

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

1

INTRODUCTION
IN the early 1990s it became apparent that the
32-bit address size of the IPv4 protocol would be
too small in the long run, so the IETF started
work on an updated version of IP with larger
addresses, IPv6. Unfortunately, the resulting
protocol is not backward compatible with IPv4,
so there is a need for tools to allow the transi-
tion from IPv4 to IPv6 and the coexistence of
the two protocols. The IETF created three main
transition mechanisms between the existing IPv4
and the new IPv6: tunneling, dual stack, and
translation. Tunneling consists of encapsulating
an IPv6 packet inside an IPv4 packet to commu-
nicate IPv6 nodes across IPv4-only paths. Dual
stack means running both IPv4 and IPv6 at the
same time in endpoints and in the network, by
having dual stack operating systems and applica-
tions in upgraded nodes. Dual stack also means
having dual stack network equipment, and con-
figuring both types of addresses for new net-
works. Dual stack was conceived to introduce
IPv6 without resigning from IPv4 until all hosts
had transitioned and IPv4 could be removed
without disruption. However, this transition
strategy is no longer viable, as the IANA IPv4
address pool was exhausted on February 3rd of
20111 and currently less than 10 percent of the
Internet hosts are IPv6 enabled.2 The result is
that there is no time left to migrate the current
installed base of IPv4-only hosts to dual stack
before IPv6-only hosts are deployed. This implies
the need in the short to medium term for the
translation of packets between IPv4-only hosts
and IPv6-only hosts to support communication
between them.

Stateless IP and ICMP translation (SIIT) [1]

and Network Address Translation – Protocol
Translation (NAT-PT) [2] specified how to
translate between IPv4 and IPv6. SIIT specifies
stateless translation, which happens on a per-
packet basis without the need of any state. The
limitation of stateless translation is the need to
maintain a one-to-one mapping between IPv4
and IPv6 addresses. Therefore, the number of
IPv6 hosts that can be served by a translator is
limited to the number of IPv4 addresses avail-
able to the translation service.

NAT-PT provided a stateful mechanism for
address translation in which a single IPv4 address
could be used to map multiple IPv6 hosts. In
order to map the IPv4 destination address back
to the correct IPv6 destination address in the
IPv4-to-IPv6 direction, the NAT-PT translator
maintained temporary state in a translation
table. This procedure is similar to the Network
Address Translation (NAT) that is popular in
IPv4 networks. Due to the larger address space
of IPv6, it is easy to initiate communications in
this realm to the IPv4 side by embedding the
IPv4 destination address into an IPv6 address.
However, to enable communications initiated
from the IPv4 side, a complex setup involving
synchronization between a DNS Application
Level Gateway (DNS-ALG) and a Bi-Direction-
al NAT-PT was required. In 2007 the NAT-PT
specification was moved to “Historic” status
within the IETF after identifying problematic
interactions with other aspects of IPv6 operation
that resulted in reduced functionality and relia-
bility of the network [3].

NAT64/DNS64 [4, 5] is a tool suite intended
to replace NAT-PT in a manner that addresses
most of the concerns that led to its deprecation.
A NAT64 device translates IPv4 packets into
IPv6 packets and vice versa in a stateful manner,
and DNS64 synthesizes AAAA resource records
for domain names that only have A resource
records available. A key design decision for
NAT64/DNS64 is to explicitly manage only com-
munications initiated from the IPv6 side, while
relying on existing NAT-traversal techniques,
such as STUN [6], to support peer-to-peer appli-
cations. To do so, NAT64 is designed to con-
form to the requirements and recommendations
for translators defined by the IETF BEHAVE
working group, thus resulting in consistent
behavior of different NAT64 implementations.

ABSTRACT

It is clear that there is not enough time to
upgrade existing Internet hosts to dual stack
before the IPv4 address pool depletes. This
implies that the IPv6 transition and co-existence
must support interaction between IPv4 nodes
and IPv6 nodes. In this article we describe
NAT64 and DNS64, a tool suite that provides a
way forward in the IPv4-to-IPv6 transition by
allowing communication among unmodified IPv6
and IPv4 nodes.

