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The Computational and Latency Advantage
of Quantum Communication Networks

Roberto Ferrara, Riccardo Bassoli, Christian Deppe, Frank H.P. Fitzek and Holger Boche

Abstract—This article summarises the current status
of classical communication networks and identifies some
critical open research challenges that can only be solved by
leveraging quantum technologies. By now, the main goal of
quantum communication networks has been security. How-
ever, quantum networks can do more than just exchange
secure keys or serve the needs of quantum computers. In
fact, the scientific community is still investigating on the
possible use cases/benefits that quantum communication
networks can bring. Thus, this article aims at pointing
out and clearly describing how quantum communication
networks can enhance in-network distributed computing
and reduce the overall end-to-end latency, beyond the
intrinsic limits of classical technologies. Furthermore, we
also explain how entanglement can reduce the communica-
tion complexity (overhead) that future classical virtualised
networks will experience.

I. INTRODUCTION

THE history of telecommunications has al-
ready experienced a fundamental progress-

driven paradigm shift from circuit switching to
packet switching. However, the necessity to inter-
connect very heterogeneous networks and to target
different verticals (mobile broadband, augmented
reality, vehicular networks, Tactile Internet, Industry
4.0, etc.), with different concurrent and stringent
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Fig. 1. The paradigms of softwarized and quantum communication
networks.

requirements, have raised the need for a new gen-
eration of networks, called 5G and beyond (B5G).
The scope of these networks is to provide an
ecosystem of networks flexibly, efficiently and ef-
fectively interconnecting heterogeneous radio access
networks (RANs) and wired networks (edge, core
and the Internet). At the same time, requirements of
very low latency, significantly greater throughput,
increase of energy efficiency, and of ubiquitous
connectivity have also pushed research and indus-
trial community to investigate new paradigms for
telecommunications.

In order to solve these problems, since 2010 the
idea of network softwarization has become pop-
ular via software-defined networking (SDN) and
network function virtualization (NFV), as a re-
alization of the paradigm shift from store-and-
forward to compute-and-forward (Fig. 1). The idea
behind such technologies is the transformation of
communication networks from employing dedicated
hardware to using general purpose hardware, run-
ning software-based network components (instanti-
ated inside virtual machines, containers, unikernels,
etc.). Nevertheless, software-based future generation
networks will not be able to satisfy the expectations,
because of classical software and network-theoretic
intrinsic limits, while they will also introduce some
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critical drawbacks. Firstly, the communication com-
plexity (i.e. the number of bits exchanged among
distributed network nodes to compute a function)
of these networks, relying on massive distributed
computing, will significantly increase. Secondly, the
security of the software functions will be weaker
than that of dedicated hardware, requiring a con-
tinuous growth of security level at all layers of
the software-based network stack, which will add
overhead, delay and resource usage.

A radical reform of the network nature is nec-
essary to target existing and future expectations.
This intrinsic reform can come from exploiting
quantum-mechanical resources such as superposi-
tion of quantum states, quantum entanglement, and
distributed quantum computing, beyond targeted
quantum security use cases. Quantum networks will
be built on top of classical ones, in a unique hybrid
infrastructure, where quantum virtual machines will
consist of a high number of entangled spatially-
distributed qubits and scaling with the number of in-
terconnected devices. This hybrid classical-quantum
communication network is normally called by the
research community, the Quantum Internet [1]. Gen-
erally, the goal of the Quantum Internet is enabling
the transmission of qubits between distant quantum
devices to achieve the tasks that are impossible
using classical communication. However, the defini-
tion of the classical 5G and B5G networks is much
broader. Since we do not want to develop quantum
versions of the classical Internet components, the
term Quantum Internet is rather misleading. In this
work, we thus prefer to use the term quantum
communication network (QCN) [2].

Many quantum network projects have the only
goal of securely exchanging cryptographic keys.
Entanglement-based protocols like Ekert ’91, as
opposed to Bennet-Brassard ’84 like protocols, are
often used because they work directly with quantum
repeaters. Other popular quantum network projects
focus on using the entanglement for teleportation.
However, using the quantum network for just these
applications is limiting its potential.

