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Abstract—The deployment of small cell base stations (SCBSs)
overlaid on existing macro-cellular systems is seen as a key
solution for offloading traffic, optimizing coverage, and basting
the capacity of future cellular wireless systems. The next-
generation of SCBSs is envisioned to bewulti-mode, i.e., capable
of transmitting simultaneously on both licensed and unlicensed
bands. This constitutes a cost-effective integration of kb WiFi
and cellular radio access technologies (RATS) that can effently
cope with peak wireless data traffic and heterogeneous quality-
of-service requirements. To leverage the advantage of suchulti-
mode SCBSs, we discuss the novel proposed paradigm @fss- /
system learning by means of which SCBSs self-organize and
autonomously steer their traffic flows across different RATs
Cross-system learning allows the SCBSs to leverage the adhage
of both the WiFi and cellular worlds. For example, the SCBSs an
offload delay-tolerant data traffic to WiFi, while simultaneously
learning the probability distribution function of their tr ansmis-
sion strategy over the licensed cellular band. This articlewill ) ) ] - )
first introduce the basic building blocks of cross-system larming Fig. 1. Anillustration of a macrocell deployment underlaiith multi-mode
and then provide preliminary performance evaluation in a Long- small cell base stations. Gray areas refer to the cell rargansion bias per

Core Network

Term Evolution (LTE) simulator overlaid with WiFi hotspots . SCBS.
Remarkably, it is shown that the proposed cross-system leamg
approach significantly outperforms a number of benchmark o ) o
traffic steering policies. recently attracted significant interest from academiatigtiy,
and standardization bodies alike [1]] [4]] [5]. It is enwiséd
l. INTRODUCTION that WiFi and SCBS deployment will exhibit complementary

Owing to the proliferation of sophisticated mobile devicebenefits that can be leveraged for an efficient integratian. O
(i.e., smartphones, tablets)28-fold increase in data traffic is the one hand, due to the uncontrolled, unlicensed nature of
expected over the next few years, compelling mobile opesatdViFi, the competition for resources among a large number
to find new ways to significantly boost their network capacityf hotspot users, notably when other devices (laptopsetsbl
provide better coverage, and reduce network congestian [ahd dongles) transmit on the same unlicensed band, can yield
In this context, the idea of heterogeneous networks (HejNetdramatically poor throughputs. In such scenario, offlogdin
consisting of a mix of short-range and low-cost small celome of this traffic to the well-managed small cell network,
base stations (SCBSs) underlaying the macrocell netwaik, foperating over the licensed spectrum, can improve the perfo
recently emerged as a key solution for solving this capacityance. On the other hand, the inherent constraints of silall ¢
crunch problem[2]. However, reaping the potential benefits networks, particularly due to cross-tier and co-tier ifgsence,
heterogeneous and small cell deployments is contingent:upmotivate offloading some of the traffic to the WiFi band,
a) developing innovative interference management, lodd bao as to alleviate the interference and ease congestioh. Wit
ancing, and traffic offloading mechanisms, and b) integgatithe deployment of multi-mode SCBSs operating on both the
different radio access technologies (RATS), tiers (fepqp@o- WiFi and licensed bands, smart traffic offloading stratetiias
, micro-, metro-, and macro- cells), and licensed/unlieensharness the benefits of both worlds must be develdged [2].
frequency bands. To date, the majority of traffic offloading studies focused

An efficient, cost-effective integration of cellular (e.g.on intra-RAT offloading, in which the macrocell traffic is
3G/LTE) and WiFi technologies, referred to iaser-RAT, has offloaded to smaller cells (e.g., femto-, picocells) usimdl c
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range expansion (CRE) and almost blank sub-frame (ABB)mobile data traffic. Offloading traffic to WiFi will contireu

