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A Game Theoretic Perspective on Self-organizing
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Abstract—In this article, we investigate self-organizing opti-
mization for cognitive small cells (CSCs), which have the alty
to sense the environment, learn from historical informatian, make
intelligent decisions, and adjust their operational paraneters.
By exploring the inherent features, some fundamental chadinges
for self-organizing optimization in CSCs are presented andlis-

cussed. Specifically, the dense and random deployment of CSC

power control, interference management, and offloadinghmec
anism, can not be solved in a centralized manner since it
results in heavy communication overhead and can not adapt to
dynamic environment. As a result, it is important and timely
to develop self-organizing optimization approaches foC€S

In this article, by exploring the inherent features of CSCs,

brings about some new challenges in terms of scalability and e first discuss and analyze some fundamental challenges

adaptation; furthermore, the uncertain, dynamic and incomplete
information constraints also impose some new challenges terms
of convergence and robustness. For providing better servic to
the users and improving the resource utilization, four requre-
ments for self-organizing optimization in CSCs are presergd
and discussed. Following the attractive fact that the deciens
in game-theoretic models are exactly coincident with thosén
self-organizing optimization, i.e., distributed and autmomous,
we establish a framework of game-theoretic solutions for d&
organizing optimization in CSCs, and propose some featured
game models. Specifically, their basic models are presentesbme
examples are discussed and future research directions areévgn.

Index Terms—5G, cognitive small cells, self-organizing opti-
mization, game-theoretic models, distributed learning

I. INTRODUCTION

and requirements for self-organizing optimization in CSCs
Following the attractive advantages of game-theoreticetsod
for self-organizing optimization, we propose some feature
game-theoretic solutions. It should be pointed out thatethe
are also some other useful approaches for self-organizing
optimization in distributed wireless networks, e.g., tiagn
intelligence inspired evolutionary algorithms [2]. Theasens
for using game-theoretic solutions are: i) the interaction
among multiple decision-makers can be well modeled and ana-
lyzed, and ii) the outcome of the game is predicable and hence
the system performance can be improved by manipulating the
utility function and the action update rule of each decision
maker.

Game-theoretic models have been investigated extensively
in wireless communications, and there are some preliminary
game-theoretic solutions for CSCs, e.g., reinforcemearhle

MALL cells have been regarded as a promising approadrg with logit equilibrium for power control[3], a hieraridal
0 meet the increasing demand of cellular network capagynamic game approach for spectrum sharing and service se-

ity. In comparison to macro-cells, low-cost small cells gte

lection [4], and evolutionary game for self-organized rese

ing with low-power and short range offer a significant capaciallocation [5]. The presented models in this article mainly

gain due to spatial reuse of spectrum. Researchers in

gddress the inherent features, fundamental requirements a

community have realized that enabling cognitive abilityoin challenges of CSCs and hence differentiate significantiynfr

small cells, which is referred to as cognitive small cellSE3)
[1], would further improve the resource utilization. Siarilto

previous ones seen in the literature. In fact, the main obgc
of this article is to propose and discuss the featured game-

cognitive radio, CSCs are able to sense the environmenmn, letheoretic models suitable for CSCs.

from historical information, make intelligent decisiorand
adjust their operational parameters.
It is expected that small cells are to benselydeployed

The rest of this article is organized as follows. In Sectipn |
the cognition functionality for CSCs is presented. In Smtti
lll, some fundamental challenges and requirements for CSCs

in the near future. Furthermore, small cells may be deployade discussed. In Section 1V, some featured game-theoretic
by the mobile operators, the enterprises or householdghwhimodels for self-organizing optimization in CSCs are préseén
means that they would operate in a self-organized, dynanaied future research directions are given. Finally, we mi®vi

and distributed manner. Thus, resource optimization grobl
for small cells, e.g., spectrum sharing, carrier selectod
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concluding remark in Section IV.

