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Abstract—The distributed inference framework comprises of a
group of spatially distributed nodes which acquire observations
about a phenomenon of interest. Due to bandwidth and energy
constraints, the nodes often quantize their observations into a
finite-bit local message before sending it to the fusion center
(FC). Based on the local summary statistics transmitted by
nodes, the FC makes a global decision about the presence
of the phenomenon of interest. The distributed and broadcast
nature of such systems makes them quite vulnerable to different
types of attacks. This paper addresses the problem of secure
communication in the presence of eavesdroppers. In particular,
we focus on efficient mitigation schemes to mitigate the impact
of eavesdropping. We present an overview of the distributed
inference schemes under secrecy constraints and describe the
currently available approaches in the context of distributed
detection and estimation followed by a discussion on avenues
for future research.

Index Terms—Distributed inference, distributed detection, dis-
tributed estimation, eavesdroppers, secrecy, confidentiality

I. INTRODUCTION

Distributed inference networks have attracted much recent
attention due to a variety of applications in civilian and mil-
itary domains. These include surveillance, environment mon-
itoring, cognitive radio networks and cyber physical systems.
Distributed inference networks employ a group of sensing
entities that collaborate to sense and make inferences about a
given phenomenon of interest (POI). In the traditional frame-
work of centralized inference networks, nodes transmit raw
observations to the FC. These transmissions are not attractive
in practice as raw observations require a large bandwidth (or
energy) for reliable reception at the FC. Therefore, distributed
inference networks have been proposed where the nodes trans-
mit compressed observations which are obtained by processing
original observations into a finite and tractable alphabet set.

In this paper, we denote the POI with a variable 6 € O,
where © is the set of possible states that the phenomenon can
take. Consider a distributed network, as shown in Figure
which comprises of N sensors and a central entity known
as the fusion center (FC), which makes inferences about the
POI. We assume that the i*" node makes an observation Y;
and compresses it into a symbol v; using a quantizer ;. The
compressed symbol v; is then transmitted to the FC through a
channel, which is represented as a function C%(-). We denote
the received symbols at the FC as u; = C%(v;), corresponding
to the *" sensor’s transmission. The FC uses the fusion rule
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Fig. 1: Distributed Inference Network in the Presence of an
Eavesdropper

I're to integrate the symbols u = {uy,- -+ ,uy} into a global
inference éFC’ € © about the unknown phenomenon 6.
Although the problem of distributed inference encompasses
a broader set of problems, in this paper, we focus our attention
on two fundamental problems, namely, distributed detection
and distributed estimation. The fundamental difference in the
two problems lies in the definition of the set ©. In the case of
distributed detection, © € {0,1} and in the case of distributed
estimation, © is a continuous set. Practical applications of
distributed detection include radar networks where the network
may be interested in detecting the presence of an aircraft, or
a cognitive radio (CR) network where the secondary users are
interested in vacant primary user (PU) channels. On the other
hand, examples of distributed estimation include location-
estimation and surveillance using spatially distributed sensors.
There are many benefits of distributed inference networks,
such as bandwidth efficiency, cost effectiveness and improved
reliability. However, the distributed and broadcast nature of
the communication links makes the network susceptible to
a breach in confidentiality. Thus, a breach in confidentiality
of distributed inference networks is an important problem,
especially when the network is a part of a larger cyber-physical
system. In a fundamental sense, there are two motives for any



eavesdropper (Eve), namely selfishness and maliciousness, to
compromise the confidentiality of a given distributed inference
network. For instance, some of the nodes within a CR network
may selfishly take advantage of the FC’s inferences and may
compete against the CR network in using the PU’s channels
without paying any participation costs to the network mod-
erator. In another example, if the radar decisions are leaked
to a malicious aircraft, the adversary aircraft can maliciously
adapt its strategy against a given distributed radar network
accordingly so as to remain invisible to the radar and in
clandestine pursuit of its mission. Therefore, in the recent past,
there has been a lot of interest in the research community in
addressing confidentiality in distributed inference networks.

