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Abstract—Technologies which will lead to adaptive, intelligent,
and aware wireless communications systems are expected tffey
solutions to the capacity, interference, and reliability poblems
of wireless networks. The spectrum sensing feature of cognie
radio (CR) systems is a step forward to better recognize the
problems and to achieve fficient spectrum allocation. On the
other hand, even though spectrum sensing can constitute algb
base to accomplish the reconfigurability and awareness gaal
of next generation networks, a new perspective is requiredot
benefit from the whole dimensions of the available electro (o
spectrum) hyperspace, beyond frequency and time. Therefer
spectrum sensing should evolve to a more general and com-
prehensive awareness providing mechanism, not only as padf
CR systems but also as a communication environment awareres

component of an adaptive spectrum hyperspace access (ASHA)

paradigm which can adapt sensing parameters autonomouslyot
ensure robust signal identification, parameter estimation and
interference avoidance. Such an approach will lead to recagtion
of communication opportunities in different dimensions of the
spectrum hyperspace, and provide necessary information atut
the air interfaces, access techniques and waveforms that er
deployed over the monitored spectrum to accomplish ASHA,
resource and interference management.

Index Terms—Adaptive wireless communications systems,
wideband spectrum sensing, cognitive radio systems, signiden-
tification, dynamic spectrum access, public safety radiosTV
white spaces, interference source identification

|. INTRODUCTION

Wireless communications systems undergo an evolution
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gies is considered, improvements should be achieved irsterm
of

. effective spectrum allocation,

. adaptive and complex modulation, error recovery, channel
estimation, diversity and code design techniques to allow
high data rates while maintaining desired quality of
service (Qo0S),

. reconfigurable and flexible air interface technologies for
better interference and fading management, and

« cooperation of these concepts in an environment that they
exist along with the present wireless technologies.

Traditional communications systems are designed to allo-
cate fixed amounts of resources to the users. These systems
do not employ adaptive resource utilization techniques. Fo
instance the federal communications commission (FCC) fre-
guency allocation chart indicates scarcity of frequenaydsa
especially at the ultra-high frequency (UHF) range for the
United States of America. Based on the information acquired
from the chart and the traditional communications apprpach
new spectrum allocation auction at the upper UHF bands can
be seen as a straightforward answer to the problem. However
more auctions would be a temporary solution, because the
scarcity problems will re-emerge by the time, as the number o
users grow. Secondly the wireless propagation charatitsris
complicate the implementation of communications systems a
the super and extremely high frequency bands and coverage

voice oriented applications evolve to data and multimed@oblems emerge. Driven by these issues, researchensddcli

based services. Eventually, the progress of wireless tdchn

to evaluate theféiciency of the wireless systems deployments

gies and standards from the first generation through thetfouin the spectrum. Extensive measurement and data analysis
and beyond lead the prevalence of wireless services amaugivities in the last decade indicated a significanffedi
daily users by triggering an extensive growth on the demardce between real spectral utilization and chart allonatio
for wireless communications services. Along with the rapidecause, while the static transmitters such as digitalgiveds

rise at the number of users, the increasing demand for maantinuously occupy the spectrum, the dynamic users such
communications capacity to deploy multimedia applicagioras land mobile radio systems transmit intermittently and do
entail dfective utilization of communications resources. Agot occupy the spectrum continuously. Therefore, it is a
a matter of fact, this requirement stems from the limitespectrum allocation irféciency problem rather than a scarcity
resources such as frequency spectrum, physical limits @sue but it was not possible to observe this solely based
communications, data transmission limitations indicabsd on spectrum allocation charts and traditional commurocesti
Shannon - Hartley Theorem, and the characteristics of thpproaches. As a result, the dynamic usage of the spectrum
wireless channel. When the current state of wireless tdohnamust be distinguished from the static usage, because the
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intermittent utilization of the spectrum by the dynamic ngsetune approach benefits from the superheterodyne receiver
imply new communications opportunitie® be exploited to architecture and sweeps over the frequencies of interest by
access the spectrum. Adaptive wireless communicationgrdesamixing the output of a tunable local oscillator with the itpu
methodologies are proposed to identify the requirementiseof signal and down-converting it to intermediate frequenaygea
users and to allocate just enough resources consistehthgel After a bandpass filter is applied to the channel of interest,
methodologies enable mordfieient utilization of the system spectrum sensing methods are utilized. This method is slow
resources and consequently improve the total capacityeusaand its sequential monitoring and sensing approach can lead
The dynamic spectrum access (DSA) paradigm is one of theéedoss of significant spectrum occupancy information. lefil
adaptive communications methodologies which is proposedidank detection, a set of filters are designed to process the
achieve éicient frequency spectrum utilization. wideband signal and each filter down converts the correspond