II. COGNITION AND SELF-ORGANIZING OPTIMIZATION
FOR COGNITIVE SMALL CELLS

We first present the cognition functionality for CSCs, which
is the base for self-organizing optimization. The cogmitio
functionality in cognitive radio is mainly concerned with
acquiring spectrum availability information, i.e., samgiand
identifying spectrum opportunities in time, frequency and
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space domains. To capture the complex environment and  Ill. CHALLENGES AND REQUIREMENTS FOR
network state, the cognition functionality in CSCs is ex-SELF-ORGANIZING OPTIMIZATION IN COGNITIVE SMALL

tended to explore multi-dimensional information. Such tinul CELLS
dimensional information is referred to asntextual informa- |, this section, by exploring the inherent features of CSCs,
tion, which is used to identify an object of interest. we briefly discuss some fundamental challenges and require-

_ o _ ~ ments for self-organizing optimization in CSCs.
As illustrated in Fig[1L, the target contextual information

includes user type, user demand, access content, user
ception, location, energy, network state and spectrune.stat
For presentation, we briefly illustrate the above contdxtua The technical challenges for self-organizing optimizatio
information. The user type represents the hardware categit CSCs are discussed from the perspectives of network
i.e., tablet, phone or a laptop. Access content is relatégployment and information constraints respectively.

to specific application, e.g., browsing a breaking news or First, from the perspective of network deployment of CSCs,
downloading an APP. User perception is related to the servievo challenges arise in the following two aspects:

quality experienced by the user, while location is where the« Scalability. With the increase in the number of small
small cell is, e.g., indoor or outdoor. Energy is related to cells, how would the self-organizing optimization solu-
the power for wireless transmission and cooling. Network tions scale up? This is the first basic issue of dense
state is related to the current network deployment of small deployment in CSCs. In addition, since the decisions

er: .
. Technical challenges

cells and spectrum state is related to the spectrum aviyabi of CSCs are interactive, addressing the complicated in-
Technically, the above contextual information has greatsiot teractions among the densely deployed CSCs is another
on the resource allocation schemes, which will be discussed important issue.

later. « Random deployment The small cells are deployed by

different entities, e.g., mobile operators, the enteepas

As shown in Fid.IL, the contextual information in CSCs can  households. In addition, they may turn to be inactive if
be obtained by the following three methods: sensing, datgba  there is no serving client. As a result, the deployment of
and information exchange among neighbors. i) Sensing: with small cells is always random and dynamic. Thus, it is
the help of cognitive radio technologies, CSCs performsens important for the self-organizing optimization solutions
ing to obtain useful information. For example, the spectrum to behave in random and dynamic environment.
occupancy state can be obtained by energy detection oréeatu Secondly, it is known that information is key to optimizatio
detection (e.g., pilot, modulation type, cyclic prefixesida problems, and the challenges related to information ayigin
cyclostationarity). Sensing is real-time but consumesus®s the CSCs are listed below:
including time, energy and bandwidth. ii) Database: daeba , yncertain: the observed information may not be the same
approach is a powerful tool to provide useful information  \yith the true information. A well-known example is that
for CSCs. For example, spectrum database has recently been ihe sensed spectrum states are always imperfect due to
developed to provide spectrum occupancy state for a péaticu the corruption of noise.
region, through which the CSCs can inquire the location-, pynamic: the observed information is time-varying the
dependent spectrum availability information. Comparethwi dynamic changes are not determinate. For example, the
sensing, database approach is more efficient but is not real- Latwork and spectrum states may change from time to
time. iii) Information exchange among neighbors: since the time, and the set of active CSCs may also change from
CSCs are connected to the core network via cable or optical time to time. Furthermore, the network and spectrum
fiber, information exchange among CSCs are feasible. HOW-  gtates in each decision period are random, the set of active
ever, it is to be noted that local information exchange betwe CSCs are random, and their demands are also random.
neighbors is more desirable since global information ergea Incomplete: due to the constraints in hardware and

leads to heavy communication and signalling overhead. resource consumption, each CSC only has partial infor-
o ) o mation about the environment; furthermore, it only has
We argue that the term “cognitive” in CSCs is not limited to  ;4formation of its neighboring CSCs (in some extreme
observing the environment and acquiring contextual in®rm  gcenarios, it has no information of others). In addition,
tion. Instead, it should include having high-level intgdince. a CSC does not know the total number of small cells in
To achieve such high-level intelligence for CSCs, the most  he systems, not to mention the active ones.
promising way is to realize knowledge discovery from the-con
textual information. Generally speaking, knowledge is @elor
concept including general principles and natural laws.irigak
the spectrum dynamics as an example, the probalsilityat
a particular band is occupied by the macro-cells during@1:
AM to 04:00 AM is very small, e.g.f0 = 0.05, is viewed as _ o o
the knowledge in CSCs. Based on the contextual informatidh, Requirements for self-organizing optimization
the CSCs can build knowledge base which contains usefuM/e list some fundamental requirements for self-organizing
knowledge for self-organizing optimization. optimization in CSCs. Specifically, these requirements are

