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ABSTRACT 
 
Software Defined Radios (SDRs) offer a programmable and 
dynamically reconfigurable method of reusing hardware to 
implement the physical layer processing of multiple 
communications systems. An SDR can dynamically 
change protocols and update communications systems 
over the air as a service provider allows. In this paper we 
discuss a baseband solution for an SDR system and 
describe a 2Mbps WCDMA design with GSM/GPRS and 
802.11b capability that executes all physical layer 
processing completely in software. We describe the 
WCDMA communications protocols with a focus on 
latency reduction and unique implementation techniques. 
We also describe the underlying technology that enables 
software execution. Our solution is programmed in C and 
executed on a multithreaded processor in real-time. 
 
 

INTRODUCTION 
 
Traditional communications systems have typically been 
implemented using custom hardware solutions. Chip rate, 
symbol rate, and bit rate co-processors are often 
coordinated by programmable DSPs but the DSP processor 
does not typically participate in computationally intensive 
tasks. Even with a single communication system the 
hardware development cycle is onerous often requiring 
multiple chip redesigns late into the certification process. 
When multiple communications systems requirements are 
considered, both silicon area and design validation are 
major inhibitors to commercial success. A software-based 
platform capable of dynamically reconfiguring 
communications systems enables elegant reuse of silicon 
area and dramatically reduces time to market through 
software modifications instead of time consuming 
hardware redesigns.  
 Digital Signal Processors (DSPs) are now capable of 
executing many billions of operations per second at power 

efficiency levels appropriate for handset deployment. This 
has brought Software Defined Radio (SDR) to prominence 
and addresses a difficult portion of SDR implementation.  
 The SDR Forum [1] defines five tiers of solutions. 
Tier-0 is a traditional radio implementation in hardware. 
Tier-1, Software Controlled Radio (SCR), implements the 
control features for multiple hardware elements in software. 
Tier-2, Software Defined Radio (SDR), implements 
modulation and baseband processing in software but 
allows for multiple frequency fixed function RF hardware. 
Tier-3, Ideal Software Radio (ISR), extends programmability 
through the RF with analog conversion at the antenna. 
Tier-4, Ultimate Software Radio (USR), provides for fast 
(millisecond) transitions between communications 
protocols in addition to digital processing capability. 
 The advantages of reconfigurable SDR solutions 
versus hardware solutions are significant. First, 
reconfigurable solutions are more flexible allowing multiple 
communication protocols to dynamically execute on the 
same transistors thereby reducing hardware costs. Specific 
functions such as filters, modulation schemes, 
encoders/decoders etc., can be reconfigured adaptively at 
run time. Second, several communication protocols can be 
efficiently stored in memory and coexist or execute 
concurrently. This significantly reduces the cost of the 
system for both the end user and the service provider. 
Third, remotely reconfigurable protocols provide simple 
and inexpensive software version control and feature 
upgrades. This allows service providers to differentiate 
products after the product is deployed. Fourth, the 
development time of new and existing communications 
protocols is significantly reduced providing an accelerated 
time to market. Development cycles are not limited by long 
and laborious hardware design cycles. With SDR, new 
protocols are quickly added as soon as the software is 
available for deployment. Fifth, SDR provides an attractive 
method of dealing with new standards releases while 
assuring backward compatibility with existing standards. 



 In this paper we discuss a Tier-2 implementation of 
SDR that implements baseband processing in software. 
We first describe specific communications systems and 
elaborate on implementation techniques. Next we describe 
a multithreaded processor architecture capable of 
executing multiple baseband communications protocols. 
We then describe the software development environment 
including new compiler technologies that automatically 
generate signal processing instructions from ANSI C code. 
Finally, we describe an implementation of a multicore, 
multithreaded processor capable of executing multiple 
simultaneous communications systems completely in 
software. 
 