II. IN-NETWORK COMPUTING AND BIG DATA

As previously mentioned, a critical aspect is low
latency [3]. Latency can be seen as the sum of dif-
ferent parameters, referred to all the network levels.
The propagation latency depends on spatial distance

and packet size. While source data is constant, each
layer of the network stack adds its own overhead,
contributing to this delay. The transmission delay
at each link is proportional to the inverse of the
available capacity. Next, the queuing delay is due to
the queues of packets at all the nodes of the network,
which varies for different frames/datagrams/packets
depending on their Quality-of-Service (QoS). The
processing delay is the physical and link layer
delay, which mainly depends on the hardware’s
processing capacity of network nodes and on the
signal-processing algorithms. Currently, reduction
of latency is done per layer. For example, at the
physical layer propagation delay is reduced via the
transmission of short packets at the cost of increas-
ing the overhead per frame and thus the transmission
delay. However, when a single layer is overloaded,
optimising the network per layer prevents the other
layers to overtake some of the load efficiently, and
may result in the whole network being overloaded.
For example, the medium-access layer is responsi-
ble for synchronisation, initial access, interference
management, scheduling, rate adaptation, delay-to-
access and management of retransmission, while
the transport layer is responsible for the flow and
congestion controls. If congestion causes significant
losses at the transport layer, it can increase queu-
ing, processing and retransmission delays (losses
increase both retransmission time and redundancy
for error correction) at the medium-access layer.

Future softwarized NFV-SDN communication
networks will consist of a data plane and a control
plane (Fig. 2), which will be obtained by a resource
mapping from general-purpose hardware owned by
various infrastructure providers (also called tenants).
Network nodes and traffic in the data plane will be
managed and processed by SDN controllers and hy-
pervisor in the control-plane network, with the help
of machine learning (ML) towards self-organising
(autonomic) networks (SONs) [4]. Moreover, in the
protocol stack, the number of active layers will be
optimised at each network node improving latency.
Fig. 2 depicts the logical architecture of future soft-
warized classical networks, highlighting the internal
structure of their main components. The complete
softwarization of networks and the realisation of
in-network intelligence will transform the network
stack and structure from static to adaptive, through
the constant processing of Big Data collected from
the enormous amount of devices of the network.
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Fig. 2. Logic architectural representation of classical future softwarized networks, with their main components. Local/global controllers update
the routing tables and routing policies (RULES, ACTIONS and TableMiss) at the SDN switches via a control protocol (e.g. Openflow). SDN
switches collect statistics (STATS) to improve network analysis at the controllers. The hypervisor will very likely collect and process Big
Data to run machine learning algorithms for the whole network management.

Sometimes these virtual-network optimisation
problems can be efficiently distributed, allowing to
distribute the overhead load and delays within the
network by having distributed SDN controllers into
various network nodes or as virtual network func-
tions (VNFs) in different servers or data centres [5].
However, the flexibility introduced by softwariza-
tion will inevitably come with an overhead trade-
off, which will reduce the improvement in terms
of latency and energy efficiency [6]. This overhead
can be potentially resolved, or greatly reduced, in a
classical-quantum hybrid network, by exploiting the
fact that even some classical tasks can be solved
much more efficiently in the quantum network,
rather than the classical one. All the previously
mentioned delays are not only in the network but
also in data centres and distributed databases, which
are networks themselves (Fig. 2).

III. FROM CLASSICAL TO QUANTUM

Classically, the smallest information element is
the bit, an object that stores information by using
two possible values: 0 and 1. In quantum sys-
tems bits do not exist. The state of any quantum-
mechanical system shows a linear behaviour similar

to that of continuous waves and signals1. The unit
of quantum information is thus the qubit, an object
that stores information on the unit vectors of a two-
dimensional complex vector space. The connection
with the classical bit is that 0 and 1 now index
the two standard basis vectors as |0〉 and |1〉2. Just
like for continuous signals, the sum of |0〉 and
|1〉 states is another state that is different from
probabilistically generating either of the two. The
standard representation of the state space of a qubit
is displayed in Fig. 3.