Marcelo Bagnulo and Alberto García-Martínez, Universidad Carlos III de Madrid

Iljitsch van Beijnum, Institute IMDEA Networks and Universidad Carlos III de Madrid

The NAT64/DNS64 Tool Suite for
IPv6 Transition

1 http://www.nro.net/news/
ipv4-free-pool-depleted

2 http://www.ipv6matrix.org/

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 177

2

Nota adhesiva
Published in: IEEE Communications magazine, vol. 50, n. 7, (July 2012) pp. 177-183

DNS64 provides similar functionality as the
NAT-PT DNS-ALG, but implemented as a new
architectural block instead of being performed
as a transparent Application Level Gateway
(ALG). A consequence of this design is the abil-
ity of DNS64 to maintain compatibility with
most modes of DNSSEC. Like NAT-PT, NAT64
and DNS64 are compatible with, and largely
transparent to, unmodified IPv6 hosts.

This article is organized as follows. We dis-
cuss the requirements upon which NAT64 and
DNS64 are based. We describe NAT64 and
DNS64 operation, respectively. We present a
walkthrough that illustrates the behavior of
NAT64 and DNS64. We also comment on some
implementations and experiments. Finally, we
present our conclusions.

REQUIREMENTS FOR
IPV6-IPV4 TRANSLATION

The Network Address Translation (NAT) tech-
nology for IPv4 was initially defined by the IETF
in RFC 1631 [7]. This document described the
overall functioning of a NAT, but lacked the
detailed specification that would guarantee an
homogeneous behavior of NAT devices pro-
duced by different vendors. The IETF was reluc-
tant to specify the NAT behavior in greater
detail, since NAT was deemed an inferior tech-
nology that would negatively affect the Internet
architecture [8]. This approach resulted in a
myriad of different NAT implementations that
behaved in different ways with respect to state
creation and management. The actual properties
of a communication through a NAT box, such as
how the address/port pool was managed or the
lifetime of the address translation state, were
hard to predict for applications communicating
through a NAT. In particular, it became cumber-
some for the applications running in the private
realm to set and maintain the necessary state in
the NAT to enable communications initiated
from the outside. To mitigate this phenomenon,
the IETF BEHAVE working group defined a set
of behavioral requirements for IPv4 NATs cov-
ering its interaction with TCP [9], UDP [10], and
ICMP [11].

Similarly to the initial NAT RFC, the NAT-
PT specification failed to define the behavior of
the IPv4-IPv6 stateful translator in detail. To

guarantee consistent behavior of IPv4-IPv6
translators, a set of requirements should be stat-
ed for IPv6-IPv4 translation, analogous to the
existing IPv4-IPv4 translation requirements. In
order to do that, we take as a starting point the
requirements defined for IPv4 NATs. It is
straightforward to transpose some of these
requirements to the NAT64 context, such as the
minimum binding lifetime, port assignment
strategies, handling of fragmented packets, etc.
However, some other requirements deserve a
more careful analysis of its application to the
NAT64 case, which is presented next.

In NAT operation it is relevant to distinguish
between the mapping behavior and the filtering
behavior. In general terms, an IPv4 NAT is a
device connecting two realms of IPv4 addressing,
one that uses private addresses and another
realm that usually is the public Internet. Upon
the reception of a packet coming from the pri-
vate realm, the NAT creates a mapping between
the source address and source port pair of the
received packet and a public address and port
pair available in its own pool. We will refer to an
address/port pair as a transport address. The
NAT then substitutes the source transport
address of the packet with the one assigned in
the binding, and forwards the packet to the pub-
lic realm. The mapping behavior defines how the
aforementioned binding is created. Three types
of mapping behavior are defined:

Endpoint independent mapping (Fig. 1): The
mapping is solely determined by the transport
address of the internal host. Packets containing
the same private transport address are translated
to the same transport address of the NAT’s pool
irrespectively of their public address and/or port.

Address dependent mapping: The mapping is
determined by the transport address of the inter-
nal host and the address of the external host.
Packets containing the same private transport
address and the same public address are trans-
lated to the same transport address of the NAT’s
pool irrespectively of the port used by the exter-
nal host.

Address and port dependent mapping: The
mapping is determined by the transport address
of the internal host and the transport address of
the external host.