 

COMMUNICATIONS SYSTEM DESIGN 
 
Figure 1 shows the major blocks for both a transmitter and 
receiver for the UMTS WCDMA FDD-mode 
communication system. We choose to focus on WCDMA 
because it is computationally intensive with tight 
constraints on latency.  
 For the receiver, the incoming I and Q signals are 
filtered using a Finite Input Response (FIR) representation 
of a Root Raised Cosine filter. This filter is a matched filter 
in that both the transmitter and receiver use the same filter. 
The filter is ideally implemented on a DSP. As bit-widths 
continue to widen, often consuming 10 to 14 bits in GSM 
and advanced communications systems, DSPs with 
appropriate datatypes may offer more efficient processing 
than custom silicon. After synchronization and multi path 
search, the strongest paths are descrambled, de-spread, 
equalized, and finally combined in the Maximal Ratio 
Combining (MRC) block. The output of the MRC block is a 
soft representation of the transmitted symbols. The soft 

bits are then de-multiplexed, de-interleaved, and channel 
decoded. On the receiver side there is also the 
measurement block responsible for measuring and 
reporting to the base station the communication channel 
characteristics as well as the received power at the terminal 
antenna. The power and communication channel 
characteristic measurements are necessary to keep the cell 
continuously functioning at maximum capacity.  
 Also shown in Figure 1 is the transmitter. In terms of 
computational requirements, it is significantly less 
complicated than the receive chain processing. 
Additionally, each step of the processing chain is 
described by the WCDMA standard. After the Cyclic 
Redundant Check (CRC) and transport block 
segmentation, the data is turbo or convolutional encoded, 
interleaved, assembled into radio frames, and then rate 
matched. The transport channels are parsed into physical 
channels, interleaved again, and mapped into transmit 
channels, spread, scrambled, and shaped before being sent 
to the DAC.  
 An important part of the WCDMA radio is generation 
of the RF front-end controls. This includes Automatic 
Frequency Control (AFC), Automatic Gain Control (AGC), 
and controls for the frequency synthesizers. These 
controls have tight timing requirements. Software 
implementations must have multiple concurrent accesses 
to frame data structures to reduce timing latencies. A 
multithreaded processor is an important component in 
parallelizing tasks and therefore reducing latency. 
 In WCDMA, turbo decoding is required to reduce the 
error rate. Because of the heavy computational 
requirements, nearly every system implements this 
function in hardware. A high throughput WCDMA turbo 
decoder may require more than 5 billion operations per 
second. Implementing this function without special 
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Figure 1. WCDMA Transmission System 



purpose accelerators requires high parallelism and 
innovative algorithms. 
 

High throughput Turbo Decoding 

Turbo encoders and decoders are used in WCDMA 
communication systems due to their superior error 
correction capability.  A turbo decoder has been 
demonstrated to approach the error correcting limit on 
both AWGN and Rayleigh fading channels. 
 A standard WCDMA turbo decoder consists of two 
concatenated SISO (Soft Input Soft Output) blocks 
separated by an interleaver and its inverse block, the 
deinterleaver.  Upon reception of observations Kyy ,...,1  

from the channel and prior information (a measure of the 
prior knowledge of a bit being 1 or 0), each SISO block 
computes log posterior ratios of each bit, a probabilistic 
measure of a bit being 1 or 0, with well-known forward and 
backward algorithms.  The forward algorithm starts from a 
known initial state and calculates an intermediate variable 

(.)kα  (the joint probability of the observations 

Kyy ,...,1  and the state at time k) from 1 to K. The 

backward algorithm starts from a known end state and 
calculates an intermediate variable (.)kβ  (the conditional 

probability of future observations given the state at time k) 
from K to 1.  A SISO block computes the log posterior 
ratios of all bits and passes it to the other SISO blocks as a 
probabilistic estimate. This probabilistic estimate is called 
the extrinsic information. Additional SISO blocks use this 
as a prior information estimate. The two SISO blocks run in 
an iterative scheme, mutually exchanging extrinsic 
information and improving on the log posterior ratios. 
After the required number of iterations is completed, a hard 
decision about a bit being a 1 or 0 is made based on the log 
posterior ratios or soft information. 
 Simulations show that more than 90% of the 
computation of a turbo decoder is spent on the forward 
and backward algorithms. If the size of an observation 
sequence K is large, the time required for the computation 
of the forward and backward variables grows, creating a 
long latency as we go through the forward and backward 
algorithms. To reduce the latency of forward and backward 
algorithms for a software radio implementation, we divide 
the input data into M segments and simultaneously 
calculate the (.)kα  and (.)kβ for the M segments.  In 