Among the definitions of radio systems which are compurg block of the spectrum. Then, sensing methods can be
tationally intelligent [1], widely accepted terminology tic- applied over each block separately. The main drawback of
complish éficient frequency spectrum utilization is introducedhis technique is the complexity of the parallel filter bank
through software defined radios (SDR) and later on cognitiaechitecture implementation. Finally it should be mengidn
radios [2]. Cognitive radio (CR) technology aims to chooshat the signal processing problems caused by tligculity
and support multiple variations of wireless communicatiorof providing a certain dynamic rangee. high resolution
systems, and introduces secondary (or sometimes unldensampling, while maintaining the Nyquist sampling rate leat
users to achieve opportunistic access in the wirelessrspect new set of sensing techniques. The ADC is conducted in sub-
Allocation of secondary users should be conducted in sublyquist rates and then spectral reconstruction is applieithe
a reliable and flexible way that the communication of theampled signal. Sub-Nyquist techniques provide a solution
primary (licensed) users would not befexted and there the high speed ADC, however, the monitored spectrum should
should be no loss at the QoS due to the secondary accésssparsely occupied for successful sensing. Maintairhiigg t
To this end, spectrum sensing is proposed as a CR featuretiterion can be dficult in many scenarios therefore some
detect the primary users via digital signal processing ogth improvements at the sensing performance should be expected
such as energy detection, matched filtering, covariancexmatn the sub-Nyquist domain.
based algorithms, cyclostationary feature detection,ranii-
taper spectral estimatiohl[3]. II. M OTIVATION

Initial spectrum sensing methods are mostly designed as-,

suming that only a single channel is sensed. However, if aSpectrum sensing is perceived as a feature that solely

: . rovides whether the primary user exists in a communica-
block or multiple channels of the wireless spectrum are@n¥ P Y

: ; o ion channel or not. Its initial scope can be defined as an
instead of a single channel, more communications oppor

. . . . .information provider in time or frequency domain, on the
tunities will become available. Therefore, wideband segsi .

. . . channel access st the primary users to enable secondary

approach is conceived as an expansion of spectrum sensin . . . "

actess[[5]. Extension of sensing to the wideband scenarios

over the wireless spectrum and CR should focus on a wideba d the final decision stages of the current wideband sensing

. . . 4
spectrum, if possible. On the other hand, sensing methads, . . . . ;

. echniques which are based on binary hypothesis testimg als
mostly assume that the channel frequency response is fiat, U e this perce tiori J4]. However, the FCC Spectrum Polic
this assumption does not hold for wideband and multi—chhnrfl)e b P ) ' P Y

scenarios. In addition, the binary hypothesis testing bvhi(f ask Farce repart]6] recommends the improvement of wire-

only decides whether there is an occupant signal in a giveeSS throughput by achieving signal orthogonality overrgea

channel or not is frequently utilized by sensing methodseih 6 dimensions grouped under a dO’T‘a'“ caIIedspectr_um

. ) o . . hyperspacd7]. Spectrum hyperspace includes but not limited
binary hypothesis testing is directly applied to the wideha frequency. time. space. bower. polarization. anale oial
multi-channel scenarios, decision mechanism can leadeo {R q Y, » SPace, p P » ang '

. : aqd code dimensions. Secondary access should be extended
assumption of full occupancy even though the spectrum is o

fully occupied since the CR will not be able to discriminate” these dimensions. In Fifl 1 some of the communications

multiple channels from a single channel. Eventually, speat opportunities provided by the spectrum hyperspace ars-illu
; . . Pl trgted.
sensing methods cannot be directly applied to the wideban tilization of the dimensions of the hyperspace, to improve

scenarios and consequently, wideband sensing technigadles %he throughput, not only requires the spectrum sensing-meth

as multiband joint detection, wavelet, sweep tune, f||temkba0ds to decide whether the primary users exist in the channel

detection are proposed in the literature [4]. . . A .
prop . .[ ] . _gr,not but also necessitates identification of the primamsr us
When the wideband sensing techniques are considered oo
) . ) . .~ waveformse.g, the air interface parameters, burst structures,
multiband joint detection and wavelet detection technique

require high sampling rateigh resolution analog to digital chip rates, cyclic prefix sizes, preambles and employedradi

. . . access techniques (RATs) without going to demodulation
conversion (ADC) blocks which are computationally expen- . L )
) : stage. In fact, the International Telecommunication Union
sive and dificult to implement. However, the rest of th

adiocommunication Sector (ITU-R) report on definitions of

sensing procedure is achieved simply either by dividing tigeDR and CRI[8] indicates that CR should “dynamically and
time data into the bins and applying energy detection over

the power spectral denSity (PSD) of each bin, or by applyinglChannel term here refers to a frequency band of a certainvdtid as
wavelet transform over the PSD. On the other hand, the swetpned in [5].



. Time Dimension
Locat:?n: L1| opportunities

Space Dimension
T Opportunity
[~
R
g Location: L2
° A
a
Location: L1
A 'E'
)
S
— Frequency [MHz] 5
g 3
)
5 K
5 Code
g Dimension
a | Opportunit >
PP v j Frequency [MHz]
Time
z Frequency [MHz] [sec.]
Time Frequency
[sec.] Dimension
Opportunity

Fig. 1: Spectrum hyperspace provides communications opities in space, time, code, and other dimensions.

