Abstract:
Demands for very high system capacity and end-user data rates of the order of 10 Gb/s can be met in localized environments by Ultra-Dense Networks (UDN), characterized as...Show MoreMetadata
Abstract:
Demands for very high system capacity and end-user data rates of the order of 10 Gb/s can be met in localized environments by Ultra-Dense Networks (UDN), characterized as networks with very short inter-site distances capable of ensuring low interference levels during communications. UDNs are expected to operate in the millimeter-wave band, where wide bandwidth signals needed for such high data rates can be designed, and will rely on high-gain beamforming to mitigate path loss and ensure low interference. The dense deployment of infrastructure nodes will make traditional wire-based backhaul provisioning challenging. Wireless self-backhauling over multiple hops is proposed to enhance flexibility in deployment. A description of the architecture and a concept based on separation of mobility, radio resource coordination among multiple nodes, and data plane handling, as well as on integration with wide-area networks, is introduced. A simulation of a multi-node office environment is used to demonstrate the performance of wireless self-backhauling at various loads.
Published in: IEEE Communications Magazine ( Volume: 53, Issue: 1, January 2015)