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Abstract— This article examines the evolution of routing over a longer time interval may lead to an asynchronous end-
protocols for intermittently connected ad hoc networks and to-end path.
discusses the trend toward social-based routing protocalsA Existing DTN routing protocols evolved from enabling
survey of current routing solutions is presented, where roting .
the transfer of any amount of data to carefully selecting

protocols for opportunistic networks are classified based o the | . . . .
network graph employed. The need to capture performance intermediate nodes to efficiently carry information. Forava

tradeoffs from a multi-objective perspective is highlighted. ing schemes were adapted over time to address different
Index Terms—Delay tolerant networks, ad hoc networks, social Performance measures: delivery ratio, message latendy, an
networks, opportunistic networks, routing, DTN routing. overhead. The design of DTN routing algorithms may be

application-specific, but generally all schemes shouleze
INTRODUCTION the ov_erhead from redun_dant copies with supcessful dgliver
| | K itioned wi and minimal delay. In this work we emphasize the need for
D IE ay-to derr?m networ Ii (DT_'\:]Sb_:[l] are partitioned Wirey, i ohiective optimization to better understand periance
'less ad hoc networks with intermittent connectivity, 4o qfs in opportunistic networks.
Additional terminology in this family of dynamic networks

; ! . _ ) Improved performance amounts to identifying suitableiearr
includesdisruption-tolerant networks, intermittently connected

. ers for a specific destination. Nodes may be drawn to paaticul
networks, and opporturpsug ngtworks DTNS are never fuIIy- eographic regions or influenced by the behavior of other
connected at any point in time, but points of disconnecti des. With an underlying assumption that the mobility pro-
may be predictable as in vehicular networks following tranSsass is ergodic and stationary, algorithms have been dabign
portation sphedul_es or networks with satellites traveysirbits | predict the future from past behavior. This assumptioy ma
[2]. In an intermittently connected network (ICMAN) or Nyt always be valid and slower changing attributes, likdadoc

opport.unistic network, nodes rarely have information oe tn:onnections, may be leveraged to enable efficient message
changing network topology [3][4]. Nodes may not know th%elivery. Social relationships are expected to vary slativen

availability of future encounters, but the network may b"&ne(ihe transmission links between mobile nodss [5]. In fact

from Iearn_ing such patterns over time. Thus, subsets ofmo_ fie application of social network theory to model delay-
¢ d4d ds a desti flerant networks has led to the design of a new class of
contacts to forward data towards a destinatldn [4]. outing solutions. Forwarding algorithms like SimBetT¢] [6

Th.e designers of these dynamic networks often rely on "Rd BUBBLE [5] consider a node’s role in the social structure
mobility of nodes to route messages and bridge partitionss o network to make routing decisions

Inte_rmediate relays.ma.y be required to store Mmessages anggcial-based protocols may quantify the social network
Qellver t_hem to destma_tmns as they are encountert_—:‘d,nter € structure, identify socially-similar nodes, and/or aidicontext
Into ra_ldlo range. Mobility-assisted ro_utmg n DTNS IS ehmb. information [4] like shared interests or community affiloats.

by this hs_torﬁ-carry-forward pi_aradlgm. A varlr?n% of thlsSocial-based routing is a particularly relevant solutiam f
approach Is the store-carry-rep |c§1te strategy, whic m? opportunistic networks with a social component like poeket
the routed pack_ets, th_us increasing th_e_ number of copiesg(flitched [5] and mobile peer-to-peer networks [7].

the network. As |nvest|gated.nh—__|[2], tradltlonql ad hoc ingt . In this work, we present the evolution of DTN routing pro-
protocols must be adapted within a DTN architecture. Gassi ;.01 and highlight the application of social network theo

proactive or reactive routing approaches proposed forlaeguto communication systems. Previous tutorials and surveys f
ad hoc networks do not work for these challenged _DTNS’ dUfised on formally defining a DTN architecture and discussing
to the fact that an end-to-end path may not be available at {uting solutions. Unique to our review is the classificatio
time of transmission. However, over time, as d|ffe_rent dink, routing protocols based on the network graphs we define:
come up .an_d down thanks FO mob|I|Fy (or other en\_/lr_onmentﬂ.[e dynamic wireless graph composed of every available link
characteristics), the dynamic evolution of connectivitaghs time; the contact graph calculated from the aggregation o