[B]. The concept of CRE has been recently proposed, in whith play a key role due to its low cost-per-bit and sufficient
a positive range expansion bias is added to the picocelt$ pispectrum to support high throughput (notablysaGHz). On
downlink received signal strength [2]. In contrast, therbiture the other hand, operators are able to manage the spectrum
on inter-RAT integration, particularly with multi-mode 8Ss used by small cells, optimize their traffic, and decide where
is still in its infancy. To date, WiFi offloading has been dadl to place them. Nonetheless, as small cells operate on the sam
in a number of works such as in [4-6]. Inl[4], a quantitativepectrum as the macrocell, coordination between the macro-
study of the performance 8G mobile data offloading through and small cells is crucial to mitigate the impact of inteefece.
WiFi networks is studied. The authors [f [5] proposed a frame Thus far, both cellular and WiFi radio access technologies
work for 3G traffic offloading based on the idea of motivatinghave been in constant competition, until recently in which a
mobile users with high delay tolerance to offload their teaffitighter integration of both technologies has emerged asca ne
to WiFi networks. In[[6], the authors investigate the capaciessary paradigm. Indeed, when deployed along each other, op
offload problem among service providers using standard gaerators can not only perform classical offload (through YViFi
theoretic tools leading to the inefficient Nash equilibi@. [ but also a smart fine-grained offload, whereby operators can
Recently, the work in[[2] demonstrated that complementingecide which traffic flows over which RAT, while leveraging
heterogeneous cellular networks with WiFi hotspots can bger's QoS requirements, latency, and backhaul condifmms

an attractive solution for operators. A framework to offloadervice differentiatior 2]/ T11]. In addition, with the aeht of
traffic between cellular and WiFi RATs was proposedlih [7jnulti-mode SCBSs, operators can reduce their site aciquisit
However, this work focused on a single WiFi carrier coergti costs (site leasing, installation and backhaul) by connigini
with indoor femtocells. Although existing works estabéish several RATs into a single device. This can further lead to a
the potential of 3G-WiFi coexistence, there is still a need f reduction in their capital expenditures (power, memorg).et
considerable research to address pertinent challengbsasucSo as to reap the benefits of SCBSs’ multi-mode capabilities,
self-organization and dynamic traffic steering betwB@ATE operators need to devise dynamic offloading strategies and
and WiFi. make intelligent decisions aiming at enriching users’'s @o&

In this article, we introduce a fully distributed and dynamiavoiding user churn. For instance, when a UE discovers the
traffic offloading framework, in which SCBSs seamlessly istepresence of WiFi in its vicinity, delay-tolerant traffic ge,. web
their traffic between cellular and WiFi RATs, depending obrowsing) should be offloaded to WiFi, whereas traffic with
the traffic type, users’ quality-of-service (QoS) requieetts, more stringent data requirements (e.g., multimedia) would
network load, and interference levels. SCBSs are assumeddmain on the cellula3G/LTE RAT. Furthermore, while traffic
have a wired backhaul connection to the core network, anéfloading at the access level is important, backhaul offload
the impact of heterogeneous backhauls is out of the scopei®f/et another important component of the cellular and WiFi
this article. This developed framework, hereafter coioeds- integration. Here, operators need to take into account the
system learningendows SCBSs with self-organizing capabilibackhaul conditions and congestion level in their offlogdin
ties allowing them tesimultaneouslyransmit on bott8G and policy before deciding to which RAT a user is offloaded
WiFi bands. Here, SCBSs carry ouiang-termoptimization to ensure a better and seamless user experid@eP has
procedure byearningtheir optimaltransmission strategy overproposed two solutions, namely Selected IP Traffic Offload
licensed/unlicensed bands, without exchanging inforomati (SIPTO) and Local IP Access (LIPA) to deal with latency
In particular, delay-tolerant applications can be offlahde® and congestions of traffic flow problems, either through the
WiFi, when possible, while delay-stringent applicatioas®e mobile core or IP network[12]. SIPTO supports an IP traffic
steered toward3G/LTE. In contrast to traditional schedulingoffload directly to the internet and away from the mobile core
algorithms (such as proportional-fair (PF)) which oveKoonetwork, to reduce the network load. Nonetheless, operator
users’ heterogeneous demands, incorporating a proaciive enust be careful in selecting which traffic to offload, as mipbil
traffic-aware scheduler is shown to exhibit significant gainsupport for SIPTO traffic can be limited. Under LIPA, IP
outperforming a number of benchmark traffic steering pe$ici traffic management is designed to optimize the traffic dedtin