The different types of mappings determine
how internal hosts are perceived by external
hosts. Different connections initiated by the
same process running in a host behind a NAT
that uses endpoint independent mappings are
presented with the same transport address to
external hosts. This is needed by optimized NAT
traversal techniques such as STUN [6] and
TURN [12]. Both TCP and UDP requirements
for NAT operation mandate the use of endpoint
independent mappings.

However, this does not imply that a NAT box
is required to forward all packets, as filtering
rules can apply to comply with security policies.
When a NAT box receives a packet through any
of its interfaces, it applies the filtering rules to
determine whether to forward the packet or to
discard it, based on the address and/or port
information. The following filtering behaviors
are defined:

Endpoint independent filtering: The filtering

Figure 1. Endpoint independent mapping.

198.51.100.10

Source: 70.0.20.3: 13000

Dest: 203.0.113.11: 8080

Source: 70.0.20.3: 13000

Dest: 198.51.100.10: 80

Source: 192.0.2.7: 15000

Dest: 198.51.100.10: 80

Source: 192.0.2.7: 15000

Dest: 203.0.113.11: 8080

203.0.113.11

192.0.2.7

70.0.20.0/28

192.0.2.7:15000 ↔ 70.0.20.3:13000

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 178

3

rules only apply to the transport address of the
internal host. This means that packets are for-
warded or dropped solely based on the transport
address of the internal host (either the private
one or the one from the NAT’s pool assigned
through the mapping).

Address dependent filtering: The filtering
rules apply to the transport address of the inter-
nal host and also on the IP address of the exter-
nal host.

Address and port dependent filtering: The fil-
tering rules apply to the transport address of the
internal host as well as to the transport address
of the external host.

The recommendation is for NATs to imple-
ment endpoint independent filtering, and if
more security is needed, to allow the use of
address dependent filtering. While the former
type of filtering is compatible with most NAT
traversal techniques (including both STUN and
TURN), the latter type of filtering is compatible
with a reduced set of techniques (it supports
TURN but not STUN).

To extend these requirements to the NAT64
case, we need to map the roles of IPv4 and IPv6
addresses to the roles of private and public
addresses in IPv4 NATs. Since a mapping can
only be created when the translator receives a
packet from the IPv6 realm, it is straightforward
to map the IPv6 realm in NAT64 to the private
realm in IPv4 NATs, and the IPv4 realm in
NAT64 to the public realm in IPv4 NATs. The
close similarities among the IPv4 NAT and the
NAT64 setups allow deriving immediately the
mapping and filtering requirements for NAT64,
by stating that endpoint independent mappings,
and both endpoint independent and address
dependent filtering, must be supported.

NAT64
NAT64 translates IPv6 packets into IPv4 packets
and vice versa. It has essentially two compo-
nents: the address translation mechanism and
the protocol translation mechanism. The latter,
which translates IP header fields other than the
addresses, operates in a stateless manner trying
to preserve as much as possible the semantics of
the original field. This was originally defined in
[1] and has been updated in [13].

Address translation maps IPv6 transport
addresses to IPv4 transport addresses and vice
versa. In order to create these mappings, the
NAT64 box has two pools of IP addresses: an
IPv6 address pool (to represent IPv4 addresses
in the IPv6 network) and an IPv4 address pool
(to represent IPv6 addresses in the IPv4 net-
work).

NAT64 creates the mappings by using an
IPv6 prefix (denoted as Pref64::/n) as the
IPv6 address pool. Each IPv4 address is mapped
into a different IPv6 address by concatenating
the Pref64::/n with the IPv4 address being
mapped and, if n is less than 96, padding the
result to 128 bits with a suffix of zero bits [14].
Pref64::/n can be either the Well-Known Prefix
defined for this purpose (64:ff9b::/96) [14]
or a local prefix manually assigned from the
global unicast IPv6 address block of the site for
this particular use. In both cases the mapping is

stable over time since there is no need to re-use
the IPv6 addresses, as the IPv6 address space is
sufficiently large. By using the Well-Known Pre-
fix, the resulting IPv6 representations of IPv4
addresses are globally meaningful. This allows
for any party in the Internet receiving such an
address to recognize it as an IPv6 representation
of an IPv4 address, and even reach the IPv4 des-
tination if a local NAT64 service is available.
This is particularly useful in the case where the
DNS64 service and the NAT64 service are sup-
plied by different providers (e.g. using public
DNS resolution services). This may be fairly
common in mobility scenarios involving multiple
domains, where the DNS/DNS64 service is pro-
vided by the visited network and the NAT64 ser-
vice is provided by the home network. Figure 2
shows an example of the representation of an
IPv4 address with different IPv6 prefix types.