Due to the above technical challenges, it is seen that the
task of resource optimization in CSCs is hard to solve even
in a centralized manner, not to mention in a distributed and
Self-organizing manner.
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Fig. 1. The paradigm of cognition functionality and selfanizing optimization in CSCs.

for user service, network deployment (architecture), apd camong CSCs, which implies that efficient congestion control
timization methodology. As shown in Fifl] 1, based on thand interference mitigation approaches should be develope
contextual information and knowledge, some self-orgaugizi  Thirdly, it should be robust to the dynamic environment.
optimization approaches can be applied for resource altota As discussed before, there are several random and dynamic
in CSCs. By employing their inherent features, we discuactors in CSCs, e.g., the spectrum availability is dynahie
some featured requirements of self-organizing optimirati CSCs switch between active and inactive randomly. Moreover
in CSCs, which mainly include user-centric optimizatiorthe observed information may be corrupted by noise. Thus,

scalability, robustness and heterogeneity. the self-organizing optimization solutions should be sitio
First, it should shift from throughput-oriented optimimat address the randomness, dynamics, and uncertainty in CSCs.
to user-centric optimization. Traditionally, resourceiopza- Last, it should address the hierarchical decision-making i

tion schemes in wireless systems are throughput-oriewitd, CSCs. There are always heterogeneous cells with overlgppin
the objective to maximize throughput/capacity or minimizeoverage in future wireless systems, i.e., macro-cellssamall
delay. However, it is now realized that throughput-orientecells. In such hierarchical networks, the cells in différen
schemes can not provide satisfactory service for the uberslayers have different priority and utility functions. Thiaf it
future mobile communication systems, there is an incregasiimvolves heterogeneous decision-makers. However, inadit
trend to develop user-centric optimization schemes rattg&lf-organizing optimization solutions are mainly for hoge-
than throughput-oriented schemes. The underlying reas@nsneous decision-makers. Thus, it is important to develop new
twofold: (i) eventually, the purpose of (wireless) comnaai hierarchical self-organizing solutions for CSCs.
tion is to serve end users. Thus, the contextual information
of the users, e.g., their locations, demands, access ¢entelY. GAME-THEORETIC SELF-ORGANIZING OPTIMIZATION
and energy, should be taken into account not only in high- FORCOGNITIVE SMALL CELLS
layers but also in PHY and MAC layers for optimization, Game theory[[7] is an applied mathematic tool to model
(i) it is realized that mobile (cellular) systems have naigrd and analyze mutual interactions in multiuser decisionesyist
towards data and Internet services. In particular, mullime Generally, a game model consists of a set of players, a set
service delivery through cellular systems, e.g., watcloniine of available actions of each player, and a utility functibatt
video, is becoming common. For this kind of service, peoptaaps the action profiles of the all the players into a realezalu
may not care about the specific volume of allocated resourc&gere are two major branches of game-theoretic models: non-
but sensitively react to the perceived service quality,ohtis cooperative games and cooperative games. From a high-level
known as quality of experience (QoE]) [6]. It means that usperspective of comparison, players in a non-cooperatineega
perception should also be taken into account in self-omiyami make rational decisions to maximize their individual tili
optimization. functions, while players in a cooperative game are grouped
Secondly, it should admit scalability and address netwotkgether according to an enforceable agreement for payoff
density. As stated before, it is expected that the CSCs alocation. In a non-cooperative game, the commonly used
densely deployed with large numbers. A consequence is teatution concepts are Nash equilibrium (NE) and correlated
the resource optimization for dense deployment is comlgleteequilibrium.
different than that in sparse environment. Thus, the self-Researchers began to apply game-theoretic models into
organized optimization schemes should scale up in denseideless communications a decade ago; nowadays, it has been
CSCs. In addition, density creates congestion and intarter regarded as a powerful tool for wireless resource allonatio
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and offloading mechanism.