autonomously adjust its operational parameters and prtstocbe conducted blindly only by the radio or in an assisted
according to its obtained knowledge in order to achiewaanner when a priori information is available [15]. The mode
predefined objectives”. Moreover, ITU-R reports on CR syddentification concept defined in the TRUST project later on
tems in the land mobile services and international mobiéxtended to initial mode identification and alternative mod
telecommunications (IMT) systems indicate the usage of GQRonitoring methods in[[16] and identification of RATs are
technology to improve the management of assigned spectrantomplished based on received signal strength indicators
resources. The ITU-R reports describe CR as the enab@m the other hand, a configurable receiver architecture that
of opportunistic spectrum access amongst wireless netwatlssifies the wireless signals based on bandwidth estimati
operators without any prior agreements, and propose CRveith the radial basis function neural networks is introdiice
the controller of the terminal reconfiguration in heteroggums in [L7]. In addition, classification of overlapping air infgces
networks [9], [10]. One example area that will benefit fronusing pattern recognition techniques over distributechieals
these definitions is the channel usage prediction methazs sis proposed in[18]. While an air interface identificatiorstgm

as time domain opportunistic channel allocation techrsquthat employs cyclostationary feature detection is defined i
because they accomplish DSA by exploiting the idle period&9], pattern classification and machine learning methads a
between bursty transmissions based on the signal idetitifica combined to classify wireless signals based on charatitsris
information [11]. Another case is the maximum likelihooduch as burst size, hopping pattern, and carrier numbgBin [2
(ML) signal direction of arrival (DOA) estimators. Insteafl The proposed methodology introduces learning and predicti
being unknown stochastic processes, if the incident signélinctionalities therefore it is possible to classify newrsils

are known, useful DOA estimation properties can be deriveshd extend the communications capability of the proposed
peculiar to ML estimator$[12]. Therefore, CR should be &avaCR based system. Spectrum power measurements with low
of the communications environment as much as possible teamporal resolution are utilized to achieve machine leayni
achieve the rest of the goals itemized above. To this emdipervised classification of the RATs in_[13]. A communi-
sensing procedures should provide the information abaut ttations module aiming to attain a certain description of the
wireless signals in the communication medium for CR tradio environment by the estimation of signals modulation
adjust the transmission parameters adaptively [13], [14]. type, symbol rate, carrier frequency, and pulse shaping is

When the research on the adaptive and dynamic accg§§cribed in [[14] with the technical focus on modulation

to the wireless spectrum is considered, it is seen that tigntification. Moreover, a detailed analysis of cycldstadry
reconfigurability and awareness issues are initially askire feature detection based modulation identification is giiren

in the context of the transparently reconfigurable ubiqusto [21]- Finally, two-stage sensing mechanisms which apply tw
terminal (TRUST) project, and a radio mode identificatiof@Tow-band sensing methods sequentially are proposed to
and switching concept is introduced. Mode identification cdMProve the overall sensing performantel[22].][23].



Whether under the concept of CR or not, the research and classification approach is required and in this paper, we
extracting more information from the communications meaiu propose the signal identification system model given in[Big.
focuses on some fierent and specific aspects of adaptiveness this system model, after the wideband receiver antenna,
and awareness requirements of next generation communiga-initial RF filter which blocks high-frequency signals rfto
tions networks, instead of providing a comprehensive aitide mixer input and prevents mixer non-linearities is zétl.
unifying approach. Moreover, even though spectrum sensiRgllowing the RF front-end, the features of the ADC possess
can constitute a solid base to achieve the reconfigurahitity crucial importance for the performance of the signal identi
awareness goals described, current technical level ofrggndication procedure. Signals that have high power levels are
cannot satisfy the requirements of fully adaptive, awaré amixed with very low power signals in the spectrum. Therefore
intelligent communications systems. For instance, irktefa digitization process should have the capability to represe
providing the extensive set of signal parameters listedr@bowide dynamic range in the digital domain. This requirement
current wideband sensing methods are designed to opeir be satisfied by the employment of high resolution ADC
as parallel or sequential multi-channel energy detectiors. circuity such as 12 and 16 bit converters proposed in the
its current perception, wideband sensing can only inform CORerature [24], but the wideband nature of the conversisn a
whether the sensed channels are occupied or not baseddemands high sampling ratés [4]. To overcome tifigcdilty of
some a priori information such as noise variance of eablalancing the resolution and speed requirements, implemen
sensed channel. Therefore, spectrum sensing should evdiva of notch filters at the RF front-end to isolate high-powe
to a more general and comprehensive awareness providéignals and sampling sub-Nyquist rates can be considered,
mechanism, which will not only be a part of CR systembBowever, both approaches assume that certain informaitn s
to provide channel occupancy information but also will beas frequency channels of high power signals and spectral
come a communication environment awareness componenbotupation rate are available beforehand. In our work, we
an adaptive spectrum hyperspace access (ASHA) paradigitessume that a wide dynamic range is available through a low
beyond DSA. ASHA should noise amplifier (LNA) at the mixer input to achieve high level

. achieve initial autonomous signal identification and adajftPut power sensitivity. On the other hand an automatic gain
sensing parameters continuously to ensure robust idei@ntrol (AGC) block is allocated before the ADC to enable
fication of the signals, to the resolution adjustment of the conversion. Therefore,

. decide whether the employment of further techniqué¥lance between resolution and speed can be accomplished
such as statistical channel occupancy prediction, mybili? an adaptive manner.
level estimation, user localization is necessary before . . . . .
accessing the hyperspace and in case of positive decis@‘n Selection of Initial Dimension of Operation and Wideband
execute these tasks, ensing _ _ _ _ _