To set the notations, we represent the channel between the
ith sensor and the Eve as a function C%(-). The symbol
corresponding to the i*” node received at the Eve is denoted
by w; = C%(v;) (See Figure . In other words, the total
information leakage is a function of w = {wy, - ,wn}.
Similar to the FC, we assume that Eve uses a decision rule
T'r to integrate the symbols w into its own global inference
0. Several metrics have been proposed in the literature
to quantify secrecy or the information leakage to the Eve.
Some of them include equivocation, Kullback-Leibler (KL)
Divergence, Fisher Information (FI) and probability of error.
Ideally, we expect to minimize this information leakage to the
maximal extent possible. For example, if KL Divergence or
conditional FI is the chosen metric, then perfect secrecy is
achieved only when KL Divergence or conditional FI at the
Eve becomes zero.

In this paper, we survey the state-of-the-art approaches
proposed to address secrecy in the context of distributed
inference networks. We first introduce a taxonomy in Section
where we present a survey on the state-of-the-art on secrecy
in distributed inference networks. Then, in Sections [[Il] and [[V]
we specifically focus on distributed detection and estimation
frameworks respectively where we present a detailed account
on how secrecy is addressed in each of these frameworks.
Finally, we present some important open problems while de-
signing a secure distributed inference network in the presence
of eavesdroppers in Section [V]

II. APPROACHES TO MITIGATE THREATS ON
CONFIDENTIALITY

There are fundamentally four approaches to address secrecy
in the context of distributed inference networks which we
discuss next.

A. Design of Sensor Quantizers and Fusion Rule

In this approach, the network designer takes advantage of
the difference in the channels (C%,, C%), foralli=1,--- , N,
while designing sensor quantizers and the fusion rule. We
denote by v = {71, -+ ,yn} the vector of all sensor quantiz-
ers in the distributed inference network. We assume that the
quantizer ~y; at the it" sensor lies within the set R;, for all
i =1,---, N. Similarly, we denote the set of decision rules
at the FC and Eve as Rpc and Rp, respectively.

Without any loss of generality, we denote the performance
metric at the FC and Eve as Qpc and Qp, respectively.
Consider a scenario where the network has a tolerable upper
bound on the amount of information leaked to the Eve.
Mathematically, this can be quantified in terms of a constraint
« on the Eve’s performance metric z. Then, one way of
finding the distributed inference system design in terms of
sensor quantizers and the fusion rule at the FC is stated as
follows.

Problem 1. Find (~v,T'r¢) such that Qpc is maximized while
satisfying the constraints:

1) maxr,er, Qg lies below a tolerable value a,

2) quantizers satisfy v; € R;,Vi=1,--- | N,

3) fusion rule at the FC satisfy I'rc € Rpc.

Note that error exponents are asymptotic performance met-
rics at the FC and Eve that represent exponential decay
rates of the error probability of their respective “optimal”
detectors. Therefore, if the performance metric chosen is an
error-exponent such as KL Divergence (for Neyman-Pearson
detection setup) or Chernoff Information (for Bayesian detec-
tion setup), Problembecomes independent of the fusion rules
I'rc and I'p at both the FC and Eve respectively, and reduces
to the design of the sensor quantizers alone.

B. Stochastic Encryption

As an alternative to the first approach where the network is
designed within the tolerable bounds on information leakage
to the Eve, one can pursue a more active approach where
the sensors flip their decisions randomly in order to confuse
the Eve. In this case, the FC is assumed to have a better
knowledge about the sensors than Eve, since the FC either
deterministically knows the flipping sensors, or has knowl-
edge about the flipping probability, about which the Eve is
completely ignorant. This introduces a significant difference
in the channels (C%,C%), foralli =1,--- , N, thus, reducing
the information leakage to the Eve.

Let the alphabet set of the compressed symbols v; at the
it" sensor be denoted as A, where the size of A is denoted
by M. In other words, the i*" sensor employs an M-ary
quantizer to compress the observation Y; into one of the M
symbols. Let us denote the flipping probability matrices as
P ={Py,---,Pn}, where P; denotes the flipping probability
matrix at the 7" sensor which can be interpreted as pre-shared
keys between the nodes and the FC. Note that P; is a stochastic
matrix for any ¢ = 1,--- | N, since all of its row elements sum
up to unity. The basic problem in this case can be stated as

Problem 2. Find P = {Py,---,Pn} such that Qpc is
maximized while satisfying the constraints:

1) maxr,er, Qg lies below a tolerable value «,

2) P; is a row-stochastic matrix, for all i =1,--- | N.