The rest of this article is organized as follows. In Sectiotv a local IP Network locally instead of through the mobile
I, a discussion of the small cell and WiFi paradigms andrthetore network. In what follows, we present the novel paradigm
potential integration is presented. In Section Ill, a basiall of cross-system learning used by self-organizing SCBSs for
cell system model is presented, followed by the cross-systeraffic offload betweersG/LTE and WiFi.
learning framework for self-organizing radios. A case gtud
along with some numerical results are presented in Section ||| crossSYSTEM LEARNING FRAMEWORK IN
IV, while conclusions are drawn in Section V. SELF-ORGANIZING RADIOS

Il. SMALL CELLS AND WIFI: A BEST OFBOTH WORLD

In this section, we first provide definitions and notions
APPROACH

of reinforcement learning, that will be useful in the sequel
Offloading cellular traffic to WiFi and small cells is seen bySubsequently, we present the novel framework of crosesyst
operators as a key solution for handling the continuous tirowlearning.



A. Basic Model

to leverage the coupling between LTE and WiFi, which as

Consider a macrocell base station (MBS) operating ovéfll be shown increases the overall network performance and
a setS = {1,...,S} of S frequency bands. The macrocelfignificantly speeds up the convergence.

is underlaid with a sefC = {1,..., K} of K SCBSs. Each

The cross-system learning framework is composed of the

SCBS isdual-modeand can transmit over the licensed anéPllowing interrelated components:
unlicensed spectrum band. Let the downlink transmit powers Subband selection, power level allocation and cell

of SCBS k at time ¢ on subband (SB)s be p,(f)(t) and
Dk max b€ the maximum transmit power of SCBSLet theS-
dimensional vectop, (t) = (p,(cl)(t),...,pgcs)(t)) denote the
power allocation vector of SCBS at timet. Let L, € N be
the number of discrete power levels of SCBSand denote
by q,(f’s’b) its ¢-th transmit power level over SB when
using cell range expansion bids € {1,...,B}. Thus, the
cardinality of the strategy sefl;, = {q,(f’s’b)} of SCBS k

iS N, =L xS x B.

range expansion biasevery SCBS learns over time how

to select appropriate subbands with their corresponding
transmit power levels in both licensed and unlicensed
spectrum, in which delay-tolerant traffic is steered toward
the unlicensed spectrum. In addition, every SCBS learns
its optimal CRE bias to offload the macrocell traffic to
smaller cells.

Proactive scheduling Once the small cell acquires its
subband, the scheduling decision is traffic-aware tak-
ing into account users’ heterogeneous QoS requirements

Due to the mutual c_o—channg! in_terference and coupling (throughput, delay tolerance and latency).

among SCBSs’ strategies, the joint interference managemen ) )

and traffic offloading problem can be modeled as a garfe Subband, Power Level and Cell Range Expansion Bias

g = (K, {Ak}ke,c,{ﬂk}ke,c). Here, K represents the SetSeIectlon

of SCBSs, and the action ‘set, of each SCBSkE is the During cross-system learning, every SCBS minimizes over

joint set of subband, power levels and CRE bias. Finally, ime its regret of selecting strategies yielding lower payoffs,

denotes the long-term performance metric optimized by ea®hile experimenting other strategies to improve its long-

SCBS k, in which, at each time, each SCBSk chooses term utility estimation. The consideréxhavioralassumption

its action from the finite setd, following a probability iS that small cells are interested in choosing a probability

distribution 7, (t) = (W G (@)oo @ ss)(t)) and distribution over their transmission strategies whichimizes
’ziqkb')’ _ T kg, ’“ _’ ’ the regret, where the regret of SCBSor not having played

Ty gem) = PT (pk(t) =g, ) is the probability that SCBS action¢\"***"*) from n = 1 up to timet is defined as:

Ak
k selects action"*" at timet.