1The first author is now with LGS Bell Labs Innovations, Flarh&@ark, PaSt wireless Imk§; anq f'na”y Fhe social graph for_med by
NJ, USA. Email: maschurg@Igsinnovations.com interpersonal relationships. The intent of this articleng to
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Fig. 1. Node connections over time in a DTN. Matrix G(TE) eg®nts the wireless graph G of the network at time epoch TE.

provide a comprehensive review of all DTN protocols. Indteanot designed to support this type of communication. Delay-
we chose a cross section of protocols that chronicles the d@erant routing, however, makes a forwarding decisioreahe
velopment of sophisticated routing solutions for inteteritly encounter instead of identifying a fixed route at the onset.
connected ad hoc networks. We begin with a description of theThe protocol employed by a network determines path se-
wireless graph and associated protocols; then transitidhe lection and thus sets network performance. For the direct
contact graph. The social graph is then introduced and akfirgelivery case A and C' may eventually (or potentially never)
from two perspectives. The article concludes with a disomss be in transmission range. Direct delivery from a source to a
of open research issues and challenges for the applicatiordestination sets the upper bound on delay. Without determin

social networking for opportunistic communication. istic knowledge of future node encounters, the fastest @ath
identified through flooding all nodes in contact at each time
THE WIRELESSGRAPH FORDATA TRANSFER epoch of the wireless graph. However, flooding necessitates

infinite buffer capacity which is of course not tractable in

Routing solutions rely on the existence of wireless linksractice. Using a flooding algorithm leads in practice to
between nodes. In the networks of interest, these links ajgerloaded buffers for frequently used relays, which imtur
not persistent in time. The network is typically sparse andads to dropped packets and consequently poor deliveiny rat
the topology can change frequently. Thus, we need a thregrformance.
dimensional graph, the wireless graph, to represent the netas illustrated by the example of Figl 1, the focus of routing
work at each time epoch. A new time epdEliy begins when protocols in disconnected networks is to utilize pairwise-c
a change to the topology takes place. The wireless graph istaéts to enable opportunistic communication. The question
instantiation of a time-varying graph, and a change in statethat arise with this approach artéo whom to forward and
captured by a new time epoch. The wireless graph is a dynamiw much to replicate? A significant amount of literature
undirected graph with an edge between nodes signifying thgists trying to basically address these questions by iogo
presence of a wireless link in both directions. Informatiogarious routing solutions. Of these, three benchmark o
may not be known on the exact quality of the links, just thakand out and are used for performance comparisons by almost
the nodes are within range of the radio transceivers and thiemore recently proposed protocols: Epidenic [8], Sprag a
channel can support communication at a minimum rate. Wait [9], and discussed in the next section, PROPHET [10]. In
value of 1 in the connectivity matrixG(T'E) indicates the the remainder of this section, we present Epidemic and Spray

presence of a link and otherwise. Each time a neighboringand Wait, which only use information from the wireless graph
node moves in or out of transmission range, the wirelesshgragr routing.

and associated matrix change.

An illustrative example of a wireless graph in Fig. 1 shows . .
the state of a DTN for three time epochs. New links beconfedemic
available over time and form an asynchronous end-to-ertd pat The Epidemic protocol[8] is based on general broadcast-
between nodesgl and C. The network is fully connected ining of messages: nodes freely replicate messages on each
time epoch3 (7'E3) due to the nodes’ mobility and due toencounter until a message has reached a predefined maximum
the availability of a highly central nodE. As a consequence,hop count. Messages are not exchanged if a copy is already
node A must wait until 7E3 to send its message or anypresentin the peer’s buffer. Because it is essentially alffap
message it has to relay t@. Legacy ad hoc protocols wereprotocol, Epidemic was shown to have a good packet delivery
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Fig. 2. Network graph classifications.