Note that, several variants of this problem can be inves-
tigated depending on the amount of knowledge the FC has
regarding the stochastic encryption process. For example, one
may consider that the FC has complete knowledge about
the flipping probability matrices P, however, does not know



exactly whether the sensor messages are flipped or not. In
this case, the FC can improve the secrecy performance at
the expense of detection performance. On the other hand,
the ideal scenario is the case where the FC acquires exact
instantaneous knowledge regarding which sensor messages
are flipped. This can be done by spending energy in the
mechanism that facilitates communication between the FC and
the flipping sensors.

C. Artificial Noise Injection

Another approach, similar to the case of stochastic en-
cryption, is the addition of artificial noise to the sensor
transmissions. Note that, both stochastic encryption and the
addition of artificial noise to the sensor transmissions are data-
falsification schemes that are employed to confuse the Eve.

In this paper, we denote the artificial noise added to the i'"
sensor’s transmissions as 7;. Then, the ith sensor transmits x;
to the FC and Eve, where x; = v; + n;. Let f;(n;) denotes
the distribution of 7;. Also, let F = {fi(m), -, fv(nn)}
denote the set of artificial noise distributions employed by all
the sensors in the network. Then the problem can be stated as
follows.

Problem 3. Find F = {f1(n1), -+, [n(nn)} such that Qpc
is maximized while satisfying the constraints:

1) maxr,er, Qg lies below a tolerable value

2) fi(n:) is a probability density function of n;, for all i =
1,---,N.

D. MIMO Beamforming

In order to ensure minimal performance loss at the FC
as a trade-off to attaining the secrecy constraint at the Eve,
another alternative approach is to use MIMO beamforming,
where the sensor messages are directed towards the FC. In
this case, we assume that the sensors are equipped with
multiple antennas to transmit their messages to the FC. The
beamforming mechanism is designed in such a way that some
of the available energy is invested in the beams directed
towards the FC, while the nulls towards the Eve.

In this paper, we denote the number of antennas at the i'"
sensor as L;. Therefore, the " sensor constructs a vector
x; based on the symbol v; and transmits it to the FC and
Eve, respectively. Based on the channel gains at the FC
and Eve, this x; is designed to appear very noisy at the
Eve, and simultaneously have significant information about
the compressed symbol v; at the FC. For example, let x;
be constructed as x; = b;v;, where b; is the beamforming
gain vector of the i*" sensors’ signal. Assuming that both
the FC and Eve have only a single antenna, the resulting
received symbol at the FC and Eve are given by w,; and w;
respectively. Let npc, and ng, denote the noise at the FC and
Eve respectively. Then, u; = hiTxi +npc;, = vihfbi +nre,
and w; = giTxi +ng, = vig?bi +ng,. Let the beamforming
matrix be denoted as B = [by --- by]. Since, any practical
sensor is energy-constrained, we assume that the total energy
available at the i*” sensor is denoted by F;. Then, the design
problem can be formally stated as follows.

Problem 4. Find B = [b, by] such that Qpc is
maximized while satisfying the constraints:

1) maxr er, Qg lies below a tolerable value «,

2) by is chosen such that the total transmit energy is within
the prescribed limit E;, for all i =1,--- | N.

Note that, all of the above approaches can be combined
together to design system in a holistic manner and attain a
better performance in terms of Qpc, given a tolerable Eve’s
constraint a.

III. SECRECY IN DISTRIBUTED DETECTION

In this section, we provide a survey on the state-of-the-art
on how secrecy is addressed within the framework of classical
and compressive detection networks respectively. In both these
frameworks, we organize the survey according to the four
different approaches listed in Section

A. Classical Distributed Detection

First, we focus our attention to the first approach where
the distributed detection network (i.e., sensor quantizers and
fusion rule) is optimized while satisfying the secrecy con-
straints at the Eve. Nadendla et al., made the first attempt in
the year 2010 in [[1] where they considered an unconstrained
differential secrecy problem. Let us denote KL Divergences
at the FC and Eve by Dpc and Dg, respectively. Now,
Problem [I] in their setup reduces to the design of sensor
quantizers alone, with Qpc = Dpe — Dg and a = oo. It
was assumed that the channel-state information is completely
known at both the FC and the Eve. The authors showed that
in the case of eavesdropper with noisier channels, the optimal
local detectors are always on the boundaries of the achievable
region of sensor’s ROC and, therefore, are likelihood-ratio
tests (LRTs). Later, the authors also considered Problem [T with
Qrc = Dpc and Qg = Dg, in which case, the structure of
an optimal local detector was conjectured to be a LRT-based
test based on numerical results.