The IPv4 address pool is normally a small
prefix assigned to the NAT64’s IPv4 interface.
Because of the size of the IPv4 address space
relative to the IPv6 address space, the IPv4
address pool is not sufficient to establish perma-
nent one-to-one mappings with IPv6 addresses.
So, mappings using the IPv4 address pool are
created and released dynamically.

An IPv6 initiator learns the IPv6 address rep-
resenting the IPv4 target either through the
DNS64, as described in the next section, or by
other means. Packets to that address sent by the
IPv6 host are routed to the NAT64 device. The
NAT64 associates an IPv4 transport address
from its pool to the IPv6 transport address of
the initiator, creating a binding state, so that
reply packets can be translated and forwarded
back to the initiator. The binding state is kept
while packets are flowing. Once packets stop
flowing, the binding state times out and the IPv4
transport address is returned to the IPv4 address
pool.

In order to implement endpoint-independent
mapping and support both endpoint-indepen-
dent filtering and address-dependent filtering,
NAT64 relies on two data structures to store
mapping information: the Binding Information
Base and the Session table.

The Binding Information Base (BIB) stores
only mapping information. Each entry of the
BIB corresponds to one transport address of an

 Figure 2. IPv6 address representation for 198.51.100.7.

64:ff9b::

IPv6 derived from well-known prefix

IPv6 derived from local prefix 2001:DB8::/32

IPv6 derived from local prefix 2001:DB8::/96

198.51.100.7

960

2001:DB8:: 198.51.100.7

960

2001:DB8: 198.51.100.7 0

64320

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 179

4

IPv6 node and the associated IPv4 transport
address from the NAT64’s IPv4 address pool.
When an IPv6 node initiates a new communica-
tion using a source transport address that it is
not in the BIB, a new entry is created. If the
IPv6 node initiates a new communication with
an IPv6 transport address for which there is a
BIB entry, this entry is reused for this new com-
munication, irrespectively whether the destina-
tion IPv6 address or destination port are
different from the one used in the previous com-
munications. The result is that multiple commu-
nications involving the same IPv6 transport
address are translated by the NAT64 to the
same IPv4 transport address, resulting in end-
point-independent mapping.

The information contained in the BIB is
enough to perform the address translation of any
packet and to provide endpoint-independent fil-
tering. However, the information contained in the
BIB is not enough to perform address-dependent
filtering. If this is required, the NAT64 needs to
keep information about the IPv4 address of the
IPv4 node involved in the communication. To
support this type of filtering, the NAT64 relies on
an additional data structure, the Session table,
which contains the source and destination IPv6
transport address as well as the source and desti-
nation IPv4 transport address. This allows the
NAT64 to verify if an IPv4 packet is addressed to
an IPv4 transport address in use from the pool,
but also that it comes from an IPv4 address
already involved in a communication.

In order to comply with the requirements
imposed in the minimum lifetime of the bindings
[9, 10], each Session table entry has a lifetime,
which in the case of UDP is set to 2 minutes,
and in the case of TCP is set to 2 hours.

It is apparent that bindings associated to TCP
communications are “expensive,” in the sense
that they consume an IPv4 transport address
from the reduced pool for a long time. It thus
seems wise to ascertain that there is a real TCP
session ongoing before creating the binding. To
this end, it is also important to remove the bind-
ings as soon as the NAT64 can determine that
the TCP connection is over rather than wait for
the binding state to time out. Hence, the NAT64
keeps track of the exchange used to terminate
the ongoing TCP connections to remove the
associated binding.

In terms of security, the main threats against
NAT64 are potential Denial-of-Service attacks,
targeted to consume the scarce NAT64 resources
including memory, processing power, and the
IPv4 transport-address pool. NAT64 can miti-
gate these attack vectors by limiting the amount
of resources assigned to different purposes (e.g.
the amount of memory used for temporarily
storing fragments waiting for reassembly).

DNS64
DNS64 synthesizes AAAA resource records (AAAA
RRs) from A resource records (A RRs). DNS64
allows IPv6-only hosts to use the Fully Qualified
Domain Name of an IPv4-only node to initiate a
communication.