theory, this parallel scheme reduces the computation to 1 
out of M in comparison to the original forward and 
backward algorithms (e.g. ½  for M=2).   
 An important issue in calculating (.)kα  and (.)kβ in 

parallel is the estimation of starting states. For the 
standard “one-shot” forward and backward algorithms, 

initial states (the state at the beginning and end) are 
known.   But for multiple segments, the initial states for 
some segments must be estimated.   We developed various 
fast initial state estimation methods that have little impact 
on the latency.  Our simulation and experiment shows 
comparable results (within 1%) between the regular and 
parallel turbo decoders in terms of BER (bit error rate) with 
a significant improvement in latency.   
 
 

SDR PROCESSOR DESIGN 
 

Execution predictability in DSP systems often precludes 
the use of many general-purpose design techniques (e.g. 
speculation, branch prediction, data caches, etc.). Instead, 
classical DSP architectures have developed a unique set of 
performance enhancing techniques that are optimized for 
their intended market. These techniques are characterized 
by hardware that supports efficient filtering, such as the 
ability to sustain three memory accesses per cycle (one 
instruction, one coefficient, and one data access). 
Sophisticated addressing modes such as bit -reversed and 
modulo addressing may also be provided. Multiple 
address units operate in parallel with the datapath to 
sustain the execution of the inner kernel. 
 In classical DSP architectures, the execution pipelines 
were visible to the programmer and necessarily shallow to 
allow assembly language optimization. This programming 
restriction encumbered implementations with tight timing 
constraints for both arithmetic execution and memory 
access. The key characteristic that separates modern DSP 
architectures from classical DSP architectures is the focus 
on compilability. Once the decision was made to focus the 
DSP design on programmer productivity, other 
constraining decisions could be relaxed. As a result, 
significantly longer pipelines with multiple cycles to 
access memory and multiple cycles to compute arithmetic 
operations could be utilized. This has yielded higher clock 
frequencies and higher performance DSPs. 
 In an attempt to exploit instruction level parallelism 
inherent in DSP applications, modern DSPs tend to use 
VLIW-like execution packets. This is partly driven by real-
time requirements which require the worst-case execution 
time to be minimized. This is in contrast with general 
purpose CPUs which tend to minimize average execution 
times. With long pipelines and multiple instruction issue, 
the difficulties of attempting assembly language 
programming become apparent. Controlling instruction 
dependencies between upwards of 100 in-flight 
instructions is a non-trivial task for a programmer. This is 
exactly the area where a compiler excels.  
 



 
 

Figure 2. SDR Multithreaded Processor 

 
 A challenge of using VLIW DSP processors include 
large program executables (code bloat) that results from 
independently specifying every operation with a single 
instruction. As an example, a 32-bit VLIW requires 4 
instructions, 128 bits, to specify 4 operations. A vector 
encoding may compute many more operations in as little as 
21 bits (for example – multiply a 4 vector, saturate, 
accumulate, saturate).  
 Another challenge of VLIW implementations is that 
they may require excessive write ports on register files. 
Because each instruction may specify a unique destination 
address and all the instructions are independent, a 
separate port must be provided for targets of each 
instruction. This results in high power dissipation that may 
not be acceptable for handset applications. 
 A challenge of visible pipeline machines (e.g. most 
DSPs and VLIW processors) is interrupt response latency. 
Visible memory pipeline effects in highly parallel inner 
loops (e.g. a load instruction followed by another load 
instruction) are not interruptible because the processor 
state can not be restored. This requires programmers to 
break apart loops so that worst case timings and maximum 
system latencies may be acceptable.  
 Signal processing applications often require a mix of 
computational calculations and control processing. 
Control processing is often amenable to RISC-style 
architectures and is typically compiled directly from C 
code. Signal processing computations are characterized by 
multiply-accumulate intensive functions executed on fixed 
point vectors of moderate length. An additional trend for 
3G applications is Java execution. Some carriers are 
requiring Java functionality in their handsets.  
  As shown in Figure 2, Sandbridge Technologies has 
designed a multi-threaded processor capable of executing 
DSP, Control, and Java code in a single compound 