¢
Thglten (8) = % > (QJEZ757b)aP7k(”)) —ar(n) (1)

B. Reinforcement Learning

Reinforcement leaming (R.L.) is an area of machine leami.n\%here ur(n) is the instantaneous utility observation (i.e

- o nf%edback) of SCBSk at time n, obtained by constantly
often conflicting objectives, must be able to make autonczmo% o " ;
changing its strategy. In addition, to calculate its regegery

decisions given limited information, so as to optimize . . . - .
. given - . b %CBSk estimates its utility functioni(.,.) when taking a
certain cumulative objective function or rewaid [8]. RL ha$. : . .
ven action based on local information.

had an impact on a variety of disciplines inclusive of gam% The rationale of[{1) is as follows: if the regret is strictly

theory, coqtrol the(_)ry, operations regearch_, mform "y, 8ositive, then SCB% would have obtained a higher average
and genetic algorithms. A key design criterion in RL is t (£,5,b) : . .
% during all previous time

develop strategies that allow players to strike a balance k%”lty tby plg);lr?g iﬁtlogg%s‘ ts” not having d
tween exploring the network and exploiting their accurmedat Instan ts atn i us, the . r{ehgre sscné])Sdavmg tone sot.
knowledge. Recently, RL has received significant interast 5” contrast, if [1) is negative, then 0€s not regre

the context of self-organizing HetNets, as it allows opensat its strategy selection. Therefore, each SCBS needs toestrik
to automate their network in a pIugiand—pIay manner a/yPalance between choosing actions that yield lower regrets
reducing maintenance costs more often than those with higher regrets), and playing any

In the context of cellular and WiFi integration, the goal on the other actions with aon-zeroprobability.

every SCBS is to devise an intelligent and online learnin The beh_qworgl _rule_ of eviry SCBS can be modgled by
mechanism to optimize its licensed spectrum transmissi&ﬁ? probability distributiong, (r; (t)) subject to the maximum

while at the same time leverage WiFi by offloading de|a)}_ransm|t power constrainis; max, where:
Br(ry (1) €

tolerant traffic. The developed procedure, dubbed crostesy
learning, is rooted in the fact that every small cell optiesiits . 1
long-termperformance metric, as a function of its traffic load, argnin { > e Th (t) + ;g_kH(m“) ’ @)
interference levels, and users’ heterogeneous trafficirequ Pr €A
ments. In addition, unlike standard RLI [8], the cross-systewherer; (t) = max (0,74 (t)) denotes the vector of positive
learning procedure allows players implicitly coordinate regrets, and?(.) represents the Shannon entropy function of
their transmissions with no information exchange, as well ghe mixed strategyr;. The temperatureparameters; > 0



TABLE |

start learning UE TRAFFIC MIX

t=

WiFi band IV. CELLULAR AND WIFI OFFLOAD: A CASE STUDY

| Traffic model [ Traffic category | Percentage of UEs]

e iteiteieteietuietieiieiuieiuiainiaietaieieieeie ittt ! FTP Best effort 10%

3 —l ! HTTP Interactive 20%

! Every 1ms sense ! Video streaming| Streaming 20%

| WiFi-band - - ! \olIP Real-time 30%

i Utility function ! - - -

! { estimation | Gaming Interactive real-time 20%

| Select SB |

. based Oln regret Select SB, power |
i e TE 161‘12315&23“ 1 their remaining file size and estimated average data ratn,Th

| t | . . . .
T b on lond I ; the SCBSk computes a metridy, (¢), which is a function
- and coverage Traffic aware of the position of UEk; and the number of UEs served by

1 scheduling 1 SCBSk at time ¢. Finally, UE k; is scheduled such that:

Access UE 3G band 1 k¥ = argminDy, (t).

! for i, duration ! ki

77777777777777777777777777777777777777777 The developed cross-system learning framework is vali-
l dated in an integrated LTE-A/ WiFi simulator. The considere

scenario comprises one macrocell consisting of three igecto

Fig. 2. Flow-chart of the proposed cross-system learnirgeqature per- underlaid with X' open access small cells operating on both
formed by each small cell base station. 3G and WiFi. The SCBSs are uniformly distributed within

each macro sector, while considering a minimum MBS-SCBS

represents the interest of SCBSo choose other actions. ThedIStance of75 m. The path-loss models and other s_et-up
arameters were selected according to 8né Generation