When an IPv6-only node starts a communica-
tion, it usually queries for a AAAA RR and it

expects to obtain the IPv6 address of the target
node. To allow an IPv6 initiator to learn the
address of the responder, the DNS64 function is
used to synthesize a AAAA record from the A
record (containing the real IPv4 address of the
responder). DNS64 is designed as an additional
function of a DNS recursive resolver. As such,
when a DNS64 enabled resolver receives a AAAA
RR query generated by the IPv6 initiator, it
searches for a AAAA RR. If no AAAA record is
available for the target node (which would be
the case when the target node is an IPv4-only
node), the DNS64 performs a query for the A
record. If an A record is discovered, the DNS64
creates a synthetic AAAA RR by adding the
Pref64::/n of a NAT64 to the responder’s
IPv4 address, and if n is less than 96, a suffix.
The synthetic AAAA RR is passed back to the
IPv6 initiator, which starts an IPv6 communica-
tion with the IPv6 address associated to the IPv4
receiver.

The packet is routed to the NAT64 device,
which creates the IPv6-to-IPv4 address mapping
as described before. It is important to highlight
that the DNS64 and the NAT64 do not share
any state. In particular, when the DNS64 gener-
ates a synthetic response, no state is created in
the NAT64. The only information shared by the
NAT64 and the DNS64 is the Pref64::/n,
which must be the same for a given domain. By
default, both NAT64 and DNS64 are set up to
use the Well-Known Prefix, so no manual con-
figuration is required for any of them.

One of the major challenges for DNS64 is the
compatibility with DNSSEC. DNSSEC defines
extensions to provide origin authentication,
authenticated denial of existence, and data
integrity of the DNS data. As such, it is in fun-
damental conflict with DNS64, since DNS64 syn-
thesizes RRs and presents them as RRs
originating elsewhere. Unlike the obsolete NAT-
PT DNS-ALG, which intercepted and modified
DNS packets, DNS64 is a full-fledged architec-
tural component. Because of that, it is possible
to place the DNS64 functionality within the res-
olution chain of the DNS to be compatible with
some modes of DNSSEC by assuring that the
synthesis always occurs after validation.

There are different configurations for a recur-
sive resolver involving DNSSEC. A recursive
resolver can be DNSSEC-capable or not. More-
over, a DNSSEC-capable resolver can be validat-
ing, i.e. performing DNSSEC data validation or
not, i.e. simply passing the DNSSEC data.

Next, let’s consider how a DNS64 recursive
resolver handles different types of DNSSEC
queries:

Queries arriving from a non DNSSEC-capa-
ble originator (Fig. 3a). A DNSSEC-capable and
validating DNS64 recursive resolver can validate
the data of the A RR before creating the syn-
thetic AAAA RR.

Queries arriving from a DNSSEC-capable
but not validating originator (Fig. 3b). This is
the ideal case for DNS64. If the DNS64 resolver
implements DNSSEC validation, it validates the
DNSSEC data, creates the synthetic AAAA RR,
and signals back to the querying party that the
data included is authentic. This is a common
case in DNSSEC deployments, where the client

In order to

implement endpoint-

independent map-

ping and support

both endpoint-inde-

pendent filtering and

address-dependent

filtering, NAT64

relies on two data

structures to store

mapping informa-

tion: the Binding

Information Base

and the Session

table.

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 180

5

is not actually performing validation but it
expects the local DNS server to do it on its
behalf. Typically there is a secure channel
between the client and its server (e.g. protected
by IPsec).

Queries from a DNSSEC-capable and vali-
dating originator (Fig. 3c). In this case, the orig-
inator asks for the DNSSEC data to perform the
validation itself. Because of that, the DNS64
recursive resolver cannot send any synthetic
AAAA RR in the response, or it would cause the
validation to fail. This case can be handled by
placing the DNS64 functionality in the client
itself, after the validation module.

WALKTHROUGH
For this walkthrough we consider the topology
described in Fig. 4. The NAT64 uses the Well-
Known Prefix 64:ff9b::/96 to map IPv4
addresses to IPv6, and has an IPv4 address T
assigned to its IPv4 interface. The local name
server implements the DNS64 function and uses
the Well-Known Prefix for its synthesis. IPv6
hosts have regular stub resolvers, so they request
recursive lookups to the local name server. No
DNSSEC is considered.