instruction set optimized for handset radio applications 
[10]. The Sandbridge design overcomes the deficiencies of 
previous approaches by providing substantial parallelism 
and throughput for high-performance DSP applications 
while maintaining fast interrupt response, high-level 
language programmability, and very low power dissipation. 
 The design includes a unique combination of modern 
techniques such as a SIMD Vector/DSP unit, a parallel 
reduction unit, a RISC-based integer unit, and instruction 
set support for Java execution. Instruction space is 
conserved through the use of compounded instructions 
that are grouped into packets for execution. The resulting 
combination provides for efficient Control, DSP, and Java 
processing execution. 
 

 
SDR DSP SOFTWARE 

 
Programmer productivity is also a major concern in 
complex DSP and SDR applications. Processors capable of 
performing baseband processing must perform DSP 
operations. Because most classical DSPs are programmed 
in assembly language, it takes a very large software effort 
to program an application. For modern speech coders it 
may take up to nine months or more before the application 
performance is known. Then, an intensive period of design 
verification ensues. If efficient compilers for DSPs were 
available, significant advantages in software productivity 
could be achieved.  
 A DSP compiler should be designed jointly with the 
architecture based on the intended application domain. 
Trade-offs are made between the architecture and compiler 
subject to the application performance, power, and price 
constraints.  
 However, there are a number of issues that must be 
addressed in designing a DSP compiler. First, there is a 
fundamental mismatch between DSP datatypes and C 
language constructs. A basic data-type in DSPs is a 
saturating fractional fixed-point representation. C language 
constructs, however, define integer modulo arithmetic. 
This forces the programmer to explicitly program saturation 
operations. Saturation arithmetic is analogous to a stereo 
dial. As you increase the volume it always gets louder until 
it reaches the limit of the system precision. When this limit 
is reached the value still remains at the maximum value. If 
the volume control worked like C language modulo 
arithmetic the volume would immediately return to “0” after 
overflowing the precision limit and no sound would be 
heard. A DSP compiler must deconstruct and analyze the C 
code for the semantics of the operations represented and 
generate the underlying fixed point operations.  
 A second problem for compilers is that previous DSP 
architectures were not designed with compilability as a 
goal. To maintain minimal code size, multiple operations 
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were issued from the same compound instruction. 
Unfortunately, to reduce instruction storage, a common 
encoding was 16-bits for all instructions. Often, three 
operations could be issued from the same 16-bit 
instruction. While this is good for code density, 
orthogonality1 suffered. Classical DSPs imposed many 
restrictions on the combinations of operations and the 
dense encoding implied many special purpose registers. 
This resulted in severe restrictions for the compiler and 
poor code generation.  
 Early attempts to remove these restrictions used 
VLIW instruction set architectures with nearly full 
orthogonality. To issue four multiply accumulates 
minimally requires four instructions (with additional load 
instructions to sustain throughput). This generality was 
required to give the compiler technology an opportunity to 
catch up with assembly language programmers. 
 Because DSP C compilers have difficulty generating 
efficient code, language extensions have been introduced 
to high level languages [2]. Typical additions may include 
special type support for 16-bit datatypes (Q15 formats), 
saturation types, multiple memory spaces, and SIMD 
parallel execution support. These additions often imply a 
special compiler and the code generated may not be 
emulated easily on mu ltiple platforms. As a result, special 
language constructs have not been successful.  
 In addition to language extensions, other high-level 
languages have been used. BOPS produced a Matlab 
compiler which offers exciting possibilities since Matlab is 
widely used in DSP algorithm design. Difficulties with this 
approach include Matlab’s inherent 64-bit floating point 
type not being supported on most DSPs. On DSPs which 
do support 32-bit floating point, precision analysis is still 
required. 
 For algorithm design, tensor algebra has been used 
[3]. Attempts have been made to automate this into a 
compilation system [5]. The problem of this approach is 
that highly skilled algorithm designers are still required to 
describe the initial algorithm in tensor algebra. However, 
this approach holds promise because the communications 
and parallelism of the algorithm are captured by the tensor 
algebra description. 
 Due to the programming burden of traditional DSPs, 
large libraries are typically built up over time. Often more 
than 1000 functions are provided, including FIR filters, 
FFTs, convolutions, DCTs, and other computationally 
intensive kernels. The software burden to generate 
libraries is high but they can be reused for many 
applications. With this approach, control code can be 