ratio, but it suffers from very high overhead given the large The contact graph is calculated based on aggregating-statis
number of packet copies flooding the network. Although bufféics from the dynamic wireless graph. The contact grapheserv
congestion issues have not been addressed in the protodels purposes:

design, the authors empirically investigate the impactudfds 1) To predict future encounters from statistics of the wire-

size on successful delivery. less graph by assuming the mobility process is ergodic
. and stationary.
Spray and Wait 2) To reduce the amount of information stored and pro-

The Spray and Wait protocol outperforms all schemes cessed by nodes. By aggregating the data, a node does
discussed in[]9] including Epidemic for a large range of not need to store a snapshot of the network at each past
network connectivity scenarios. It is shown to perform elos time epoch.

to the optimal oracle scheme (which has complete knowledgegntries in the connectivity matrig(contact) are no longer
of future node encounters, i.e. future states of the wiseleginary as in the wireless graph. Edge weights are between
graph) for a random waypoint mobility model. The algorithmng 1. These weights are calculated during an aggregation
consists of two phases: spray and wait. During the spr@yndow composed of a series of time epochs. A new contact
phase, L packet copies are “sprayed” to relays in the netwogffaph () and G(contact) can be built for each time
Then these carriers enter the wait phase until they meet f)gydow. The contact graph definition and weight assignments
destination and the message is delivered. Spray and Wai'gjg-bend on the routing solution. For example fin [5], edge
further defined by the type of spraying employed. With sour¢geights are assigned based on the number of contacts and
spray, the source replicates a message to the first L nogd@gation of contacts. The weights 6fG in the example of
contacted. In binary spray the source ke¢p&] copies and Fig.[J are set by averaging the node meetings logged in the
distributes the remaining copies to the first node encoedterconnectivity matrices3(T'E) over three time epochs.
The relay carries|L/2| copies. This distribution continues The efficiency of routing protocols which use the contact
recursively for each encounter until each node is left wi?aph CG is completely dependent on the edge weights
one copy (the number of copies in the network is kept to Lynd the implemented forwarding rule. A possible forwarding
The optimal number of copies L* is also derived for a specifig)|e using CG in Fig. [ may be to forward a copy if
delay requirement. G(contact) > i. This is restrictive since one third of the
time E can relay messages from to C. The aggregation
THE CONTACT GRAPH FOREFFICIENT FORWARI-DING- threshold could be adapted to choo&&contact) > 1;
Clearly, all protocols operate over the underlying wireleshowever, this will consume additional resources. Although
graph, and it is how this information is processed whicfery simple, this example illustrates well the sensitivitf
differentiates solutions. As the amount of knowledge @dé the network performance to the fine tuning of the model and
to the protocol increases, network performance with resioec routing decisions, as well as the tradeoffs involved among
average delay and delivery ratio improves [2]. The alganih yarious performance metrics.
examined by Jain et al. range from extremely simple as|n the remainder of this section, we discuss PRoPHET,

with first contact, which forwards a message to the fir§iaxProp, and RAPID, which use information from the contact
node encountered, to the fully formulated linear progra%}aph to make routing decisions.

with information on the wireless graph at each time epoch,

the occupancy at each queue, and the traffic demand from

each node[]2]. Of course complete global knowledge of t&ROPHET

wireless graph is not realistic in practice, and the prawco The PRoPHET algorithm[[10] studies pairwise contacts
presented here do not possess deterministic information tonmake routing decisions. PRoPHET reduces the overhead
future connectivity. The contact graph aims to predict ¢hedy calculating a node’s delivery predictability for a spci
future encounters. destination. If an encountered nodk has a higher delivery



predictability for a given message, carriértransmits a copy social network [[1B]. Links in the electronic social network
to B. The delivery predictability for a nodd is based on the depend on the physical properties of the network. Within
number of encounters od, the age of these encounters, andur graph definitions, the electronic social network couéd b
the existence of a transitive property for mutually enceted defined based on analysis of the contact graph. The virtual
nodes. PROPHET was shown to perform better than Epidemsiucial network, however, is seen as an overlay network;
for the community-based scenario and comparable to Epiformation about the interpersonal relationships of sismm
demic for the random mobility case. Although PRoOPHET dods gained from this level.