. select the optimized waveforms and access techniquedhe received signal is composed of noise and various
based on the collected information on the communicatigignals which employ dierent access techniques and comprise
medium, taking dferent scenarios such as secondaMnique characteristics inherited from the definition ofithe
access, low or high priority primary access, interferendgchnologie®.g, standards, air interfaces. These features have
prohibited or restricted access into account, projections over the multiple dimensions of the spectrum hy

. access the spectrum hyperspace adaptively, monitor fffspace and can be used to identify these signals. Hoveever,
activities in the hyperspace to ensure the access Crtain level of dimensional abstraction is required befiand
achieved in the predefined context and constantly evolt@initialize the identification process. When the dimensiof
resource management and optimization, the spectrum hyperspace are taken into account, both channe

and in such a perspective, spectrum sensing evolveigtal assignments over the wireless spectrum which are managed

identificationwhich leads to recognition of communicationdy the regulatory organizations and standard based carrier
opportunities in dierent dimensions of the hyperspace, angPacings lmply frequengy as the initial dimension to starj[

provides necessary information about the air interfaces, dhe separa’qon of the _5|gnals. Therefpre, fr_equency domain
cess techniques and waveforms to accomplish ASHA in g@presentation of the wideband signal is obtained throagh f

networks, CR systems, small cell and heterogeneous netwbfirier transform (FFT) at the next stage of the proposed
terminals. signal identification system model in Fif] 2. It should be

noted that, FFT is also the initial block of wideband sensing
algorithms such as multiband joint detection and wavelet
detection.

We define signal identification as a procedure, which not Wideband sensing stage coarsely detects the active clsannel
only provides the information whether the spectrum hypeover the given spectrum and provides the bandwidth andicente
space dimensions of interest are occupied or not, but afsequency estimation information. For instance, while tiplé
reveals the underlaying information regarding the paramset users can access a single channel with burst transmiskine, t
such as employed channel access methods, duplexing texdn be a single user in a given channel using direct-sequence
niqgues and other parameters related to the air interfacesspfead spectrum (DSSS) modulation or a single user can
the signals to satisfy the ASHA requirements. To achiewsecess multiple channels. Moreover, wireless signals ¢ar o
signal identification, a comprehensive signal detectiensgg lap in multiple dimensions leading to interference. Theref

I1l. SiGNAL IDENTIFICATION FOR ASHA
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Fig. 2: Signal identification system model. Initial wideldasensing stage aims spectral detection and parameteragetim
Final identification is achieved based on unique featuresidadless signals.

before starting any identification procedure, a certaiell®f overshadow the features of the signal that would normadid le
signal separation should be achieved. Bandpass filter and th identification. On the other hand, when the procedures of
following optional burst detection blocks aim to condudsth introduced signal identification system model are folloyaesl
separation operation based on the input information peslidthe bandpass filter is applied to leave only the time domain
by the wideband sensing stage. If the signals are overlapmasnponents unique to the estimated frequencies, for iostan
in time, bandpass filter that operate over the estimated bandn the given peculiar scenario, final sensing process based o
interest leads to elimination of the time domain componentgclostationary feature detection will lead to the dominan
of other channels. If there are still multiple users or téghas peak indicating data rate of Bluetooth signals as given in
accessing the channel, before the selection and the esraiti Fig.[3(c).

the spectrum sensing method, burst detection can be applied

the filtered data. On the other hand, if the sensing procedie Spectral Classification and Other Blocks

is affected from the spectral overlap, filtering and the burst gpectral classification block (SCB) is the information com-
detection procedures can also provide spectral distimctio parison block between the signal processing blocks of wide-
One alternative approach could be starting the identiicatiband sensing and bandpass filtering. After the wideband
process in time domain and designing the blocks followirgg tlsensing stage detects the signals in the frequency domain
ADC under this assumption. To investigate such a scenaramd estimates the bandwidths and center frequencies of the
we conducted Bluetooth based communications beside thetected signals, SCB compares the estimated spectral in-
ongoing communications activity in the industrial, sciéat formation with the regulatory and wireless standard based
and medical (ISM) band and recorded the whole 80 MHrnformation and decides which candidate or potential dgyna
band from 24 GHz to 248 GHz with the wideband receiverare possibly utilizing each channel. At this stage, defiiciéa-
available in our laboratory. Fi. 3{a) shows the time domatiification is not possible solely using spectral data. Hosvev
data of 50 milliseconds of recording. 54 bits fixed headdéhis comparison process has vital importance for the signal
of the Bluetooth signals makes them suitable for data ratéentification procedure, because the narrow-band spactru
estimation via cyclostationary feature detection and wdied sensing method that will be employed to identify the signal
through demodulation that the burst we marked in Fig.] 3(a) véll be selected based on the information provided by SCB.
a Bluetooth signal centered aroundi2 GHz. But when the The bandpass filter is applied over time domain data to isolat
cyclostationary feature detection is applied, the resgitiyclic the signal of interest and estimated bandwidth and center
spectrum of the selected burst does not reveal the data fagguency information provided by the wideband sensingesta
information that is expected as shown at the cyclic spectruane used as filter parameters. After the filtering operation,
in Fig. [3(b). Therefore, in a wideband sensing scenario, tlie SCB information implies possibility of multiple bursts
the burst detection is conducted without filtering each &lign the filtered data, optional burst detection stage can bizedil
some other dominant frequencies over the detected burst niaiyfurther separation in time domain. Therefore, selectd
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(a) Recorded time domain ISM band signal. (b) Cyclostationary feature detection without filtdc) Cyclostationary feature detection after filtering.
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Fig. 3: Htect of filtering on spectrum sensing metho®y(7,t) at the vertical axises represents the time varying cyclic
autocorrelation function which is periodic in time= 1 usecs for Bluetooth signals.

spectrum sensing method to identify the signal is conductbdsed wideband sensing techniques which require another

after the bandpass filter or optional burst detection stage. sensing method at the final stage. Modulation classification

I1|%_kept out of scope of this study because same modulation

type and order can be employed byfeient wireless signals in
spectrum. Thus, identification in the modulation dini@ms

Froduces its own challenges.