The difference between a signal and a quantum
state lies in their behaviour. The state of a qubit
should be thought as the polarisation of a single
photon, where the only collectable information is
whether the photon is present or not. We can dis-
tinguish two orthogonal states of the photon such
as the vertical and horizontal polarisation using a
polarising beam splitter, and detecting on which side
the photon appears. A qubit can thus carry one bit
of information. However, if we try to collect infor-
mation about a diagonally polarised photon (with
the same vertical/horizontal measurement), we will
still register the photon only in either the vertical

1Thus the name wavefunction in quantum mechanics.
2|ψ〉 is the Dirac’s bra-ket notation for vectors.
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Fig. 3. The Bloch sphere of a qubit. It is the same as the Poincaré
sphere of light polarisation but with the behaviour of a single photon.
The orthogonal polarisation vector states |0〉 and |1〉 can be used
to store a single classical bit. Each point in the solid vertical line
represents a probability distribution over one bit, with the centre being
the uniform coin toss. New pure states are the boundary of the sphere,
that is the analogue of deterministic classical states (the dots are
some examples). The inside of the sphere represents mixed states,
probabilistic mixtures of antipodal pure states from the boundary.

or the horizontal measurement. Only repeating the
experiment with many photons, we probabilistically
observe either polarisation, but never both simul-
taneously. Still, while in the above measurement
the photon behaves probabilistically, there exists
the diagonal-polarisation measurement in which the
photon behaves deterministically. This probabilis-
tic/deterministic behaviour of the qubit depends on
how we measure it, and thus we refer to those
states that behave deterministically in some basis as
pure state. The fact that measuring a photon only
gives a single bit of information3 implies that we
cannot distinguish arbitrary pure states and, after the
measurement, the original pure state is destroyed:
the quantum information of arbitrary pure states
cannot be cloned/copied.

The different behaviour of qubits becomes even
more drastic when we consider multiple qubits.
There exist states that behave probabilistically under
any measurement performed independently on each
qubit, but deterministically under a joint measure-
ment that can be performed only with global access
to the involved qubits. These are the entangled
pure states. Now, it is important to clarify that the
randomness produced by a pure state is fundamen-
tally different from the randomness produced by
a classical system: the classical system knows the

3This is not in contradiction with superdense coding, where one
qubit carries two bits of information, but two qubits must be measured
to obtain them.

value of the randomness (which is simply hidden),
while in a pure state not even the quantum system
itself knows the value before the measurement is
performed. Said otherwise, the randomness does not
even exist before measuring the qubit. This is, for
example, how Quantum Key Distribution (QKD)
protocols share keys that are claimed provable-
secure against any adversary: the protocols prove
that the keys at the receivers were produced by
entangled pure states.

The manipulation of quantum information gives
access to exponentially large continuous systems
(where before we had n bits of classical values,
the n-bit-strings now index the standard basis of a
2n dimensional vector space) and provably stronger
correlations than classical systems (entanglement).
However, we cannot just access all this information.
Everything is hidden behind the no-cloning theorem
[2] and we can only access the information partially
via a measurement. In particular still n bits of
information can only be collected by measuring n
qubits.

IV. THE QUANTUM CONTROL PLANE

Quantum information processing does not give
an automatic advantage over classical information
processing, and exactly determining for which prob-
lems the advantage exists is still an open research.
Nonetheless, we already have important quantum
algorithms of independent use and wide applica-
tions, with quantum simulations in chemistry likely
becoming the first real applications with an ex-
ponential speedup [7], [8]. A quantum network
capable of connecting quantum computers will be
essential to support these applications of quantum
computing and it will rely on the existent classical
network infrastructure. Most importantly (the aspect
to which we want to bring our attention), quantum
computation and communication have the potential
to return some benefits to the classical network it-
self, by reducing overhead, latency, and congestion,
while increasing energy efficiency.