Marano et al. [2], in 2009, considered the problem of
designing optimal decision rules for a sensor network where
the sensors perform censoring in order to save energy. It was
assumed that the eavesdropper does not have access to the
sensors’ transmitted data but can monitor the transmission
activity of the channel and exploit the busy/idle state of the
channel for detecting the hypothesis. KL Divergence was used
as the performance metric for both the FC and the Eve,
and a censoring strategy is developed in order to maximize
the divergence of FC while ensuring that the divergence of
Eve was zero (perfect secrecy). Although their framework
of censoring sensor networks is more general, they assumed
that the Eve can only determine whether an individual sensor
transmits its decision or not. In reality, Eve can extract more
information than just merely determining the presence or
absence of transmission, and hence can make a reasonably
good decision based on its receptions.

Li et al., in 2014, investigated the problem of Bayesian
distributed detection with two nodes in the network in the
presence of an eavesdropper in [3|], where the Eve has access



to only one of the sensor’s transmissions. Here, Q2pc and Qg
were assumed to be negative expected detection costs at the FC
and the Eve respectively. The authors proved that LRT-based
tests were optimal at the sensors if the network is designed
to minimize the expected detection cost at the FC such that
the minimum average cost at the Eve is no greater than a
prescribed non-negative value o.

Li et al., also investigated the detection problem under
the Neyman-Pearson setup for the same network as in [4].
The sensor quantizers and the fusion rule were designed to
maximize the FC’s probability of detection (2p¢) in the
presence of constraints on false-alarm probabilities at the FC
and Eve, along with the probability of detection at the Eve
(QEg). Note that the false-alarm constraints at both the FC
and the Eve are captured by the feasibility sets Ry and Rg
respectively. Here, the authors proved that the optimal local
quantizer is a deterministic LRT, while the fusion rule may
still be a randomization between two or more LRTs. Later, in
2014, Nadendla et al. investigated a more general framework
in [5] with N sensors. Here, they proved the conjecture stated
in 1] in the context of binary symmetric channels between the
sensors, FC and Eve. An algorithm was also presented to find
optimal thresholds for the likelihood-ratio quantizers when
the sensor observations are corrupted by additive Gaussian
noise. Figure [2] depicts the behavior of FC’s performance in
terms of both receiver operating characteristics (ROC) and KL
Divergence at the FC as a function of tolerable limits on Eve’s
KL Divergence. Note that, the optimal quantizer is always on
the intersection of the ROC and the Eve’s constraint curve.
The authors also showed that the network with non-identical
sensors and channels can be designed by solving N sequential
problems, where the order of this sequence is dictated by the
quality of the corresponding sensor’s channel.

Next, we survey the literature that addresses the second
mitigation approach where a stochastic cipher is employed
to confuse the Eve regarding the true phenomenon. In [6],
Soosahabi et al. employ J-divergence as the performance
metric for both the FC and Eve and design a network that
guarantees perfect secrecy. This is achieved by fixing @ = 0
in Problem E} Probabilistic ciphers were also studied in [7]]
where the performance metric chosen was the error probability
in the case of both FC and Eve. Note that both [6]], [7] assume
the existence of an underlying key-exchange mechanism that
is secure from Eve. Alternatively, channel-aware stochastic
ciphers use seeds that are obtained by exploiting randomness
in the channel-gains between the node and the FC. For
example, Jeon et al., in [8], proposed a type-based multiple
access (TBMA) protocol for a distributed detection network
with a multiple access channel (MAC). Here, some of the
nodes in the network are selected to deliberately transmit
interfering signals so as to minimize degradation in the FC’s
detection performance, while simultaneously preventing Eve
from identifying the sensors generating interference. Note that
the above scheme requires full channel-state information at the
sensors, and therefore, may be impractical in some scenarios.
In order to alleviate this problem, efforts such as [9] have
been made in the literature, where Jeon er al. designed a
secure transmission strategy for the local nodes in a parallel

distributed detection network, where the FC first broadcasts
known symbols and two thresholds to let the nodes measure
their channel condition. Depending on the received symbols,
the nodes are divided into three groups, non-flipping, flipping,
and dormant groups. The non-flipping set of sensors quantize
the sensed data and transmit them to the FC, while the flipping
sensors transmit flipped decisions in order to confuse the
Eve. The sensors within the dormant set sleep, in order to
conserve energy and have an energy-efficient sensor network
with longer lifetime.