not explicitly define a contact graph, the delivery preddity We include in our social graph category any protocol
is a metric calculated from the aggregation of the wireleslat uses information extracted fromsocial layer. A social
graph over time and thus it fits well within our contact graplayer could be inferred from shared context, identified by th

based framework. application of social network analysis on the contact graph
or constructed from interpersonal relationships avadatal
MaxProp and RAPID the network designer. In the remainder of this section, we

The effici f : Is in DTN . will present our social graph definition with respect to the
e efficiency of routing protocols in S continues Qa1 social network and the electronic social network][1

improve upon the performance of these benchmark protoc scussed below are HiBopl[4], SimBetTS [6], and BUBBLE
Protocols such as Mz_;\xProEﬂll] and RAPlD——I[l_Z] have beeﬂ, which are among the most widely referenced social-thase
demonstrated on vehicular networks with intermittent amn routing protocols

tivity and add more realistic constraints on fixed storageesp

In an effort to increase the delivery rate and reduce Iai;enQXrtuaI Social Network
the MaxProp protocol prioritizes buffered packets foraas- ) . . L
mission. Packets with lower hop counts are given priority in SOcial-based routing solutions make decisions based on
order to facilitate quick propagation through the netw@kce nformation from a social graph. While social relationship
packets exceed the hop count threshold, packet prioidizat MY form due to repeated contact, an interpersonal rektipn
is determined by the probability that two peers meet catedla MY exist thatis not evident from the contact graph. A pgjsic
using incremental averaging [11]. Acknowledgements ase allink may not exist at each mstan_ce of time, howevgr, fu'Fure
utilized to delete replicated messages that have alreadly b§ontact is expected based on the interpersonal relatipssti
delivered. This prioritized delivery scheme has been show§ers: This social component may develop through repeated
to timely deliver packets at vehicular speeds and with tighPntact, shared interests, geographic preferences, ragxdéo-
constraints on buffer spaces. In this case another vergian d'al influences like hierarchal structures. Social-basetbpols
“contact graph” is considered with edge weights given by tHgverage the.relatlons.h|ps identified through these conatron
probability that two nodes meet. ities at the virtual social layer.

The RAPID protocol also takes a micro time scale approach
and defines utility, calculated at the packet level, as atfanc
of the inter-meeting time between nodes. Replication d@tss
are based on optimizing the measured utility under finitédouf
constraints. The proposed approach directly considers the
impact of replication on network performance. Using tedtbe
traces from a vehicular network, RAPID exhibits performanc
improvements in terms of average delay and delivery rate ove
Spray and Wait, PRoPHET, and MaxProp. Here the weights
of a contact graph representation would be set by the RAPID
utility.

THE SocCIAL GRAPH FOROPPORTUNISTIC
COMMUNICATION

Many papers in the literature have shown that the random
m0b|||ty model is not a realistic assumption, and that useﬁ%. 3. Underlying social component of wireless links
tend to have mobility patterns influenced by their social
relationships and/or by their attraction to physical ptatieat The integration of twodistinct communication and social
have special meaning with respect to their social behavitayers in [14] is shown to increase routing robustness at the
Routing approaches with the addition of a social graph pl®viexpense of added delay due to the higher cost assigned to
performance improvements over state-of-the-art DTN nmuti social links. The communication layer is composed of links
protocols that are not explicitly social. between devices, and the social layer is formed by equipment
The links in the social graph we consider may be knowmwners. Fig[B illustrates the interaction of DTN links ahe t
a priori or inferred from the frequency of observed contactanderlying social connections of the users carrying device
Conti and Kumar identify two social levels in the opportuiais If links at the device level do not exist, an alternate route
environment: the virtual social network and the electronitan be traced through the social layéfr:can transmit the




message to the device of usBs and thenP, can carry the [6]. A more recent measure to quantify centrality in a sensor
message toP; or P, can deliver the message directly tanetwork is defined in[[16] as thg-power community index.