Solve the original strategy NE and all NE points are global or local maxima of

optimization problems

o the potential function. Thus, the NE solutions are des#ébl
the potential function is related to the original optiminat
B NV \ objective. Furthermore, to ensure that the stable solsitafn

! — besgn of mativser game-theoretic models are optimal (near-optimal), antarot

| analysis learning algorithms : efficient method is to define the utility function as the rgedi

payoff minus cost of using the amount of particular resource
2) Design of multiuser learning algorithms Identifying

| Find the optimal (better)
Make the stable solutions stable solutions under

. optimal (near-optimal ractical constraints in . X . .

| pimal (ncarpiima) P | the stable solutions of game-theoretic models is one ttiag,

'l . finding them is another different thing. This issue, howgver

——————————————————————— — was underestimated in previous studies. In pure game theory
Fig. 2. The proposed framework of game-theoretic solutifors self- players can monitor the envm_mment ‘F_md other players*h\’h'c
organizing optimization in CSCs. means that they have perfect information about the actinds a

payoffs of other players. As discussed above, this assompti

does not hold in CSCs. With the cognition functionality of
optimization, e.g., power control, spectrum access, N&waCSCs, players need to observe the results of multiusesicter
selection, spectrum auction and trading, and incentiveharections, e.g., interference, collision and competitionreaseful
nism design. The decisions of the players in (non-coopexatiinformation from the limited feedback, and then adjust ithei
game-theoretic models are distributed and autonomoushwhbehaviors towards some desirable solutions. In the comwfext
is an exact coincidence with those in self-organizing oj@iéim game optimization, the objective of multiuser learning ds t
tion. Thus, game-theoretic approach is important to aehiegonverge to a stable solution with good performance.
self-organizing optimization in CSCEsI[8]. Denotea,, (k) as the action of playen in the kth iteration,
anda_, (k) as the action profile of all other players except
Due to the interactions (interference, congestion or cdimpe
tion) among players, the received payoff(k) of each player

To cope with the technical challenges in CSCs, i.e., deng§ointly determined by the action profile of all playersdan
and dynamic deployment, and uncertain, dynamic and ifay be deterministic or random. Generally, the players tgpda
complete information constraints, we propose a framewérk fheir actions based on the current action-payoff inforomati
game-theoretic self-optimizing optimization, which isosm {an(k),a—n(k); Ty (k),r—n(k)}. Thus, the system evolution
in Fig. [2. It is noted that there are two key steps: i) gamgan be described agu,, (k), a_n(k)} — {rn(k),r_n(k)} —
formulation and analysis, and ii) design of multiuser léagn {q,,(k +1),a_,(k+ 1)}, and the objective is to converge to
algorithm. In comparison, game formulation and analysi§ stable action profile that maximizes the system utility.
belongs to theoretical investigation while developingté@g  The uncertain, dynamic and incomplete information con-
algorithms belongs to the field of algorithm methodolog¥traints in CSCs may pose some new challenges. Specifically,
On one hand, the stable solutions are the inherent properfiea player does not know the information about all other
of game-theoretic models, and not relevant to the learnipgyers, i.e.a_,(k) andr_, (k) are unknown, ii) the received
algorithms. On the other hand, except for the Utility fuactin payoff n (k) may be random and time-varying_ Thus, the up-
game-theoretic models, the uncertain, dynamic and incet@pldate rule needs to be carefully designed to guarantee the con
information constraints have great impact on the convergenergence towards desirable solutions. When local infoionat
and performance of learning algorithms. With the two stepgmong neighboring players is available, it is desirablede d
carefully designed, self-organizing optimization for tgi- velop partially uncoupled learning algorithms based orpére
nal wireless optimization problems can be achieved. tial action-payoff informatior{ a,, (k), a, (k); 7n (k) 77, (k) },

1) Game formulation and analysigzor game formulation, wherea, (k) andr;, (k) are the action-payoff information of
one needs to first identify the player and available actidn séhe neighboring players. In some extreme scenarios with no
and define suitable utility functions for the players. FOIGSS information exchange available, one needs to develop fully
the player may be a single entity, e.g., small base statigAcoupled learning algorithms based on the individuabaeti
or the user equipment, or a collection of multiple entitiepayoff information {an(k),r(k)}. There are some useful
e.g., a cluster consisting of multiple nearby small cellke T partially coupled learning algorithms, e.g., local altig
available action set can be regarded as a combination mefavior with spatial adaptive play [10], and fully unccegl
multiple optimization variables. Defining utility functiois learning algorithms, e.g., stochastic learning automai, [
key to game formulation since it eventually determines thRat can be applied for self-organizing optimization in GSC
properties and performance of the game-theoretic models.

