already deployed devices 
in the farm and nearby locations. DESMO Truth 
Inference and Rating algorithm will assure data 
quality and prioritize the selections of trustworthy 
data sources to avoid malicious users tampering 
with the system — for example, falsifying a storm’s 
conditions. In case the conditions are met, the 
smart contract automatically releases the tokens 
to the farmers to keep their businesses running.

urbAN NoIse pollutIoN MoNItorING
Noise pollution is a common hazard in urban 
environments, and its sources range from social 
activity to construction. Public authorities com-
monly incentivize noise mitigation by imposing 
fi nes on noise emitters above a certain threshold. 
However, it is challenging to enforce noise regu-
lations in large urban environments. We envision 
such systems to leverage the usage of DESMO. 
The appointed public authority would hire several 
small and medium enterprises to cover a city with 
noise monitoring sensors. Diff erent set companies 
could cover diff erent neighborhoods, with some 
overlap. Another third-party actor — employed 
by the public authorities — would deploy a smart 
contract that queries the DESMO Portal contract 
to get noise pollution data in different parts of 
the city. Once a code violation is detected, the 
smart contract automatically warns the competent 
authorities to take appropriate action. The advan-
tage of using DESMO in such a setup is threefold: 
• DESMO geo-spatial filter allows clients to

utilize different granularity of boundaries
in successive queries to narrow the precise
location of the noise pollution source.

• Given the truth inference and rating algo-
rithm, malfunctioning data sources would
not hinder the overall system data quali-
ty, and their data would be requested less
often. Consequently, reliable data sources
would be queried frequently and — as each
request in DESMO is paid — be more prof-
itable, incentivizing the continuous mainte-
nance of the system.

• Different companies would deploy sensors
with diverse technologies regarding com-
munication protocols and data structure.
DESMO, by design, handles IoT heterogene-
ity via W3C WoT solutions.

systeM evAluAtIoN oN A cAse stuDy
We developed a case study to assess the pro-
posed system’s resilience and effectiveness in a 
theoretical scenario in presence of malicious data 
sources. As we motivate our work on trustworthi-
ness, we need to punish or ban possible malicious 
data sources while maintaining satisfactory data 
quality. The case study comprises clients inter-
ested in environmental temperature values and 
1,000 sensor sources capable of producing tem-
perature readings registered to various TDDs.

These systems can be prone to collusion attacks, 
where a group of malicious sources may cooper-
ate in injecting false data on the blockchain. In our 
scenario, we represent this attack as follows: the 
temperature ground truth is set to 25°C}, and the 

FIGURE 4. Truth Inference Accuracy: the percentage of requests by a client that get satisfied within a tolerance 
threshold. 
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response from the Truth Inference algorithm is con-
sidered to be accurate if it falls within a tolerance of 
±3°C. Honest sources produce temperature values 
according to a normal distribution, with the mean 
equal to the ground truth and the standard devi-
ation uniformly generated between 0 and 4/3 of 
the tolerance, representing a few honest sources 
making occasional mistakes. We modeled malicious 
sources to generate temperature readings by replac-
ing the ground truth with a fairly distant common 
value (10°C) to simulate a collusion attack, where 
all attackers concur in redirecting the output to a 
fake verdict. We then simulated a period composed 
of 5,000 epochs; a single epoch corresponds to 
a client request, a response by the system, and a 
single run of the Truth Inference and the Rating 
algorithms. We experimentally found that all con-
figurations running more than a few hundred of 
epochs yield consistent results, hence our choice.

During the fi rst 2,500 epochs, we assume that 
50 percent of the sources are already registered 
in the system, and all of them are honest — this 
assumption of a “warm start” is realistic because 
most of the blockchain-based applications run an 
initial genesis phase, where the chain is populated 
with a solid history of valid blocks in a controlled 
way. During the remaining 2,500 epochs, we add 
the remaining sources, including the malicious 
ones. These can join the network following either 
a uniform distribution, thus randomly picking an 
epoch, or a bursty distribution. In the latter case, 
we ensure that all malicious sources join the net-
work at once, simulating the worst case of collud-
ing sources operating simultaneously.

Our fi rst experiment aims to validate the solid-
ity of the Rating algorithm and the usefulness of 
blacklisting sources that are identified as mali-
cious. For this reason, we ran simulations adopt-
ing a single Truth Inference metric: the median 
— that is, we consider (M) to return the median 
of all sensor values in M, obtained with a single 
request. We name this baseline algorithm “Med.” 
We then compare its performance against “Med-
R,” in which we additionally perform the Rating 
algorithm. In particular, our implementation of 
(M) outputs, for each   M, the distance of t 
from (M), normalized to output a value between 
1 and –1 (in our case, if the distance is more than 
3°C, the score will be below 0), picking the mini-
mum value for each source. Next, the reputation 
of each source is calculated as a convex combi-
nation of R and (M), tuned by a parameter  , 
where R is the old reputation value, and  is a 
parameter that tunes how much the new score 
affects the reputation — in the simulations, we 
set it to 0.5. Finally, we show the performance 
of “Med-RB,” where we perform both the above 
Rating algorithm and the blacklisting step, exclud-
ing sources with a reputation below a threshold.