                                                 
1 Orthogonality is a property of instruction set architectures that 
allows any operation to be specified with any combination of other 
operations.  

programmed in C and the computationally intensive signal 
processing functions are called through these libraries. 
 

Intrinsic Functions  

Often, when programming in a high-level language such as 
C, a programmer would like to take advantage of a specific 
instruction available in an architecture but there is no 
mechanism for describing that instruction in C. For this 
case intrinsics were developed. In their rudimentary form, 
an intrinsic is an asm statement such as found in GCC.  
 An intrinsic function has the appearance of a function 
call in C source code, but is replaced during pre-
processing by a programmer-specified sequence of lower-
level instructions. The replacement specification is called 
the intrinsic substitution or simply the intrinsic. An 
intrinsic function is defined if an intrinsic substitution 
specifies its replacement. The lower-level instructions 
resulting from the substitution are called intrinsic 
instructions [6]. 
 Intrinsics are used to collapse what may be more than 
ten lines of C code into a single DSP instruction. A typical 
math operation from the ETSI GSM EFR speech coder, 
L_ADD, is given as: 
 
/* GSM ETSI Saturating Add */ 
Word32 L_add( Word32 a, Word32 b ) { 
 Word32 c; 
 c = a + b; 
 if ((( a^b ) & MIN_32 ) == 0 { 
  if (( c^a) & MIN_32 ) { 
    c = (a < 0) ? MIN_32 : MAX_32 
  } 
 } 
 return( c ); 
} 
 
Early intrinsic efforts, like inlined asm statements, inhibited 
DSP compilers from optimizing code sequences [7]. A DSP 
C compiler could not distinguish the semantics and side 
effects of the assembly language constructs and this 
resulted in compiler scheduling hazards. Other solutions 
which attempted to convey side-effect free instructions 
have been proposed. These solutions all introduced 
architectural dependent modifications to the original C 
source.  
 Intrinsics which eliminated these barriers have been 
explored. The main technique is to represent the operation 
in the intermediate representation of the compiler. With the 
semantics of each intrinsic well know to the intermediate 
format, optimizations with the intrinsic functions were 
easily enabled yielding speedups of more than 6x. 
 The main detractor of intrinsics is that it moves the 
assembly language programming burden to the compiler 



writers. More importantly, each new application may still 
need a new intrinsic library. This further constrains limited 
software resources. 
 
Supercomputer Compiler Optimizations  

The above discussion focused on source-level semantic 
mismatches between C code and DSP operations. The 
solutions in the industry are not ideal. However, even after 
providing compiler solutions for the semantic gap, there is 
still the difficult challenge of implementing supercomputer-
class optimizations in the compiler. 
 In addition to classic compiler optimizations, there are 
some advanced optimizations which have proven 
significant for DSP applications. Software pipelining in 
combination with aggressive inlining and VLIW 
scheduling has proven effective in extracting the 
parallelism inherent in DSP and general purpose 
applications. 
 Interestingly, some DSP applications (speech coding 
for example) do not exhibit significant data dependence. A 
program that is data dependent will give significantly 
different execution times and execution paths through the 
program depending upon what data input the program 
receives. When programs are not heavily influenced by the 
dataset choice, profile directed optimizations may be 
effective at improving performance [8]. In profile driven 
optimization the program is executed based on a set of data 
inputs. The results of the program and the execution path 
through the program are then fed back into the compiler. 
The compiler uses this information to group highly 
traversed paths into larger blocks of code which can then 
be optimized and parallelized. These techniques, when 
used with VLIW scheduling have proven effective in DSP 
compilation. However, the results may still be less than 
half as efficient as assembly language programs. 
 Another challenge DSP compiler writers face is 
parallelism extraction. Early VLIW machines alleviated the 
burden from the compiler by allowing full orthogonality of 
instruction selection. Unfortunately this led to code-bloat. 
General purpose machines have recognized the importance 
of DSP operations and have provided specialized SIMD 
instruction set extensions (e.g. MMX/SSE, Altivec, VIS). 
Unfortunately, compiler technology has not been effective 
in exploiting these instruction set extensions, and library 
functions are often the only efficient way to invoke them.   
 Exploiting data parallelism is an important factor in 
optimizing for DSP applications. While both a VLIW and 
Vector datapath can exploit such parallelism, extracting it 
from C code can be a difficult challenge. Most VLIW 
scheduling technique focus on exploiting instruction level 
parallelism from code sequences. What is often needed to 
reveal data parallelism is a vectorizing compiler. For a 
compiler to be able to vectorize loops coded in C it may 