The most efficient game-theoretic model used in wireless )
networks is potential gamé]|[9], in which there is a potentiﬁ' Some featured game-theoretic models for CSCs
function such that the change in the utility function caused In methodology, previous game-theoretic models in wireles
by the unilateral action change of an arbitrary player h@®mmunications can be applied to CSCs. However, most
the same trend with that in the potential function, i.e.,hbofprevious game-theoretic solutions mainly focused on aairady

A. Framework of game-theoretic self-organizing optinicat
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communication networks. An example of concave satisfactio
utilities is given by(%)a, where o is used to adjust

the properties of game-theoretic models in ideal scenaaizg the slope of the utility curve for different types of traffieor
did not take into account the challenges and requirementsillustration, we consider the problem of distributed speat
CSCs. In this subsection, we propose some featured gadseess for CSCs. Specifically, the CSCs are randomly located
modes for CSCs. Due to the low-power, the transmission ifif & region of 100mx< 100m, and the sensing-based spectrum
a small cell only affects its neighbors; as a result, graghicaccess protocol proposed inl [1] was applied. The problem
games([10] are appropriate for small cell networks. of distributed spectrum access is formulated as a graphical

1) Demand-aware gamevlost existing resource optimiza-9ame and the learning automafal[11] is applied. Different
tion approaches mainly focused on maximizing the resourb@ical applications, such as G.711PCM, WMV, AVI/RM,
utilization, while ignoring the actual demand of the user§&lash, H.264, are considered in the simulation. The compar-
In future CSCs, demand-aware design and decision is méy@n results are presented in Hg. 3. It is noted that with the
desirable. To include the user demand into the resource @oposed satisfaction function, the satisfaction useio rist
timization problems, a useful method is to map the allocatédgely improved. In particular, as the network scales bp, t
resource to the user satisfaction utility. Specificallynate throughput gain becomes significant.
usern’s demand agl,, and the allocated resource as then 2) Discrete-QoE-aware gameEventually, the purpose of
its satisfaction utility can be expressed 3., d,). wireless communications is to serve people. Thus, the per-

Generally, there are two kinds of satisfaction functions ieption by people, i.e., QoE, should be included in the game
the literature: i) the linear satisfaction: the satisfagtotility ~formulation. Unlike the satisfaction function which is cae-
is determined byi- if 7, < d,,, and is equal to one otherwise [erized by continuous and real values, the perception gbleo
and ii) the sigmoid satisfaction: the satisfactory utifizmction is generally subjective and discrete. For example, a person
is generally determined by-—_%——, wherec is used to may feel “Excellent’, “Good", “Fair", “Poor” and "Bad",
adjust the slope of the satisfaction utility curve around ttPy the method of the mean opinion scofe [6]. Compared
user demandl,, with different types of traffic. In particular, With traditional continuous optimization game, an int¢ires
real-time traffic such as online video are sensitive to aegui result of discrete-QoE-aware game is the expansion of Nash
resources and require strict performance requirementshwhequilibrium, which is shown and illustrated in FIg. 4.
corresponds to large value ef while non-real-time traffic  In traditional continuous optimization game, users maxeni
such as E-mail or file transfer are less sensitive, whigheir throughput as there is an inherent principle: larger
corresponds to small value af The linear and sigmoid throughputis always better. On the contrary, a user in diser
satisfaction functions have been well investigated in joney QOE-aware games does not always maximize its throughput
game-theoretic wireless resource optimization problefss. unless its QoE level can be improved, e.g., from “Poor” to
the satisfaction utility function is strictly increasingach user “Fair”. Thus, it can be expected that the discrete-QoE-awar
proceeds to compete for wireless resource even if the aataigame would improve the network QoE.
resource is larger than the demand, which would decreas€o further show the benefit of discrete-QoE-aware game, we
the satisfaction of others. However, this drawback has nednsider the problem of distributed user association in-i&TE
addressed in previous work. small cell networks. For users located in the overlappiegsy

To improve the network satisfaction, an efficient approadhere are multiple small cell access points (SAPs) availabl
is to prevent the users compete for extra resources wheraiitd the users need to choose one to associate. Consider
is satisfied and to decrease the satisfaction utility whenthiree types of video calling users using Skype: i) the first
occupies additional resources. Based on this intuitiomctin- one is the group video calling with the required minimal
cave satisfaction utilities may be more suitable for mskiu throughputR,, = 512kbps and the recommended throughput
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hierarchical game in large-scale CSCs. In (c) and (d), thergoepresent the
Fig. 5. The number of users in different QoE levels of différeolutions.  channels chosen by the small cells.