Wideband sensing methods that are available in the litexatu

One of the ways to classify the narrow-band spectrum se
ing methods is based on the signal parameters that are @ool
in the sensing process and in this context sensing metheds.

. : in
categorized as either coherent or non-coherent technjddgs
For instance, matched filtering and cyclostationary fesatur

detection are coherent methods with better detection pro tect the ch.an.nels \.Nh'Ch have acpvny over the spectrgm.
bility than non-coherent energy detection. However, ceher . owever, their final binary hypothesis testing process Wwhic

detectors require a priori information peculiar to the sehs ' based on null anq alternative hypotheses does not provide
signals: Matched filter provides optimal detection by ma)j—my furthgr information on spectral parameters such acent
mizing signal to noise ratio (SNR) but requires demodutati requencies and_bandW|dths of the signals. M-oreO\{er, tlnet bu
parameters. Cyclostationary feature detection can dedeect and peak detection s_tage.s of the proposed.S|gnaI ideniiicat
dom signals depending on their cyclic features even if tﬁé(Stem model also implies further detection processes. For

signal is in the background of noise but it requires inforiorat instance, each coherent narrow-band sensing technique can

about the cyclic characteristics. But more importantly;lavh I_ead to maximization of a certain parameter to identify apec

non-coherent methods such as energy detection is applied“ t)t/)pedof §ign3l fand seEarate ma;ximgm I[:kelihood deuﬁcto Id
setting a threshold for solely detecting the existence ef tfy@" D€ designea for éach parameter. Such an approach wou

signal, coherent sensing methods can lead to signal idenfi[ﬁtroquce high level of comple>$|ty and would be an |aneX|bI¢
ution. Consequently, there is a need for a comprehensive

cation. Tabld]l provides an extensive set of sensing methoti: _ : : :
classified based on the ability of identification, corregfing approach 1o the wideband sensing and detection requirsment
hyperspace dimension, and sensing paramete'zrs of the signal identification process. We address these dssue

by introducing a modular, reusable noise floor and spectral
The initial classification information provided by the SCByarameter estimation method.
leads to the possible sensing parameters for potentiatiy-oc
pant signals and based on these information, spectrunmngensi
method selection block (SSMSB) finds the correspondijg\:{' Noise FLOOR AND SPECTRAL PARAMETER ESTIMATION METHOD
sensing method from Tallk | and executes identificationgsroc Based on the wideband, multi-channel sensing, spectral
dure. In a given scenario, if the SCB indicates the prohigbiliparameter estimation, and peak detection requirementseof t
of DSSS signals in a given channel, after filtering, SSMS&ignal identification system model, we propose a modular
can employ cyclostationary feature detection from the @bl noise floor and spectral parameter estimation method (NF-
Thus, peak detection block will search for the cyclic freque SPEM). The proposed NFSPEM first estimates the noise floor
cies indicated for the peculiar signal to make a decision and distinguishes the rest of the “information bearing” s
the first place but in case of no identification, the range ef tlirom the samples that are marked as noise. Then, the next
cyclic frequency search can be extended. On the other hlandnbdule estimates the signal parameters such as bandwidth
only the channel occupancy information is important, SSMS&hd center frequency. The proposed NFSPEM first achieves
can operate with non-coherent sensing methods. The gatistsensing of the signals over a given frequency spectrum witho
tests listed in Tabl€l I include but not limited to Andersonthe requirement of any a priori information. Moreover in
Darling test, student’s t-test, Kolmogorov-Smirnov temthd contrary to the other wideband sensing techniques, adopted
statistical covariance based tests. The last two itemslitella noise floor estimation approach also leads to the calculatio
are also wideband sensing techniques which provide sensafgthe spectral parameters such as bandwidth and center
decision directly in contrary to the sweep tune and filterkbarirequency which will be utilized at the following stages