have to significantly reorder the loops either splitting or 
jamming them together. Often loops are nested multiple 
levels deep. It may not be possible to vectorize the inner 
loop without first vectorizing the outer loops. These types 
of optimizations are typically only found in supercomputer 
compilers but they significantly assist in uncovering data 
parallelism from arbitrary C code. 

Compiler Technologies 

It is well recognized that the best way to design a DSP 
compiler is to develop it in parallel with the DSP 
architecture. Future compiler-architecture pairs will not be 
afforded the luxury of large numbers of intrinsic libraries. 
Just as modern RISC processors do not require assembly 
language programming, neither will future DSP 
applications.  
 A unique aspect of the modern compiler is that DSP 
operations are automatically generated using a technique 
called semantic analysis. In semantic analysis, a 
sophisticated compiler must search for the meaning of a 
sequence of C language constructs. A programmer writes 
C code in an architecture independent manner - such as for 
a micro controller - focusing primarily on the function to be 
implemented. If DSP operations are required, the 
programmer implements them using standard modulo C 
arithmetic. The compiler analyzes the C code, automatically 
extracts the DSP operations and generates optimized DSP 
code without the excess operations required to specify 
DSP arithmetic in C code. This technique has a significant 
software productivity gain over intrinsic functions and 
does not force the compiler writers to become DSP 
assembly language programmers. 
 Our architecture uses SIMD instructions to implement 
Vector operations. The compiler vectorizes C code to 
exploit the data level parallelism inherent in signal 
processing applications and then generates the 
appropriate vector instructions. The compiler also handles 
the difficult problem of outer loop vectorization 
 A final difficult consideration is vectorizing saturating 
arithmetic. Because saturating arithmetic is non-
associative, the order in which the computations are 
computed is significant. Because the compiler was 
designed in conjunction with the processor, special 
hardware support allows the compiler to safely vectorize 
non-associative loops. 
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Figure 3. Out-of-the-box AMR ETSI 
Encoder C code results 

Figure 3 shows the results of various compilers on out-of-
the-box ETSI C code. The y-axis shows the number of MHz 
required to compute frames of speech in real-time. The 
AMR code is completely unmodified and no special 
include files are used. Without using any compiler 
techniques such as intrinsics or special typedefs, the 
compiler is able to achieve real-time operation on the 
baseband core at hand-coded assembly language 
performance levels. Note that it is completely compiled 
from high-level language. Since other solutions are not 
able to automatically generate DSP operations, intrinsic 
libraries must be used. With intrinsic libraries the results 
for most DSPs are near ours but they only apply to the 
ETSI algorithms whereas the described compiler can be 
applied to arbitrary C code. 
 