:tr: :gtllj € cscg)rlll\J/telinot(:ir::]igartliggt-hr?l;?e;frﬁ?[l(();)t?s? continuous arE’artnership Project (3GPP) recommendations for outdaer pi
y P P ' ocells (model 1)[[9].Nye = 30 mobile UEs were dropped

exp (Hkr+ e (t)) within each macro sector from whicN_hot?r,ot = %NU.E/K

B, b (Tz(t)) - koay ’ (3) are randomly and uniformly dropped withind@ m radius of
e Z exp (ﬁkr;pk (t)) each SCBS, while the remaining UEs are uniformly dropped
PLEAL within each macro sector. Each UE is assumed to be active,

+ . S .. with afixed traffic model from the beginning of the simulason
where Bk,qu's”’) (r(t)) > 0 holds with strict inequality while moving at a speed & km/h. The traffic mix consists of
regardless of the regret vectey (t). _ different traffic models as shown in Table I, following the re
Furthermore, given users’ different QoS requirements, tgirements of the Next Generation Mobile Networks (NGMN)
cross-system learning framework leverages WiFi, in whiqig]. The bandwidth in the licensed (resp. unlicensed) iand
the learning process carried out over WiFifaster (from a 5 pHz (resp.20 MHz). The simulations are averaged 0%60
time-scale perspective) than that on the cellular band.eMagansmission time intervals (TTls). For sake of comparjsee

concretely, inspired from the well-knowmrbo-principle the = consider the following benchmark algorithms:
output (i.e., feedback) from the WiFi learning process isdus

for the update of the cellular learning process. As will be
shown later on, this notion of time-scale significantly regk C . o
. , X . distributing its maximum transmission power over the
the convergence time of the traffic steering algorithm, as-co . X
. whole licensed bandwidth.
pared to standard RL, and improves the overall performance.

Figure[2 shows a flow-chart of the cross-system learning” HetNet: the macrocell is augmented withi small cells.
9 y 9 Here, both MBS and SCBSs serve their UEs in the li-
framework executed by each SCBS.

censed band only, and small cells optimize their subband,
D. Proactive Scheduling power levels and cell range expansion bias.

Once the SCBSs select their subbands using cross-systerh HetNgt + WiFi (Load-_Based): each SCBS transmits on
learning, they engage in a proactive and traffic aware s¢hedu both licensed and unhcen_sed bands by ran_domly selecting
ing procedure on the selected subband’s resource blocks. Th ©N€ subband on both licensed and unlicensed bands.
scheduling algorithm is proactive and traffic-aware in natu  #\CCeSS to the unlicensed band is performed based on the
as it incorporates users’ traffic requirements. Notablg th load as_des_crlbed In Section I”'_C and Proportional-fair
scheduling decision is not only based on the instantaneous scheduling is performed on the licensed band.
channel condition but also on the completion time (delay) an *® HetNet + WiFi (Coverage-Based): Same asHetNet +

service class of each transmission. For that, within everalls WlFL](Ioa(:-Based)axcer?t that_thzaccess meé\thod is based
cell, all users are sorted in an ascending order as a ratio of N the reference signal received power (RSRP) criterion.

o Macro-only: The macrocell is the only serving cell of
all UEs using proportional fair scheduling, by uniformly



120 B. Average UE throughput under different offloading strate-
____________ gies
110 ,,,."' T | Figure[4 plots the cumulative distribution function (CDF) o
100 the average UE throughput fa¥ye = 30 UEs, and different
. offloading strategies. Here, random refers to an SCBS which
90! selects randomly one subband and performs PF scheduling,

Ergodic Transmission Rate

whereagproposedefers to the regret-based learning procedure
with traffic-aware (TA) scheduling. While, in thenacro-
only case, 25% of UEs obtain no rate, deploying small
cells on the licensed band increases the overall perforenanc

60: - = = Cross-system learning through suitable cell range expansion_bias; especiallgédr
Standard learning edge UEs. The overall performance is further boosted when
50 ‘ ‘ ‘ ‘ deploying multi-mode SCBSs transmitting on both licensed
0 50 100 150 200 250 and unlicensed bands (i.e., HetNet+WiFi), particularly fo