We now describe a typical scenario in which
H1 initiates a communication with H2:
1 H1 performs a DNS lookup for the IPv6

address of H2 by sending a DNS query for
a AAAA record to the local DNS/DNS64
server.

2 The local DNS/DNS64 server resolves the
query, discovering that there are no AAAA
records for H2.

3 The DNS/DNS64 server queries for a A
record for H2, obtaining the IPv4 address X.

4 The DNS/DNS64 server synthesizes a AAAA
record by appending the IPv4 address X to
64:ff9b::/96, and includes this address
in the response to H1.

5 After receiving the synthetic AAAA record,
H1 sends a packet toward H2 from a source
transport address (Y’, y)3 to a destination
transport address (64:ff9b:X, x), where y
and x are ports chosen by H1.

6 The packet is routed to the IPv6 interface
of the NAT64 (since 64:ff9b::/96 has
been associated to this interface), and the
NAT64 performs the following actions:

• It selects an unused port t on its IPv4
address T and creates the BIB entry (Y’, y)
(T, t) and a session table entry (Y’, y,
64:ff9b:X, x) ↔ (T, t, X, x).

• It translates the IPv6 header into an IPv4
header using stateless translation.

• It includes in the packet (T, t) as source
transport address and (X, x) as destination
transport address, adjusting the transport
layer checksum if necessary.
The NAT64 sends the translated packet to

the destination X through the IPv4 network.
7 H2 node receives the packet and responds

by sending a packet with destination trans-
port address (T, t) and source transport
address (X, x).

8 The packet is routed to the NAT64 box,
which looks for a Session table entry con-
taining (T, t). When the entry is found,

• The NAT64 translates the IPv4 header into
an IPv6 header using stateless translation.

• The NAT64 includes in the packet (Y’, y)
as destination transport address and
(Pref64:X, x) as source transport address.
The translated packet is finally sent out to

H1.

IMPLEMENTATIONS AND EXPERIMENTS
At the time of this writing there are already sev-
eral implementations of NAT64 and DNS64.
The first publicly available implementation of
the tool suite was Ecdysis,4 which implements

Figure 3. Different modes of DNS64 operation (detail of iterative DNS messages to the higher levels of the DNS hierarchy is not included).

DNS64 +
DNSSEC

a) Non-DNSSEC host

DNS64 +
DNSSEC local
name server

2. DNS AAAA query (DNSSEC, checking)

3. Empty answer in DNS response

4. DNS A query (DNSSEC, checking)

5. DNS response: A RR + DNSSEC data A

IPv4 DNSSEC
authoritative
name server

1. DNS AAAA query (non-DNSSEC)

6. DNS response: synthesized
AAAA RR

b) Non-validating DNSSEC-capable host

DNS64 +
DNSSEC local
name server

2. DNS AAAA query (DNSSEC, checking)

3. Empty answer in DNS response

4. DNS A query (DNSSEC, checking)

5. DNS response: A RR + DNSSEC data A

IPv4 DNSSEC
authoritative
name server

1. DNS AAAA query (DNSSEC, non-checking)

6. DNS response: synthesized
AAAA RR + valid

c) Validating DNSSEC-capable host

DNS +
DNSSEC local
name server

2. DNS AAAA query (DNSSEC, checking)

3. Empty answer in DNS response

6. DNS A query (DNSSEC, checking)

7. DNS response: A RR + DNSSEC data A

IPv4 DNSSEC
authoritative
name server

1. DNS AAAA query (DNSSEC, checking)

4. Empty answer in DNS response

5. DNS A query (DNSSEC, checking)

8. DNS response: A RR + DNSSEC data

3 We use a prime (‘) to
highlight that the address
is IPv6.

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 181

6

NAT64 both for Linux and BSD, and DNS64 as
a patch for both BIND and Unbound. Several
vendors are developing NAT64 implementations,
including Juniper, Cisco, and Ericsson, some of
which have already released them in commercial
products. Version 9.8.0 of BIND implements
DNS64.

The availability of implementations has
enabled a wide range of experiments and trials
from different parties, including Ericsson, China
Telecom, and T-Systems.