Py through social interaction. The investigated QoS routinbhis metric considers the degree of a node as well as the
approach leverages these social interactions by inclutiag degree of the node’si-hop neighbors. As the research on
social links as feasible paths and assigning them heavagplying social network theory to DTNSs is still in its infanc
weights for the routing decision. When using only the contaa question to be answered iate there more suitable SNA
graph, routes exploiting virtual social links may have mevenetrics to characterize the structure of DTNS?

been considered as valid despite the improvement to overall
robustness, at the expense of added delay.

Often, especially in opportunistic networks, the communi-
cation and social layers are not disjoint. Social relatidps
impact human mobility and as a result the available connec-
tions. HiBop considers mobility with context informatiomm
the virtual social layer to construct a type of social graph t
predict future connections.

HiBop: HiBOp (History Based Opportunistic Routing)l [4]
uses past and current context information like sharedates © Community A A o Centrality
and history of encounters to calculate delivery probabedit O Community B
The context information may describe the user’'s envirortmen
and capture social relationships among nodes. The message i
transferred if the encountered node’s delivery probabftir ~ Fi9- 4. SNA Metrics identifying popular nodes
the destination is greater than the current node. The source
nodes may replicate messages and inject several copies int6id-[4 illustrates the use of SNA to characterize the sample
the network. When compared to Epidemic and PRoPHET fi¢twork formed by nodes in two communities. The nodes
community-based mobility simulations, HiBOp reduces thresented with an up arrow have high betweenness centrality
consumption of resources and message loss rate for limiffed bridge clustered nodes. Nodes with relatively high be-

buffer scenarios. Delay, however, is shown to increase wiiffeenness and degree centrality measures are seen as nodes
HiBOp. with high popularity. The social structure assessed thoug

SNA and subsequent identification of popular nodes willediff
) . depending on the construction of the social graph.

Electronic Social Network The relative popularity of a node is based on the number of

The social graph can be viewed as an extension of the caennections and its ability to bridge the partitioned nekwo
tact graph. KnowingZ(contacts) (see Fig[R) different rules NodeF in Fig.[2 is a well-connected node with high popularity
may be considered to extract the social graph connectionsadfl E3. We define here the concepts shéitic popularity and
SG. In our example, we assign a social link if nodes meet mogynamic popularity. Static popularity describes the connectiv-
than ; of the time. In the social grapiG, A andC belong ity of nodes in a predefined social network at the virtual leve
to two separate clusters and can never communicate. A®ynamic popularity refers to the social structure inferred from
conseqguence, a challenging part of social-based routisigule the observation of physical links over time. Differencesyma
is concerned with the issue of learning/inferring the utydieg  exist between static and dynamic popularity; thus impactin
social interactions from contact history. The identifioatiof the identification of highly connected (or isolated) nodise
central nodes, which connect communities, is also fund#émhercharacterization of the social network influences routingr p
to this approach. tocol performance. As social-based routing protocols ligye

By representing links from a graph-theoretic perspective,continued examination of static vs. dynamic popularity is
node’s role in an hoc network can be identified through sociglucial to accurately predicting performance.
network analysis. Social network analysis (SNA) examihest The use of SNA metrics to model the wireless network can
relationships between users to identify patterns and dyantbe further extended to define routing protocols. Efficienit+o
network structure. In SNA, the user is not considered as @y schemes have transitioned from capturing the frequency
individual. Instead, the users and their ties (represebted of pairwise meetings on the contact graph to utilizing a glob
edges) are viewed together as an enfity [15]. A goal of S\NMiew of the electronic social graph as with SimBetTS and
is to model connections and to create a structural picture BYBBLE.
the network. SmBetTS SimBetTS is the next iteration of Daly and