TABLE I: Identification capabilities of spectrum sensinghaiques

Sensing Method ||  Dimension | Sensing Parameter | Result
Energy Detection|| time/frequency signal energy Detection Only
time domain signal structure Detection
Matched Filter time and characteristics and
e.g, pulse shape, package format, Identification
guard time, burst duration
Cyclostationary chip rate,data rate,CP size, Detection
Feature frequencycode | symbol duration, modulation type), and
Detection carrier spacing and number Identification
Statistical Tests time signal distribution Detection Only
Entropy Based frequency signal entropy Detection Only
Eigenvalue time/ signal eigenvalues Detection Only
Based angle direction of arrival
cyclic prefix, midamble Detection
Autocorrelation time preamble, PN sequence, and
and others Identification
Template frequency frequency domain Detection and
Matching filter characteristics Identification
Multitaper Based frequency signal energy Detection Only
Wavelet frequency signal energy Detection Only
Multiband
Joint frequency signal energy Detection Only
Detection

of the signal identification process. In addition, both burslivided into horizontal segments of

and peak detection modules can be implemented based on _

NFSPEM, because a time domain signal or the output of a |~ max(¥) - min(Y) )
coherent narrow-band sensing method such as cyclic freguen Koy

spectrum exhibit similar characteristics with the frequen _ - .
spectrum in the context of detection. Hence, the fundamen\f\g‘ereo—Y(N) is the standard deviation of whol-point FFT

idea of distinguishing information bearing samples frora thsampl_es of th? frequency spectrum akds the standard
noise will work. deviation cofficient and can be selected as& < 1 accord-

ing to adaptive or dynamic threshold methodology which is
In case of initial wideband sensing process, the NFSPE&Mployed for data binarization[27]. It should be noted ttiee

works onN spectral samples out of FFT. In wideband multisegment length adaptively changes with the standard dmviat
channel sensing scenarios, it can be assumed that signalsfathe recorded spectrum. If the standard deviation is high,
various power levels occupy the spectrum along with noisaere will be more fluctuations in the frequency spectrum,
The samples with highest power levels will carry the moghen, the length of the segmerits becomes wider to catch
information about the wireless occupant signals, while tibe activity in the sensed frequency bands. If the standard
samples that are accumulated at the bottom of the spectrdeviation is small, then, spectrum will be relatively flat,
will be constituted by the noisé [25]. Moreover it is knowrsegment length becomes narrower, detection and parameter
that noise variance is less than signal variancé [26], thiss i estimation in the next stage become more precise.
plausible to divide the samples into two groups: First grolip  The second issue that should be addressed is the selection
samples starting from the bottom of the spectrum until sonoé quantization levels which will represent the noise. listh
level of power should constitute signal base or noise flooase, there is a need to detect the point where a significant
and the second group of samples should be evaluated asdhange occurs in the standard deviation and consequently in
information bearing samples for wireless signals. Conside the number of samples in one of the quantization levels due
the two groups of samples, it can be stated that the sampiedransition from the first group of samples to the second.
that accumulate at the bottom of the frequency spectrum wilhen the quantization levels are listed from bottom to tap, i
exhibit a denser distribution when compared to the samplesse of a significant reduction in the number of samples in the
in the second group due to lower variance and consequerglyantization level when compared to the previous level due t
lower standard deviation. Therefore starting from the mimin  high standard deviation of information bearing samplesait
power level, detecting a significant increase in the stahdare assumed that the noise floor is limited with the previous
deviation will mark the end of noise floor for the given fredevel and the samples belong to the level where the change
guency bands. Such a sensing mechanism can be implemeptalirs and the samples of other higher quantization levels
by adopting the quantization level approach from the analbglong to occupant signals. To this end, when the change
signal digitization process: The frequency spectrum wél bdetection methods are investigated, cumulative sum (CUBUM
partitioned into horizontal segments and all the samplds withange detection method which is already applied to spactru
be grouped based on their corresponding segments. Therefsensing in the context of quickest detectionl[28] becomes a
if the power spectral representation of the received siggalprominent alternative because, in contrary to the Bayesgda
defined asY(n) wheren = 1,---,N, the spectrum can bedetection, it does not require any information about thea dat



distribution and it is not time sensitive. ify, My, ..., m_ are by the SSMSB to chose the narrowband sensing method or
the number of samples at each quantization level, the aserdy the decision mechanism which will lead to identification
number of samples per level can be definednasnd the directly. The sub-blocks of NFSPEM are shown in [Eig. 4 along

cumulative sum starting wity = 0 can be given by with example measurement outputs for wideband sensing,
burst, and peak detection. The peak detection case corre-
Si = Si_1 + (m —m), (2) sponds to identification and parameter estimation of a Bezar

_ . cdma2000 signal. While the first peak identifies the unique
wherei = 2,.._.,L. After each CU_SU_IVI value is calculated,chip rate of 1S-9%dma2000 signalie., 1.228 mega-chips
the change point where the quantization levels above tr&enQgje_second, the following peaks provide the total number of
floor starts is given by carriers and their spacings.

Smax = arg maxs;. 3)

1=2,...L V. MobuLaR FLEXIBILITY OF SysTEmM's BLocks

The confidence levels of the change point detection metho
has vital importance from the aspect of sensing performan