The result of these experiences is that IPv6-
only networking using the NAT64/DNS64 tool
suite for accessing the IPv4 Internet works well
for many critical applications such as web brows-
ing, e-mail, software upgrades, operating system
services, many chat systems, and media stream-
ing [15]. The main limitations identified by these
studies include the lack of IPv6 support in appli-
cations such as several games and a very popular
VoIP application, but there is not much the
NAT64/DNS64 design can do about that. Anoth-
er problem identified is the case where IPv4 lit-
erals are embedded in the upper layer protocols.
The NAT64 does not translate those, resulting in
communication failures. This can be handled by
adding Application Level Gateways (ALG) in
NAT64. There is ongoing work to define an
ALG for FTP. Overall, NAT64/DNS64 has per-
formed extremely well in controlled environ-
ments, such as a mobile network within which
the operator selects the handsets.

CONCLUSIONS
In this article we presented the NAT64/DNS64
tool suite for IPv6 transition. NAT64 is a net-
work address translator and protocol translator
that allows communication between IPv6 and
IPv4 nodes. DNS64 synthesizes AAAA RRs from
the information available in A RRs for a given
Fully Qualified Domain Name. This tool suite is
expected to play a critical role in the IPv6 transi-

tion in the near future. There are already several
open source and commercial implementations of
the tool suite.

The suite is designed to support several
deployment models, although we expect two of
them to be preeminent: The first one is to allow
the internal nodes of an IPv6-only stub network
to reach the public IPv4 Internet. In this case
the NAT64/DNS64 functions can be provided
either by the IPv6 stub network itself or by its
direct provider, i.e. in a Carrier Grade NAT. In
the second scenario, an IPv4-only stub site
decides to give access to its IPv4-only servers to
clients in the IPv6 Internet. For this, NAT64 can
be provisioned by the IPv4 stub network.
Because the DNS server of the IPv4 site is
authoritative for the local data, the DNS64 func-
tion is replaced by a DNS server with AAAA RRs
that contain the IPv6 representation of the IP
addresses assigned to the IPv4-only servers.

As DNS64/NAT64 is a replacement for the
deprecated NAT-PT, to conclude the article we
compare NAT64/DNS64 and NAT-PT. In order
to deal with the main limitations of NAT-PT,
the DNS64/NAT64 design makes a few key
architectural decisions. First, the DNS64/NAT64
manages explicitly only communications initiated
from the IPv6 side. Communications initiated
from the IPv4 are supported through standard
NAT-traversal techniques, such as STUN and
TURN, since NAT64 is designed to be NAT-
traversal compatible. Second, DNS64 is a full-
fledged architectural component that is part of a
DNS resolver. As such, it does not need to trans-
parently intercept DNS queries. The result of
these two design decisions is a more robust
design, as DNS queries and data packets do not
need to flow through the same path, significantly
improving the reliability of the resulting net-
work. Finally, DNS64/NAT64 uses by default the
Well-Known Prefix that allows having a globally
valid IPv6 representation of an IPv4 address.
This implies that even if the IPv6 representation

Figure 4. Walkthrough scenario (detail of iterative DNS messages to the higher levels of the DNS hierarchy is not included).

IPv4 networkIPv6 network

X
H2

H1
Y’

DNS64 local
name server

NAT64

T

2. DNS AAAA query for H21. DNS AAAA query for H2

4. DNS response for H2=
64:ff9b:X (AAAA RR)

5. IPv6 [(src IP=Y’) (dst IP=64:ff9b:X)
(src port=y) (dst port=x) data]

8. IPv6 [(src IP=64:ff9b:X) (dst IP=Y’)
(src port=y) (dst port=x) data]

2bis. Empty answer in DNS response

3bis. DNS response for H2=X (A RR)

3. DNS A query for H2

IPv4 DNSSEC
authoritative
name server

7. IPv4 [(srx IP=X) (dst IP=T)
(src port=x) (dst port=t) data]

6. IPv4 [[srcIP=T) (dst IP=X)
(src port=t) (dst port=x) data]

4 http://ecdysis.viagenie.ca

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 182

7

of an IPv4 address or the synthetic AAAA RR
leak outside the realm of the NAT64, the receiv-
ing node can identify the address as being an
IPv6 representation of the original IPv4 address.