Various classes of unsupervised ML and opti-
misation problems have been proven to have an
exponentially lower computational cost, once the
expensive step of encoding the large amount of
data in the coefficients of a quantum state has
been performed [9]–[12]. Notice, that these are not
exponential speedups in the strict sense, because the
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gain is obtained by changing the input to the algo-
rithm, thus making the classical and the quantum
algorithm incomparable. To gain this exponential
advantage, the type of encoding is crucial. We have
seen that we can encode each n bit-string onto
a standard basis vector, this encoding is lossless
but also uses more expensive n-qubit strings. Al-
ternatively, we can take any n dimensional vector,
normalise it, and construct a quantum state of log n
qubits corresponding to this vector. The encoding is
extremely lossy, because by measuring the encoded
state we can only obtain log n bits of information,
but also extremely storage efficient. For example,
a vector of one petabyte with one-byte coefficients
can be encoded in just 15 qubits. Since in order to
construct the quantum state, the classical data must
be accessed, this encoding is still an expensive step.
Once the expensive encoding is done, k-means [9],
principal component analysis (PCA) [10], support
vector machines (SVM) [11], and any semidefinite
program (SDP) – a general class of optimisation
problems that include linear programs – can be run
efficiently, namely polynomially in the number of
qubits, with a quantum computer.

By relying the network optimisation on algo-
rithms that fit this class, we can experience an
exponential reduction on the traffic and the compu-
tational load introduced by the intelligent control-
plane operations. Even any other algorithm that
relies on the classical data, being encoded in the
coefficients of the superposition, which does not
have the exponential speed up, will incur an expo-
nential reduction of the traffic load. In particular, a
quantum convolutional neural network will at least
gain access to exponentially deeper networks at the
same training cost [13]. The required flexibility of
the network and the amount of data analysed make
neural network and unsupervised ML algorithms the
main choice for ML in the hypervisor [4]. This
makes the quantum algorithms mentioned above
particularly relevant for this application.

The expensive quantum encoding of classical Big
Data would be distributed and performed on-site at
the nodes of the network where the data is collected.
Namely, each data-source node would collect their
data on a few qubits rather than streaming a large
number of classical data via the classical network.
At this point only a logarithmic number of qubits,
compared to the number of classical bits that would
otherwise be required, needs to be sent to a process-

ing quantum data centre, hosting the hypervisor. A
large load on the classical network thus becomes a
small load on the quantum network.

To take full advantage of this encoding, the
intermediate nodes will have to be capable of using
the quantum analog of the random access memory
(QRAM) [14] and all nodes need to be able to
encode in superposition a vector of data into a
state where each vector coefficient gives a coef-
ficient in the superposition. A typical B5G data-
plane node will be controlled by up to 2000 ∼ 211

parameters [15] that can be encoded in 11 qubits.
Via QRAM, the quantum states can be collected
at the SDN nodes. If the SDN controller receives
data from K switches then with logK qubits the
SDN node can use QRAM to join the qubits from
all the nodes into 11 + logK qubits. Namely, the
11 qubits of all the switches are joined into the
same 11 qubits via entanglement with the logK
qubits of QRAM address. The nodes then can send
the newly encoded quantum states with minimum
overhead to the central hypervisor, which will in
turn join the states received by the N quantum
SDN controllers, into a state of 11+ logK + logN
qubits. This advantage is displayed in Fig. 4. The
communication at every link is reduced exponen-
tially, compared to each SDN controller sending
K · 2000 parameters and the central hypervisor
receiving N · K · 2000 parameters. Indeed, if each
SDN controller receives 1024 switches and the SDN
controllerhypervisor receives from 1024 SDN con-
trollers, then the final quantum states only occupies
31 qubits at the hypervisor. The total amount of sent
qubits is 11 · 1024 + 21 · 1024, however distributed
over for example 1024 · 1024 control-plane links,
in contrast to the 2000 · 1024 + 2000 · 1024 · 1024
classical parameters.

The quantum algorithms, however, are probabilis-
tic and usually work by collecting the expectation
value over the repetition of the algorithms many
times. Because of the no cloning theorem [2], the
hypervisor will not be able to generate the copies of
the encoded data needed for the repetition, thus the
drawback is that for every repetition the data must
be re-encoded in the quantum states at the source. If
for example 100 samples are needed, then the whole
operation must be repeated 100 times, thus multiply-
ing by 100 the amount of sent qubits. However, the
number of repetition is generally the inverse polyno-
mial on an approximation/error parameter and thus



ACCEPTED FOR PUBLICATION IN THE IEEE COMMUNICATIONS MAGAZINE 6

Fig. 4. Example of scaling of the number of bits sent to the
hypervisor, compared to the number of qubits sent using QRAM.
The evaluation assumes each one of the N SDN controllers manages
the same number K of SDN switches.