Ultra-fast Software Simulation 

 Efficient compilation is just one aspect of software 
productivity. Prior to having hardware, algorithm designers 
should have access to fast simulation technology. Figure 4 
shows the post-compilation simulation performance of the 
same AMR encoder for a number of DSP processors. All 
programs were executed on the same 1GHz laptop Pentium 
computer. The Sandbridge tools are capable of simulating 
25.6 Million instructions per second. This is more than two 
orders of magnitude faster than the nearest competitor and 
allows real-time execution of GSM speech coding on a 
Pentium simulation model. To further elaborate, while some 
DSPs can not even execute the out-of-the-box code in real-
time on their native processor, Sandbridge achieves 
multiple real-time channels on a simulation model of 
processor. We achieved this by using our own compilation 
technology to accelerate the simulation. 
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Figure 4. Simulation speed of ETSI AMR 
Encoder 

RTOS and IDE 

The programming interface for the multithreaded processor 
is generic ANSI C code. In keeping with an easy-to-use 
programming philosophy, access to multithreading is 
provided through the open standards of either Java 
threads or POSIX pthreads. Since nearly all general 
purpose platforms support these standards it is simple to 
port programs to the Sandbridge platform. An API is also 
supported to allow access to the underlying thread 
scheduler and for fast porting of 3rd party RTOS’s. 
 An IDE is also provided based on the opensource 
Netbeans IDE. Our netbeans implementation has been 
extended to work with C programs and allows for both Java 
and C to be debugged using a common environment. 

 
 

SDR  IMPLEMENTATION 
 

 Previous communications systems have been 
developed in hardware due to high computational 
processing requirements. DSPs in these systems have 
been limited to speech coding and orchestrating the 
custom hardware blocks. In high-performance 3G systems 
there may be over 2 million logic gates required to 
implement physical layer processing. A complex 3G system 
may also take many months to implement. After logic 
design is complete, any errors in the design may cause up 
to a 9 month delay in correcting and refabricating the 
device. This labor intensive process is counter productive 
to fast handset development cycles. An SDR design takes 
a completely new approach to communications system 
design. 



 Rather than designing custom blocks for every 
function in the transmission system, an SDR implements a 
processor capable of executing operations appropriate to 
broadband communications. A small and power efficient 
core is then highly optimized and replicated to provide a 
platform for broadband communications. This approach 
scales well with semiconductor generations and allows 
flexibility in configuring the system for future 
specifications and any field modifications that may be 
necessary. 
  

RESULTS 
 
 Sandbridge Technologies has developed complete 
SDR product, including baseband processor as well as  C 
code for the UMTS WCDMA FDD mode physical layer 
standard. Using an internally developed compiler, real-time 
performance on a 768kbps transmit chain and a 2Mbps 
receive chain has been achieved, which includes all the 
blocks shown in Figure 1. The entire transmit chain 
including bit, symbol, and chip rate processing requires 
less than 400MHz of processor capacity to sustain a 768 
kbps transmit capability. 
 Figure 6 shows the performance requirements for 
802.11, GPRS, and WCDMA as a function of SB9600 
utilization for a number of different transmission rates. 
Providing processing capability for 2Mbps WCDMA 
FDD-mode also provides sufficient processing capability 
for 802.11b and even concurrent capacity for multiple 
communications systems. 

Handset SDR Product 

Figure 5 shows the SB9600TM baseband chip. It contains 
multiple Sandblaster™ cores and an ARM microcontroller 
that functions as an applications processor. The 
performance of the chip is more than sufficient to sustain a 

2Mbps WCDMA 3G transmission in real time. It also 
supports executing the digital basebands for GPRS, 
802.11b, Bluetooth, and GPS.  
  The chip contains a number of digital peripheral 
interfaces for moving data in and out of the chip such as 
AD/DA for Tx and Rx data, TDM ports, and an AMBA 
bus. High speed Universal Serial Bus (USB) provided easy 
connectivity to external systems. Control and test busses 
such as JTAG, SPI, and I2C allow the chip to control RF 
and front end chips. 
 Initial silicon of the core is available.  The final chip 
core will support 9.6 billion multiply accumulates per 
second at less than 500mW power consumption.  
 