R. = 2Mbps, ii) the second one is the high definition video 097
calling with R,, = 1.2Mbps andR. = 1.5Mbps, and iii)
the third one is the general video calling user with the witt
R,, = 128kbps andR. = 500kbps. Each user falls into
one of the above three types with equal probabilities. It it
believed that the minimal throughput only supports the dasi
user demand (“Poor”), while the recommended throughpt
offer sufficiently good user experience (“Good”). With the
method proposed in_[12], the throughput thresholds for rothe
QOE levels (“Excellent”, “Fair” and “Bad”) can be obtained
accordingly. o1r

Considering a network with 78 users which can access onl 00 200 a0 a0 s00  e00 700 @00 900
one SAP, and 20 users which are located in the overlappir lterations needed for converging
regions of neighboring CSCs, the comparison results of the _ N

. . . ig. 7. The convergence speed comparison between the diimargame
number of users in different QOE levels are shown in Eig. Biced o-leaming and simultaneous O-learning.
It is seen that the discrete-QoE-aware game outperforms the
continuous optimization game. Specifically, with the diger
QoE-aware game, 12 users are in “Excellent’, one in “Goodthjs, a useful method is clustering. An example of creating
two in “Fair’, and five in “Bad”; with the continuous opti- hierarchy to use cluster-based hierarchical game in lacgée
mization game, 11 users are in “Excellent’, none in “GoodgsCs is shown in Figl6. In (a), the network topology and the
three in “Fair’ and five in “Bad”. Also, it is noted thatinterference relationship is presented. In (b), the neiginigy
the throughput maximization approach (the user demandsfga|| cells distributively form two disjoint clusters witells
neglected) achieves poor network QOE. This result valglatg and cell serving as the headers respectively. In (c), in the
the superiority of the discrete-QoE-aware game. upper layer, the headers compete for resources with eaeh oth

3) Hierarchical game:As stated before, CSCs would in-aiming to maximize the aggregate utility of the cluster;he t
teract with macro-cells for dynamic spectrum sharing anewer layer, the cluster members compete with other members
mobile offloading. While originally studied in the economiander the policies imposed by the header. In (d), since reliffe
context of duopolies in which one company has the powent clusters behave independently, there may be intederen
to act before the other companies, Stackelberg game, whigtween neighboring clusters, e.g., cells 4 and 5 stilriete
is an important kind of hierarchical games, is suitable fatith each other. Thus, the interfering cells further mitega
systems that contain a natural hierarchy. Therefore, toemdd mutual interference via distributed learning, e.g., Qéaag.
the hierarchical decision-making between macro-cellsggs With the proposed cluster-based hierarchical structheeself-
acting as a leader) and CSCs (always acting as followers)ganizing optimization in large-scale networks can then b
Stackelberg game is becoming a useful tool [4]. solved with moderate computational complexity.

In addition, following the idea of “divide-and-conquer”, We compare the computational complexity between the
hierarchical game can also be used to address the densepdeposed cluster-based hierarchical game and the sineoltan
ployment of CSCs. In particular, in order to ease the chghsn Q-learning approach [13], in which all cells performs Q-
caused by the large number of participants, we can credgarning simultaneously. The achievable network throughp
hierarchy to transform the large-scale optimization peabl of two approaches is almost the same. The cumulative dis-
into several layers of sequential sub-problems. To achietribution function (CDF) of the iterations needed to comeer
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learning automata algorithm [11] can be applied to converge
NE points in the dynamic environment. Taking a network with
nine CSCs as an illustrative example, the throughput perfor
mance comparison results are shown in Elg. 8. The optimum
is obtained using the exhaustive search method in a cergdali
manner, by assuming that there is a genie that knows all
required information. The best and worst NE is obtained
using the best response algorithm in a distributed manner, b
assuming that information exchange among neighboring cell
is available. Some important results can be observed: i) the
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The expected system throughput (Mbps)
3
o

o T Dot NE o et game e search) best NE is almost the same with the optimal one, while the
—e—\g_otrs_s TE(j«:frob_ustgatme t throughput gap between the worse NE and the optimum is
—%— Distributed learning automata - . . . .