as the number of parameters grows exponentially
with future generation networks, the number of
repetitions will scale polynomially. Namely, the
quantum algorithm is scalable to the increasing
size and complexity of future generation networks.
Already at the B5G nodes with 2000 parameters,
this quantum encoding allows 200 samples to be
taken before the quantum communication exceeds
the needed classical communication at the leaf
nodes. The bandwidth reduction within the control-
plane links is exponentially larger if we consider
nodes that send all data to the hypervisor. If instead
we consider SDN controllers that classically reduce
the data via some ML preprocessing before sending
it to the hypervisor, the bandwidth reduction might
be comparable. However, in this comparison the
quantum ML algorithm at the hypervisor has a full-
global view of the network status, while the classical
algorithm has a reduced and indirect view of the
global status, depending on the reduced data.

This reduction of packets sent, stored and pro-
cessed within the control plane will reduce conges-
tion and reduce almost all sources of delay such
as queuing and transmission delay in the network,
and storage and processing delay at the processing
centre. As we have seen, each additional load to one
layer also contributes to load the other. In particular,
each additional processing and softwarization itself
introduces new delays and loads on other layers
of the network. Thus the smaller queues due to
the quantum processing further contributes to the
reduction of processing and communication needed

for queues’ management. The processing required
by the ML algorithm at the hypervisor to handle Big
Data of the network will consume significant energy.
In general, the amount of energy saving directly de-
pends on the number of bytes sent to the hypervisor
and the number of instructions for computations,
and inversely depends on the available bandwidth
at the communication links [6]. Thus, the reduction
due to quantum deployment described above will
not only reduce latency but it will also imply higher
energy efficiency (in line with 5G and B5G goals).

Furthermore, shared entanglement will allow the
classical and the quantum networks to transfer each
others’ load. Namely, stored entanglement allows
to exchange quantum and classical communication
through the teleportation and dense-coding proto-
cols, in order to balance the load in the hybrid
network. In quantum teleportation, one qubit can
be communicated using previously-shared entangle-
ment and sending two (classical) bits. In dense-
coding two bits of communication can be achieved
by sending one qubit of the previously-shared en-
tanglement. This is one additional reason to con-
sider obsolete the static-layer view of the network.
The classical and quantum networks cannot be two
distinct layers of the network that are optimised
independently because in this way the flexibility we
just described is lost.

Finally, shared entanglement has the potential of
even reducing communication complexity, by allow-
ing nodes in the network to send data that is more
correlated than classically to the processing centres.
This is not the case of extracting a small amount of
information from large data, and is not in contra-
diction with a measurement on n qubits only being
able to provide n bits of information. Sometimes
the required amount of communication to perform a
task is less than the communication needed to solve
the same task classically, as demonstrated by non-
local games such as the Clauser-Horne-Shimony-
Holt (CHSH) and the Mermin game [2]. However,
for this advantage to exist, strong non-local correla-
tions between the environments, adversarial setting,
or strong limitations on the type of channels must
be present. Therefore further research is needed to
determine whether such advantages are realistic.

V. CONCLUSION

We have seen that quantum computation and
communication will not necessarily be only a new
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resource but can also contribute to reduce over-
heads, latency, and increase energy efficiency in the
classical softwarized networks. However, quantum
information processing does not magically improve
any computation or communication tasks and only
a few classes of problems have been shown to
take advantage from quantum technologies. Notably,
Grover’s search algorithm [2] is an extremely gen-
eral algorithm, capable of providing up to quadratic
quantum speedup on almost any algorithm, that will
surely find its applications in every field, including
future softwarized networks. Our aim was to clearly
point out where there is a huge potential for future
networks to benefit from quantum technologies. In
parallel, even the classical part of future network
infrastructures should be designed with quantum
technologies in mind, to efficiently and effectively
merge the two into a unique hybrid architecture. The
use of quantum technologies in computation and
communication is a young field but is now quickly
maturing so that possible applications will appear
in the near future4. Thus, the final goal is to see a
paradigm shift in the network development, where
classical and quantum technologies become two
sides of the same hybrid communication network.
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