'Lherefo][%, bootlstralp a:?arl]ysiz iSS implemﬁn;e? o _guzlnti ould help to achieve the itemized goals of ASHA in the
the confidence levels of the CUSUM method for widebarg place. Therefore, starting from the RF front-end, ailgn

sensing._ Channel occupancy rate has impor_tant inﬂuencerggcessing, detection, estimation and decision makingkislo
lthe ::orflﬂder;]ce Ie_veIsS.l\'Il'gerefc(j)re,_ thle approximate confisle signal identification system model should be considered
evels for changing and wireless spectrum occupangy exchangeable and updatable components. Whenever new

rates are given in Tablelll. The simulation results indidhe spectrum sensing methods or identification algorithms are d

as the occupancy rate becomes lower, the confidence levels ‘?oped the spectrum sensing block which comprise availab
slightly better. Actually, when the occupancy rate read@®s, '

dOn the way to realizing fully adaptive, aware, and intel-
ent wireless communications systems, signal identifica

he SNR> 10 in level of fid ; hi an emerge, thus the decision mechanism should also be
as the > 10, a certain level of confidence Is achieved,  jige accordingly. Moreover, spectral parameter estima

for all occupancy rates. When 0% occupancy rate boundq{cyn, burst and peak detection requirements of the proposed
is considered, the bootstrap analysis providesSER% of system model can be satisfied with robust, comprehenside, an
%omputationally sound detection and estimation methods th
can be proposed later. On the other hanffedent noise floor

TABLE II: NFSPEM confidence levels: channel Occupanc9_stimation methods can be employed for the specific needs of

with that of energy detection. The Tabld Il indicates tha&:

the additive white Gaussian noise.

rate v.s. SNR different scenarios. For instance, if the noise estimationiprec
sion is highly important, in return for additional compudatal
Channel Occupancy Rate ; ; ; ; ;

SNR 5% T 6% [ 7% | 90% comlple(jX|ty, a pdozsm!e.mcreasre] at_the sen3|tngI dkuretmcc_mi?n
[ 36.7480% [ 25.3440% | 22.5340% | 18.9990% newly designed decision mechanism, spectral kurtosischase
=] 74566095 | 43.6100% | 24.5370% | 20.4360% noise variance estimation method proposed[in [25] leads to
0 94.0610% | 69.2080% | 47.7670% | 26.2010% approximately 3% improvement at 25% channel occupancy
2 || 98.7510%] 92.8520%| 73.0890%] 40.6680% rate and 5% improvement at 75% occupancy for SKRO
4 09.6580% | 98.7490% | 93.5080% | 65.5230% 4B wh d to th d noise fl imati
5 99.9070% |99 6430% |97 9930% | 86 0050% when compared to the proposed noise floor estimation
8 99.9500% | 99.8200% | 99.1730% | 92.7060% sub-block. Therefore current solutions can be exchang#d wi
10 || 99.9670% | 99.8300% | 99.3970% | 92.9740% the new ones whenever necessary, as a part of continuous

12 || 99.9699% | 99.9620% | 99.7990% | 95.9640%
14 | 99.9700% | 99.9650% | 99.80% | 96.9830%
16 || 99.9730% | 99.9680% | 99.8680% | 97.1910%
18 || 99.9740% | 99.9690% | 99.8822% | 97.7850% VI APPLICATION AREAS
20 99.760% | 99.9690% | 99.8990% | 98.4310%
One of the potential application areas for the proposed
Beside wideband sensing, the NFSPEM can be utilized feystem is the identification and location estimation of-ille
time domain burst and other peak detection requirementsof gal emitters [[20]: Signal identification systems can previd
signal identification. Reusing NFSPEM for such functiotiedi information such as the signal type and direction of arrival
leads to significant reduction at the implementation rexguirto direct the regulatory fiicials and field engineers to the
ments and complexity of the system model. The time domasource of abusive usage. Beside that there can be some
recording or the output of a signal processing applicatiamintentional emissions in the communications envirortmen
such as autocorrelation or cyclic spectrum can be given @sused by uncalibrated or broken access point or baserstatio
inputs to the NFSPEM. After the information bearing samplesrcuitry such as power amplifiers and oscillators. It can be
are distinguished, the second parameter estimation fdk-blproblematic to find the source of such transmissions due
of the method provides a set of parameters such as buostthe number and distribution of the transceivers over the
duration and peak location. These information is utiliziédex operation area. However, signal identification algorithcas

improvement #orts to reach the objectives of ASHA.