Figure 4 shows the results obtained by executing 
the three algorithms over different percentages of 
malicious sources, with the maximum being set to 
50 percent, as a higher value, according to the well-
known 51 percent problem, would compromise the 
entire network [14]. The bar chart shows the Truth 
Inference accuracy, the ratio of client requests that 
get an accurate response, for uniform and bursty 
arrival rates. Results show how the rating step sig-
nifi cantly aff ects resilience against a certain number 
of malicious sources. We also expect a much better 

eff ect against defective or low-quality sources, as in 
our simulations, malicious sources are performing 
a joint attack, which is the worst possible scenario. 
The chart also depicts how blacklisting always has a 
better impact on inference accuracy. In particular, it 
allows the system to hold up as many as 50 percent 
of malicious sources joining all at once, still yielding 
a high accuracy — around 0.7. Simulations were per-
formed taking into account diff erent values of black-
listing threshold and multiple repetitions.

Furthermore, we study the impact of our Med-RB 
strategy in terms of “blacklisting precision and recall.” 
The rationale is that different use cases may privi-
lege certain requirements over others. For instance, 
it may be more important to timely get rid of all mali-
cious sources, while tolerating a reasonable num-
ber of honest sources to be kicked out as well (high 
recall). Conversely, it may be aff ordable to keep few 
malicious sources, while ensuring that all banned 
sources are malicious (high precision). The fi rst case 
is shown in Fig. 5 over time for different suitable 
values of “blacklisting threshold.” We can see the 
recall values to be consistent with the expectations: 
higher thresholds mean less permissive scenarios, 
thus higher recall. However, we notice that only the 
most permissive threshold underperforms and, yet, 
yields a high recall value — above 0.8 — at the end 
of the simulation. An even better result is shown in 
Fig. 6, where, no matter the threshold, the precision 
stabilizes between 0.9 and 1.0, with only tiny diff er-
ences that are in line with the expectations: the more 
permissive the policy, the higher the precision and 
vice versa. High precision scores indicate high reli-
ability and the ability of the technique to identify and 
kick out malicious data sources with high accuracy, 
regardless of the threshold. The evaluation confi rms 
that Med-RB is a solid baseline for our scenario, as its 

FIGURE 5. Blacklisting Recall: the percentage of all the malicious sources 
that the system is able to detect and ban over time.

FIGURE 6. Blacklisting Precision: the percentage of all the banned sources 
over time that are actually malicious.
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only additional cost is to store the result of the Rating 
algorithm on-chain, which can be easily controlled by 
setting an upper bound to the number of selected 
sources. Med-RB can be used as a first building block 
for further evolution, including more parameters.

What are the Relevant Challenges and 
Research Directions?

Although our system enables different applica-
tions, its implementation in complex scenarios 
poses significant challenges. We list three prom-
ising future research directions for decentralized 
oracles for distributed IoT sources.

Challenge 1: Truth Inference and Rating Algorithms
Though efficient, as the case study showcased, 
both the Truth Inference and the Rating algo-
rithms are naive and prone to errors in complex 
situations. Simple advances in the algorithm could 
increase its robustness. For instance, we can pair 
trustworthy oracles with new or low-score data 
sources to have a high probability of inferring 
that one node is malicious and vice versa. Assign-
ing trust in distributed decentralized systems is 
a vast research field that was invigorated by the 
advent of the blockchain. In particular, guaran-
teeing IoT devices’ trustworthiness is still a con-
siderable challenge. Currently, solutions leverage 
complex mathematical models that consider var-
ious parameters, including the social relationship 
between the data requester and the device [15].

Challenge 2: Blockchain Scalability
IoT devices produce a large quantity of data, and 
we are proposing a system that has the potential 
to be global. Consequently, scalability is a must. 
Traditional blockchain strategies struggle to handle 
the massive number of transactions that a global 
IoT market will demand. Further, there is the need 
to rapidly and reliably verify the device’s external 
data (i.e., off-chain) since data is stored permanent-
ly in the blockchain. Lightweight — though reliable 
— consensus algorithms are necessary. There are 
efforts in the community to tackle this issue, but 
the entire problem still needs to be solved. One 
promising direction to provide scalability is block-
chain sharding which artificially partitions the work-
load of one single transaction procession to several 
members working in parallel. To this aim, we cite 
STB[4], a blockchain that utilizes sharding and a 
lightweight consensus to enable IoT scalability.

Challenge 3: Distributing Micro-Computational Task
We proposed a system solely for sensing IoT data. 
A considerable improvement is being capable of 
requesting tasks to be performed. We could lever-
age the computational power of edge devices 
to execute computational tasks in a distributed 
fashion, close to where the data was generat-
ed, improving latency and offering Platform as a 
Service (PaaS) features — as partially explored in 
IoT-HiTrust[15]. Another direction is to explore 
the actuation capabilities of IoT devices. Hence, it 
would be possible to rent an entire fleet of Indus-
try 4.0 robots for a short duration to manufac-
ture a particular custom-made good. Where and 
how to deploy the computational task and verify 

that the requested task was executed are open 
challenges — with some intersections with the first 
challenge mentioned.
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