 

SUMMARY 
 
 A new and scalable design methodology has been 
introduced for implementing multiple transmission systems 
on a single chip. Using a unique multithreaded architecture 
specifically designed to reduce power consumption, 
efficient broadband communications operations are 
executed on a programmable platform. The processor uses 
completely interlocked instruction execution providing 
software compatibility for all future processor designs. 
Because of the interlocked execution, interrupt latency is 
very short. An interrupt may occur on any instruction 
boundary including loads and stores. This is critical for 
real-time systems. 
 The processor is combined with a highly optimizing 
compiler with the ability to analyze programs and generate 
DSP instructions. This obviates the need for assembly 
language programming and significantly accelerates time-
to-market for new transmission systems. 
 To validate our approach, we designed our own 
2Mbps WCDMA physical layer. First, we designed a 
MATLAB implementation to ensure conformance to the 
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Figure 5. SDR SB9600 Baseband Processor 



3GPP specifications. We then implemented the algorithms 
in fixed point C code and compiled them to our platform 
using our internally developed tools. The executables were 
then simulated on our cycle accurate simu lator that runs at 
up to 100 million Sandblaster™ instructions per second on 
a high end Pentium thereby ensuring complete logical 
operation. Having designed our own 3GPP compliant RF 
front end using commercially available components, we 
execute complete RF to IF to baseband and reverse uplink 
processing in our lab. Our measurements confirm that our 
WCDMA design will execute within field conformance 
requirements in real time completely in software on the 
SB9600TM platform. 
 In addition to WCDMA, we have also implemented 
802.11b and GSM/GPRS. These protocols also execute in 
real-time on the developed platform. 
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Figure 6. Baseband Communications System Performance 



founding Sandbridge, John managed the Advanced DSP 
Technology group, Broadband Transmission Systems  
group, and was Access Aggregation Business 
Development manager at IBM’s T.J. Watson Research 
Center. Prior to IBM, John managed the software effort in 
Lucent/Motorola’s Starcore DSP design center. John 
received a Ph.D. in Computer Architecture from TU Delft in 
the Netherlands for his work on a Multithreaded Java 
processor with DSP capability. He also received an M.S. 
degree in Engineering Management and an M.S.E.E. from 
NTU. John also holds a B.S.E.E. degree from Penn State. 
John has more than 40 publications and 12 issued patents . 
 
 

Daniel Iancu received the 
M.Sc. and the Ph.D. 
degrees in Physics and 
Electronics both from the 
University of Cluj-
Napoca, Romania, in 1976 
and 1986, respectively. In 

1980 he took a teaching position with the Faculty of 
Physics, the Electronics Department of the same 
University, where besides teaching he spent ten years of 
research in various areas of high frequency Physics and 
Electronics with applications in DSP and Communication 
Systems. After arriving in US in 1990, he took several jobs 
in DSP and Communication field of applications. Since 
2000 he is with Sandbridge Technologies as Director of 
Emerging Technology. 
 
 

Jin Lu, graduated from 
Cornell University with a 
Ph.D. in EE, has worked in 
the industries of 
consumer electronics, 
telecommunication, and 
control system for over 10 

years.  He specializes in communication, interactive 
multimedia, digital consumer electronics, and real-time 
systems.  He has published many papers in the area of 
networking, control systems, and signal processing.   His 
current interests include real-time algorithms and 
implementation of wireless technologies.  
 

Erdem Hokenek received BS and 
MS degrees from Technical 
University, Istanbul (Turkey) and 
PhD from Swiss Federal Institute 
of Technology (ETH Zurich, 
Switzerland). After his PhD in 

1985, he joined IBM T. J. Watson Research Center where 
he worked on the advanced development of POWER and 
PowerPC processors for the RS/6000 Workstations. He 
also worked in various technical and management 
positions on the high performance compilable DSP and 
Cross Architecture Translations. He is co-founder of 
Sandbridge Technologies Inc. 

 
 

Mayan Moudgill obtained a 
Ph.D. in Computer Science 
from Cornell University in 
1994, after which he joined 
IBM at the Thomas J. Watson 
Research Center. He worked 
on a variety of computer 

architecture and compiler related projects, including the 
VLIW research compiler, Linux ports for the 40x series 
embedded processors and simulators for the Power 4. In 
2001, he co-founded Sandbridge Technologies, a start-up 
that is developing digital signal processors targeted at 3G 
wireless phones. 
 