Fig. 3. Convergence of the cross-system learning algoritenthe standard

Time Interval ¢

independent learning [8JK = 2 SCBSs per macrocell sector.

the HetNet+WiFi load-based scenario as compared to the
HetNet+WiFi coverage-based scenario.
C. Impact of scheduling

Figure[® shows the total cell throughput as a function of
the number of UEs in the network, for the earliest deadline

i ! 5 first (EDF), proportional fair (PF), and proactive schedgli
@ .~ (PS) strategies, respectively. While the standard PF stéed
g0s8 ,,I/ cannot cope with the increasing number of UEs, the traffic-
S i aware scheduling approach judiciously steers users’ draffi
50.6 0 an intelligent and dynamic manner over both licensed and
% ;! unlicensed spectrum, with 80-fold increase for300 UEs.
2 /I | —— HetNet (Random) These significant gains are rooted in the fact that unlike the
S oalffl 11| ——HetNet (proposed) proactive scheduler, both EDF and PF schedulers fall stort o
g '."I _Eg:sigmi: E)O(;’;L?Seeg?;:dg;“)df’”) accounting for the heterogeneous traffic and delay-toteran
é 0.2 '.":' --- HetNet+W@F@ load based (proposed) nature of their users.
s |/, ::Z‘C'\:ce)t;x:"':' coverage based (proposed D. Impact of small cell densification
0 A t = t t Figure[® plots the total cell-throughput and cell-edge UE
0 0.5 1 15 2 2.5 3 35

Fig. 4. Cumulative distribution function (CDF) of the avgeaUE throughput

avg. UE throughput [Mbps]

for Nyg = 30 UEs andK = 2 SCBSs per macrocell sector.

A. Convergence

throughput for the macro-only, HetNet, and HetNet+WiFi
offloading strategies. Some key observations are worth men-
tioning. While in the macro-only case, cell edge UEs getaath
low throughput gains, addingg = 2 small cells is shown to
boost users’ cell-edge throughput in the HetNet offload .case
In addition, a50% increase in cell-edge UE throughput is
obtained withK = 2 multi-mode small cells (HetNet+WiFi).
Furthermore, small cell users (SCUES) benefit from the small
cells’ multi-mode capability when deploying = 2 SCBSs,

Figure[3 plots the convergence behavior of the cross-systamd this gap further increases when adding more small cells
learning procedure in terms of the ergodic transmissioa rgtk = 6 SCBSs). As a byproduct of this, offloading is shown to
(i.e., average cell throughput). Here, we considér UEs improve not only the performance of SCUESs, but also MUEs,
per macro sector, and.4 MHz bandwidth in the licensed for K = {2,4,6} small cell base stations.
band. In addition, we plot thetandard RL algorithm [8],
in which learning is carried outndependentlyover both
licensed and unlicensed bands, without any sort of coordi-In this article, we studied the strategioexistencédetween
nation. Quite remarkably, it is shown that the cross-syste®&/LTE and WiFi networks in a heterogeneous network, in
learning approach converges within less th#niterations, which multi-mode SCBSs transmgimultaneouslyon both
while the standard approach needs several hundredsdtesatiicensed and unlicensed bands. The tight integration ofi bot
to converge. Furthermore, the standard RL procedure @ghiliechnologies is seen as crucial for supporting the unrielgnt
an undesirable oscillating behavior (i.e., ping-pong @fe growth in data traffic. In view of this, we developed a cross-
between the licensed and unlicensed band, which can dystem learning framework aiming at optimizing the long-
detrimental in mobility scenarios). term performance of SCBSs, in which delay-tolerant traffic i

V. CONCLUSION
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Cell-throughput and cell-edge throughput gains tfee “macro-
only”, “HetNet”, and “HetNet+WiFi" offloading strategie$or K = {2,4,6}

steered towards WiFi. Our approach is totally distributetdhw
low signalling overhead, and shows significant improvement
in terms of cell-edge UE throughput, especially in high load
conditions. In our future investigations, we will extenceth

current formulation to the case of backhaul sharing, whech i
also gaining significant importance.
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