ACKNOWLEDGMENTS
The research of Marcelo Bagnulo leading to
these results has received funding from the Min-
istry of Science and Innovation of Spain, under
the QUARTET project (TIN2009-13992-C02-
01) and the MEDIANET project (S2009-
TIC1468). The work of Alberto García-Martínez
is partially supported by BONE (Building the
Future Optical Network in Europe), a Network
of Excellence funded by the European Commis-
sion through the 7th ICT-Framework Program,
and by the MEDIANET project (S2009-
TIC1468).

REFERENCES
[1] E. Nordmark, “Stateless IP/ICMP Translation Algorithm

(SIIT),” RFC2765, 2000.
[2] G. Tsirtsis and P. Srisuresh, “Network Address Transla-

tion — Protocol Translation (NAT-PT),” RFC2766, 2000.
[3] C. Aoun and E. Davies, “Reasons to Move the Network

Address Translator — Protocol Translator (NAT-PT) to
Historic Status,” RFC4966, 2007.

[4] M. Bagnulo, P. Matthews, and I. van Beijnum, “Stateful
NAT64: Network Address and Protocol Translation from
IPv6 Clients to IPv4 Servers,” RFC6146, July 2010.

[5] M. Bagnulo et al., “DNS64: DNS Extensions for Network
Address Translation from IPv6 Clients to IPv4 Servers,”
RFC6147, July 2010.

[6] J. Rosenberg et al., “Session Traversal Utilities for NAT
(STUN),” RFC5389, 2008.

[7] K. Egevang and P. Francis, “The IP Network Address
Translator (NAT),” RFC1631, 1994.

[8] T. Hain, “Architectural Implications of NAT,” RFC2993,
2000.

[9] S. Guha, Eds. et al., “NAT Behavioral Requirements for
TCP,” RFC5382, 2008.

[10] F. Audet, Ed., and C. Jennings, “Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP,” RFC4787, 2007.

[11] P. Srisuresh et al., “NAT Behavioral Requirements for
ICMP,” RFC5508, 2009.

[12] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal
Using Relays around NAT (TURN): Relay Extensions to
Session Traversal Utilities for NAT (STUN),” RFC 5766,
2010.

[13] X. Li, C. Bao, and F. Baker, “IP/ICMP Translation Algo-
rithm,” RFC6145, 2010.

[14] C. Bao et al., “IPv6 Addressing of IPv4/IPv6 Transla-
tors,” RFC6052, 2010.

[15] J. Arkko and A. Keranen, “Experiences from an IPv6-
Only Network,” RFC6586, 2012.

BIOGRAPHIES
MARCELO BAGNULO (marcelo@it.uc3m.es) received an Electri-
cal Engineering degree in 1999 from the University of
Uruguay, and a Ph.D. in Telecommunications in 2005 from
the University Carlos III of Madrid, Spain. In 2000 he joined
the University Carlos III of Madrid (UC3M), where he has
been an associate professor since 2006. He has published
several papers in technical journals, magazines, and confer-
ences. His main interest areas are IPv6 and interdomain
routing.

ALBERTO GARCÍA-MARTÍNEZ (alberto@it.uc3m.es) received a
Telecommunications Engineering degree in 1995 and a
Ph.D. in Telecommunications in 1999, both from the UPM,
Spain. In 1998 he joined the University Carlos III of Madrid
(UC3M), where he has been an associate professor since
2001. His main interest areas are IPv6 and routing.

ILJITSCH VAN BEIJNUM (iljitsch.vanbeijnum@imdea.org)
received the Bachelor of Information and Communication
Technology degree from the Haagse Hogeschool in The
Hague in 2005 and the Master of Telematics Engineering
degree from UC3M in Madrid in 2008. He has worked in
the internet service provider business since 1995 and wrote
books about BGP and IPv6 and many articles in the trade
press. He currently works for Institute IMDEA Networks as
a research assistant, pursuing the Ph.D. degree at UC3M.

The result of

these two design

decisions is a more

robust design,

as DNS queries

and data packets

do not need to flow

through the same

path, significantly

improving the

reliability of the

resulting network.

GARCIA-MARTINEZ LAYOUT_Layout 1 6/21/12 3:01 PM Page 183

8

	IEEE-Política.pdf
	nat64-IEEE_ConMag12