Finally, there have been efforts to design a hybrid mitigation
approach that combines the effects of both the first and
the second approaches. In this regard, in [[10], Nadendla
considered the problem of Bayesian distributed detection in
the presence of an eavesdropper, where the nodes use identical
threshold quantizers to make their binary decisions and encrypt
them before transmission using a simple probabilistic cipher.
Cipher parameters and threshold were optimized jointly so as
to ensure an acceptable probability of error at the FC while
maximizing the probability of error at the Eve.

B. Collaborative Compressed Detection

In scenarios where the POI is a high dimensional signal
vector, the Collaborative Compressed Detection (CCD) frame-
work has been proposed. In contrast to conventional detection
framework, in CCD, the detection problem is solved directly in
compressive measurement domain. More specifically, the CCD
framework comprises of a group of spatially distributed nodes
which acquire observations regarding the high dimensional
(K x 1) signal vector to be detected. Nodes compress their
observations using a M x K low dimensional (M << K)
random projection operator ¢. Each node ¢ sends an un-
quantized (or quantized) version of compressed observation
vector Y; to the Fusion Center (FC) where a global decision
is made.

First, we focus our attention on the first approach where
nodes do not quantize their observations and the FC receives
compressed observation vectors, Y = [Y7,- - , Yy]. Kailkhura
et al. in [[11] considered the problem of collaborative signal
vector detection using un-quantized compressive measure-
ments under a physical layer secrecy constraint Qp < a.
To counter Eve, the authors proposed to use [ fraction of
cooperative nodes that assist the FC by injecting artificial
noise (adding or subtracting a constant vector D, from their
observation vector Y;) in the system to confuse the eaves-
droppers. The authors employed deflection coefficient, d;, as
the performance metric for both the FC and the Eve, thus,
Qprc = dpe and Qg = dg. The problem of determining
optimal system parameters (i.e., compression ratio ¢ and noise
injection parameters (3, D;)) which maximize drc, while
ensuring perfect secrecy at the eavesdropper (information of
the eavesdropper is exactly zero, i.e., « = () was also
considered.

Kailkhura et al. in [[12] extended the CCD framework to
the case where compressive measurements were quantized
to one-bit using LRT. The performance metric was assumed
to be the probability of error Pg. They proposed to use B
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of compression ratio ¢ where local sensor threshold A\ = 1,
B =0.2, SNR= 10dB and N = 10 [12].

out of N cooperating trustworthy nodes that assist the FC
by providing flipped decisions (stochastic enciphering with

P, = (1) é 1,---,B) to the Eve to

achieve perfect secrecy. The authors considered the problem of
designing optimal system parameters (fusion rule, compression
ratio ¢ and fraction of data falsifying nodes 8 = B/N) such
that Pr at the FC is minimized while ensuring perfect secrecy.
In Figure [3] the minimum probability of error (for equal prior
case), both at the FC and at the eavesdropper, is plotted as a
function of compression ratio c. It can be seen from Figure [3]
that the detection performance, both at the FC and at the
eavesdropper, is a monotonically increasing function of the
compression ratio, i. e., detection performance is better with
less compression. This suggests that compression improves
security performance at the expense of detection performance.

for all + =

IV. SECRECY IN DISTRIBUTED ESTIMATION

In this section, we survey the state-of-the-art on how
breaches in confidentiality are mitigated in distributed esti-
mation networks. Although little work has been published that
addresses secrecy in the context of distributed estimation when
compared to the richer literature on secrecy in distributed de-
tection, we again focus on each mitigation technique presented
in Section [[II