Metrics to characterize the social graph (or contact grapHpahr's SimBet algorithm [6]. The calculations of simitgri
include degree centrality, betweenness centrality, andsimilar- and betweenness centrality using ego networks allow for a
ity. Thedegree of a node is the number of adjacent connectatistributed implementation. While the sociocentric netwis
nodes [[15].Betweenness centrality can be easily described asdefined based on global information, egocentric calcutatio
the number of times a node lies on the shortest path betwexam be performed locally at the ego node. The betweenness
a source and destination in the netwdrk [5]. Tdmilarity of aspect of the SimBetTS utility measures the bridging cdpabi
two nodes can be measured by the number of shared neighlityref nodes, and similarity identifies nodes socially samito




the destination. SimBetTS utilizes the bridging capabitif summarizes the described protocols and identifies the corre
weak ties and the strong relationships that bind clusters. sponding network graph. Solutions using the social grapin fo
SimBetTS also includes tie strength in the utility calculaa new class of routing protocols well suited for opportuaist
tion. Tie strength is seen as an indicator of link availapili networks. Despite recent advances, there are still oppitigs
and is measured by the frequency of encounters, the duration development. We will now discuss the overarching open
of encounters, and how recently the contact occurred. A-regbsues for intermittently connected networks and tramsitd
cation component is also included in SimBetTS to increasballenges specific to social network-based solutions.
the likelihood of message delivery. While the betweennessDTNs may form, in some cases, between different types
measure alone yields the best delivery results, the cordbir® nodes operating with incompatible hardware and software
utility, SimBetTS, prevents the overloading of highly aaht Interoperability is an ongoing issue for these heterogeseo
nodes. Balancing the use of popular nodes is ideal fromnatworks of dissimilar nodes. The Delay Tolerant Netwogkin
multi-objective perspective. Message delivery for SiniB&t Research Groﬂjs tasked with addressing interconnection in
outperforms PROPHET and is close to Epidemic with lesgich networks.
overhead. Included in the list of open research topics for all intermit
Bubble Rap: Following on the LABEL approach, which tently connected networks are the issues of security and the
was the first protocol to demonstrate that incorporatingra-conodes’ possible selfish behavior. How can trust be measured
munity affiliation label will improve forwarding performae, and propagated through the network? Are all nodes willing
BUBBLE expands on this idea by using community affiliato act as relays? Can privacy be maintained and to what
tion labels with betweenness centrality measures to fatwagxtent? What incentives can entice selfish nodes to pateip
messages [5]. A minimum of two centrality measures af@ forwarding? The integration of a social component may be
calculated per node based on the node’s global popularityd@ntral to overcoming these challenges.
the whole network and local popularity within its community In terms of DTN routing performance, representative mo-
or communities. The algorithm calls for a message to Wity models are needed for accurate protocol evaluation.
transferred to nodes with higher global rankings (certgali Also, current approaches typically assume perfect trasson
until the carrier encounters a node with the same communftyring pairwise contact. The incorporation of interfereand
label as the destination node. The message is then forwar@@@dwidth limitations will provide tighter bounds on expet
to nodes with higher local rankings until successful defive performance.
This approach prevents messages from getting stuck at a nodelkewise, a multi-objective approach which aims to con-
with a high global rank, but with little or no affiliation with currently optimize criteria may provide significant insighto
the destination community. performance tradeoffs. As DTN protocols continue to evplve
Community detection and centrality estimation influenc@ balance should be reached between robust delivery, expect
the design of BUBBLE. Centralized and distributed degredelay, total energy consumption, and buffer utilization.
and betweenness measures impact the protocol performancéhe identification of popular, well-connected nodes is fun-
Through simulations, the centralized BUBBLE approach damental to the social-based approach. However, protocols
shown to provide performance improvements in terms yghich overuse these nodes may experience a degradation in
resource utilization compared to flooding and PRoPHET. performance. Intuitively, message delivery should insesa
modified version of BUBBLE deletes the message from tHit the overall delivery ratios will likely decrease in piiae
buffer of the original carrier once the message is transterrdue to the limited capacity of finite buffers. The expected
to the destination community. Results show that decreasifiglay may increase as well due to contention at highly centra
the number of copies (further reducing the cost) does fapdes. Studies suggest that the integration of some level of