directly find emitting sources or quickly reduce the numbfer gafety dficers in a timely manner. In such cases the signals
candidate transmitters to a few. transmitted by the devices of the victims can be detected,
The signal identification procedure in Figl 2 can be uttracked and the direction of the signals can be estimatetey t
lized by numerous governmental, commercial, and militageployed ad-hoc signal identification hardware locatedido
applications. The potential applications are frequencyn-mathe disaster areas. Moreover, the signal detection, lmtati
agement, security and surveillance, interference managgmestimation and direction finding algorithms can be devedope
geolocation of target emitters. Therefore, signal idegatfon in a flexible manner. These technologies can be employed by
can be beneficial to frequency regulation agencies, pubfie first responders to detect and locate victims even farscas
safety agencies, cellular operators, broadcasterspmaiasion in which the original core wireless communications network
agencies for navigation and communication, and law enforde down. The first responder teams and their equipments can
ment. For instance, TV white space systems aim to provite used to detect the victim transmission which can lead to
wireless wideband access through unused radio spectrunioatte the victim transmitter via direction finding and ltca
the TV channels. If the vacant channels would be decidedtimation algorithms.
based on only the TV white space spectrum databases, in
border regions, broadcasts from the neighboring countytpr ¢
could be assumed insignificant source of interference while
sometimes they would be. In such scenarios wireless accesklentification duration and accuracy which replace sensing
QoS and broadcasting quality would degrade. Therefore Tration and accuracy in the context of proposed system imode
white space systems can benefit from the signal identificatiare the main parameters to quantify thiogency of oppor-
system for precise TV white space access planning. Morgov@inistic access to the spectrum hyperspace. The rapid ttgang
signal identification can lead to information regarding tcommunications medium requires the signal identificatimn t
the co-channel, adjacent channel, narrowband, and widebdxe conducted as quick as possible with a certain level of con-
interference sources. IEEE 802.16 Broadband Wirelessgsccédence and in general, the value of both parameters increase
Working Group working on the interference detection andith increasing algorithm and signal processing compyexit
measurement indicates that “based on the above conditiohke proposed signal identification system model provides
an accurate detection and measurement of the intranet intepre information about the hyperspace when compared to
ference requires specific interference patterns to be atealu the spectrum sensing methodology as it establishes itgelf o
across a given cluster of cells subject to the interfereetecd the current state of the art by employing both narrow-band
tion and measurement”. Even though this document is stdndaensing methods and wideband sensing as sub-blocks. Gain-
specific, it defines the “interference pattern” concept Wwhidng extra knowledge about the communications medium and
binds the modeling and predictionfferts to the interference extending spectrum sensing to the dimensions of the spectru
detection problem. Thus, interference analysis methods dayperspace consequently entailed the implementation dif ad
benefit from the outputs of the signal identification proaedu tional detection, classification, and sensing algorithiosig
as well as spectrum modelingferts. with signal processing components such as bandpass fijterin
One very important field that signal identification method~urthermore, sequential execution of identification pdures
ology can contribute is the public safety communicationdefined in Fig.[2 over the monitored wideband spectrum
Emergency call services such as enhanced 911 are desigreds to extension of identification duration. Implementat
to provide improved service including instant delivery obf parallelfiltering architectures such as filter banks glasith
the victims location information to the local Public Safetya multiple antenna RF-front end such as the one introduced
Answering Point (PSAP). Taking the requirements of the 9in [24] can lead to identification of opportunities quicker
services into account, wireless service providers too&ritige than the sequential process, however, the additional rayste
to employ precise location estimation techniques based lewel complexity that will be introduced should be quantifie
their network capacities and structures. Even though thesgrefully.
systems are very helpful for limited number of calls and AGC block can benefit from the extensive frequency do-
specific events, it is not possible to maintain such servicemin occupancy modeling and prediction research which is
under extreme casedfecting an important section of theclassified in[[30] to establish balance between sampling rat
population living in an area. The disasters such as Pakistamd dynamic range requirements in an intelligent manner.
and Australia vast area floods, California wild forest fimsg Another issue is the selection of the wideband spectrum to
earthquakes in China and Japan showed that the first hours Badnonitored. Instead of implementation of multiple antenn
days are very crucial in saving the lives of the victims. lis th RF front-end can also be designed in a flexible fashion and can
important period of time, the victims who are scattered atbu be tuned to dterent chunks of spectrum. Wideband channel
the disaster area would be looking for a way to communicatelection strategies introduced [n [31] can be helpful iohsu
to get help. However, the wireless network infrastructuae c an architecture. On the other hand, after the initial signal
be damaged during such extreme situations. Beside thatjdéntification tasks are completed successfully, the prose
the victims are calling to reach the 911 services at the saf8HA methodology can benefit from the extensive research
time, congestion due to the capacity limit of either networkn multi-user detection methods to further determine atsel
or PSAP can result latency or it may not even be possible communications opportunities at the user level in the fedus
provide most of the victim location information to the publi dimension. The design of waveforms can be conducted based

VII. OpeN Issues
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on these information and access to the spectrum hypersp@og Apurva N. Mody, Stephen R. Blatt, Diane G. Mills, ThomBsMcEI-

can be executed in the context of ASHA. Signal identificatio
processes can also benefit from cooperative communicationa ,

chitectures by distributing the work load between the eissl
nodes in communication. Collaboration scenarios simildhé

spectrum sensing can be discussed for the signal identificat

as well.
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NFSPEM

Spectral Parameter
Estimation

Noise Floor Estimation P

(@) The two sub-blocks of noise floor and spectral parameter
estimation method.

Power Spectrum Density [dBm]
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1.978 1.98
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(b) Wideband sensing at PCS downlink band with NFSPEM: theensamples
which are detected by the first sub-block is marked with rerke@ diamonds
indicate estimated center frequencies by the second @bl

210

Sagnal Bomer [mid]

i
Recarding Tirme [466]

(c) Burst detection with NFSPEM: noise floor is marked wittl eexd second sub-
block estimates the burst times and durations in an ISM baoadrding snapshot.
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chip rate for cdma2000 signals
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(d) Peak detection with NFSPEM: cdma2000 signal identificatand carrier
number estimation. The NFSPEM provides the dominant peakihea cyclic
spectrum.

Fig. 4: The modular NFSPEM can be utilized for wideband semsburst and peak detection requirements of signal
identification system model. Reusing NFSPEM leads to sicamti complexity reduction.



	I Introduction
	II Motivation
	III Signal Identification for ASHA
	III-A Selection of Initial Dimension of Operation and Wideband Sensing
	III-B Spectral Classification and Other Blocks

	IV Noise Floor and Spectral Parameter Estimation Method
	V Modular Flexibility of System's Blocks
	VI Application Areas
	VII Open Issues
	References