First, we survey the first approach in the context of dis-
tributed estimation networks where the sensor quantizers and
the fusion rule are designed to guarantee the tolerable limits
on Eve’s performance. For example, Guo et al., in [13],
considered the problem of estimating a single point Gaussian
source in the presence of Eve, where the sensor observations
are transmitted using an amplify-and-forward technique over
a slow-fading orthogonal MAC. Two different scenarios have
been addressed within this framework: one, where there are
multiple nodes, with each node having a single transmit
antenna, and another scenario where a single node has multiple
antennas. Through appropriate power allocation at the sensors,
the network is designed to achieve the minimum mean squared
error (MSE) regarding the POI in each of the above mentioned
scenarios while guaranteeing MSE at the Eve to be greater
than a threshold «. As shown in Figure [] the authors plot
the distortion (MSE) performance at the FC with respect
to the security threshold o = D,,;,, with the transmission
power budget being set to 30mW, for a one-antenna case
and a three-antenna case respectively. For comparison, the
system performance is depicted under four settings, namely
partial CSI, full CSI, full CSI with perfect secrecy, and partial
CSI with artificial noise. First, due to the channel knowledge
of both the FC and the Eve, it is not surprising to see
that the performance of full CSI scenario is superior to the
performance of partial CSI, and the gap keeps increasing as we
increase the secrecy threshold. Another important observation
is the small gap between the MSE in the perfect secrecy setting
and the MSE in the setting with artificial noise. A similar
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performance was also obtained for the multiple nodes network,
where each node has only one transmit antenna.

Next, we survey how stochastic encryption is used to
achieve the secrecy guarantees within the framework of dis-
tributed estimation. Aysal et al., in [[14] considered the problem
of distributed estimation of a deterministic signal in the pres-
ence of an Eve, where each node collects a noisy observation,
performs binary quantization, and transmits the 1-bit decision
to the FC. The authors assume that both the FC and Eve
pursue maximum-likelihood estimation in the presence of a
stochastic cipher, for which bias, variance, and MSE were
derived in closed form. In the context of symmetric ciphers

0 g for all ¢ = 1,--- , N, the behavior

of Eve’s bias ang MSE and FC’s CRLB are characterized in
Figure E} Note that, as p — 0: 1) the Eve’s bias increases; 2)
the Eve’s MSE increases; and 3) the CRLB decreases. On the
other hand, as p tends to unity: 1) the Eve’s bias decreases,
2) the Eve’s MSE decreases, and 3) the CRLB decreases. In
other words, choosing a smaller p is better as it results in a
significant amount of bias and MSE at the Eve, with a marginal
increase in the estimation variance at the FC. In the case where
Pi={ O PO foralli=1, N with py # p1, the

p 0
effect of varying py and p; on the FC’s CRLB, Eve’s bias and

Eve’s MSE are summarized in Figure [6] In their numerical
results, the authors also demonstrated that asymmetric ciphers
(i.e., ciphers with asymmetric flipping probability matrices)
produce greater bias and MSE than the symmetric ciphers.

where P, =

V. SUMMARY AND OPEN PROBLEMS

Despite the increasing attention on the problem of secure
distributed inference in the presence of eavesdroppers, research
in this area is still at an early stage. So far, four different
approaches have been proposed to mitigate breaches in confi-
dentiality in the context of distributed inference networks. But,
all of these four approaches rely on an important underlying
assumption that Eve’s channels C’}QD forall¢=1,---, N, are
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Fig. 5: Effect of varying p on the FC’s CRLB (variance of the
optimal ML estimator) and the bias and MSE of the Eve [14].
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Fig. 6: Effect of varying py and p; on the FC’s CRLB, Eve’s
bias and Eve’s MSE [14].

completely known at the FC and vice-versa, which may not be
true in practice. In fact, there have been no works in the context
of inference networks on how one can acquire the information
about a passive Eve’s channel. This is a hard problem to solve
because there is no feedback from the Eve to any of the nodes
in the network regarding its presence or activity. An alternative
to this roadblock is to assume that Eve’s channel belongs to a
set C, and, investigate the best and the worst case performance
at the Eve over a class C. Information regarding this set C can
be obtained from the scene where the network is deployed.

Also, the designers may extend the aforementioned four fun-
damentally different approaches into several hybrid approaches
by considering two or more of these approaches together to
create a more sophisticated and improved system in terms
of FC’s performance for a given tolerable constraint on Eve.
Although there have been a few attempts in this direction,
one can still envision many such hybrid mechanisms where
the designer may accumulate the benefits of each of these
approaches. Of course, there is always a need for any new
approach which is fundamentally different from any of the
four approaches listed in this paper.
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