negatively impact the delivery ratio for the cases studied. randomness into protocol design may benefit performance.
The underlying traffic patterns and sociability of node®als

relate to protocol performance. The aggregation windowesl us
to define the contact or social graphs must be finely tuned.
Delay-tolerant networks are formed due to partitions igoncepts from machine learning or signal processing may aid
the wireless network. Connectivity exists within clustesat in this effort.
protocols rely on mobile nodes to route messages betweeVhile the literature contains a wealth of information re-
communities. Protocols evolved from flooding all nodes igarding an inferred social structure, there is more work to
the network to carefully identifying bridge nodes to carrpe done to incorporate a predefined hierarchy. Inconsigtenc
and forward data. Improvements to benchmark schemes |g&ist between static and dynamic popularity. Understandin
Epidemic, PROPHET, and Spray and Wait have produc#teir performance differences should be further explored.
performance enhancements in the form of reduced commuSocial-based routing approaches may bring DTN perfor-
nication costs and comparable delivery ratios. Predicting Mmance closer to optimal bounds, but distributed implemen-
exploiting pairwise contacts has led to the extension ofasoctations need to be further developed before such perforenanc
network theory to wireless networks. can be realized in practice. Hagglend SocialNeBsare two
In this work we preser_wt DTN routln_g prptocols based on Uhttp: /. dtnrg. org/
the ngtwork graph considered; classifications are based Ohyp:/mww.haggleproject.org/
the wireless graph, contact graph, and social graph. Table 3nttp://www.social-nets.eu/

CONCLUSIONS ANDOPEN ISSUES



TABLE |
DTN STATE OF THEART PROTOCOLOVERVIEW
Protocol Year | Network Graph | Description
Epidemic 2000 Wireless Assumes disconnection and relies on mobility [to

forward. Random pair-wise exchange of messages
(anti-entropy sessions). Aims to minimize numbger
of transmissions by imposing a max hop count and
a bound on buffer space.
PROPHET 2003 Contact Probabilistic Routing Protocol using History of En-
counters and Transitivity - Based on assumptipn
node mobility is not random. Forwards message if
delivery predictability is higher at other node. Basged
on number of encounters, age of encounters, and
transitive property.
Spray and Wait| 2005 Wireless Distributes L copies of a message into the network.
Once copies are forwarded, carriers hold until they
reach the destination.
MaxProp 2006 Contact Prioritizes packets based on delivery likelihood |[at
destination and total hop count. Complementary
mechanisms like acknowledgements further increase
delivery and decrease latency.
RAPID 2007 Contact Replicates a packet based on a routing metric and
per-packet utility measure. Control channel allows
for the exchange of network state information in
cluding acknowledgements.
HiBOp 2007 Social History Based Opportunistic Routing - Identifigs
appropriate carriers based on shared context with
destination. Eliminates unnecessary replication |to
disjoint clusters.

SimBet 2007 Social Utility based on similarity and betweenness
SimBetTS 2009 measures. SimBetTS described in 2009 extendeq
utility to include tie strength. At encounter if node|
has higher utility for a given destination, messages
are exchanged and removed from queue based on
replication definition.

BUBBLE 2008 Social Utilizes community and rank information. Ranks
BUBBLE-B 2010 are based on local and global betweenness
centrality values. Forward if encountered node hg
higher global rank then higher local rank once
reach community of destination. For BUBBLE-B,
described in 2010, deletes from original buffer onge
it reaches community of destination.

7]

projects which aim to address opportunistic networking agno Jeffrey Wysocarski, and Dr. Michele Schuman of MIT Lincoln
deployed devices. A theme of this type of work is that limitetlaboratory for their guidance and the opportunity to examin
connectivity may not always be a challenge to overcome, hthie relevance of social-based routing to the first authdr®P
instead, an opportunity to construct a new type of network foesearch.

pervasive computind [13]. With the advent of these human-

centric networks, opportunistic networking research stiltely REFERENCES
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