100° —, \ also trivial, which validates the effectiveness of the fatated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . .
The user active probability (\) robust spectrum game, ii) the achievable throughput of the

distributed learning automata is very close to the optinma.o

5) Content-aware gameAs legacy cellular systems have
migrated towards data and Internet services, taking into ac
count the access content in the self-organizing optinonati
Jvould enjoy content gain. For Internet traffic, it has been
shown in [15] that a relatively small proportion of the aces

needed for converging of the hierarchical-game Q-Iearniht&ms acc_ou’nts for a vast fraction of thellnformatlon ACESSS
approach are significantly decreased. Furthermore, when ﬁpd the Zipf's law can be used to determine the occurrenee fre
network scales up fromV — 50 to N = 80, the convergence guency of the access items, given the content rank, the monte

speed of the hierarchical-game based Q-learning approéi’a‘l)l size, and the characteristic curve of the access patter

slightly decreased while that of the simultaneous Q-le®yni pradays, content caching has b_ec_ome a core teCh”O'OQY for
ireless cellular systems. Thus, it is reasonable to remic

approach is largely decreased. This implies that the pm;boé’v

hierarchical-game based approach is especially suitairle §ignificant portions of popular contents on the wirelesheac
dense and large-scale networks As a result, the search and access time for popular content is

4) Robust gameTo capture the random and dynamic behaf?St compared with that of unpopular content. The reason is

iors in CSCs, robust game is a good candidate. Specificady, ha_t the popular content can l.)e accessed n the erel_eses:ach
- o : , : while the unpopular content is accessed in the far-sideeserv
utility function in robust games is defined over statist(td][

. . . . Therefore, the differences in access time of different eotst
e.g., expectation or other high-order statistics. In thiefong, . . . : .
will have great impact on wireless resource allocation and i
we present a robust spectrum access game for CSCs as an .. .
. ; Is promising to explore content-aware game-theoreticisris
illustrative example.

. N . for CSCs, which would achieve better performance.
Consider a distributed CSC network operating in the TV

white space. Each cognitive SAP inquires the spectrum-avail

ability from the geo-location database, which specifies the

available channel set and the maximum allowable transamissiC. Comparative summarization and analysis

power for each cell. To capture the dynamic cell load in

practical applications, we consider a network with a vagyin In comparison, the game-theoretic models for CSCs pre-

number of active cells. Specifically, it is assumed that ezmth sented in this article different from previous ones sigaifiity.

performs spectrum access with probability, 0 < A, < 1, in  Specifically, it shifts from throughput-oriented optimiizen to

each decision period. Note that such a model captures dengger-centric optimization, e.g., demand-aware gameretisc

kinds of dynamics in wireless networks, e.g., a cell becom&oE-aware game and content-aware game, addresses the dense

active only when it has data to transmit and inactive wheteployment of small cells, e.g., graphical game and hiérarc

there is no transmission demand. Also, it can be regardeal game, and copes with randomness and dynamics well, e.g.,

as an abstraction of the dynamic cell loading, i.e., the céfbust game. Although the research on game-theoretic self-

active probability corresponds to the probability of a norgrganizing optimization for CSCs is in infancy, we beliehatt

empty loading buffer. Note that the active cell set in eadhe presented game-theoretic models will draw great abtent

period is not deterministic and randomly changes from rid the near future.

to period. Also, a cell does not know the active probabgitie For a specific resource optimization problem in CSCs, one

of other cells. can choose a suitable game-theoretic model and a learning
To address the dynamic and random deployment of CSCslgorithm to construct a self-organizing optimizationwadn.

robust spectrum access game can be formulated, in which Hh@wvever, it should be pointed out that game-theoretic so-

utility function of a CSC is defined as the expected Shannéution for CSCs is application-dependent, which means that

capacity over all possible active cell sets. The game can twe game-theoretic model and distributed learning allgorit

proved to be a potential gamel [9] and hence the distributeldould be carefully formulated and designed.

Fig. 8. The expected Shannon capacity when varying theeaptobabilities
of the cells.

is shown in Fig[J. It is noted from the figure that for th
same size network, e.g¥ = 50 or N = 80, the iterations



D. Future research direction

It is seen that game-theoretic solutions for self-orgamgyzi
optimization in CSCs have definitely drawn a beautiful and ex
citing future, though the current research is still far avirayn
the expected vision. We list some future research problems
game-theoretic models and learning procedures below:

2)

3)

4)

ing

optimization in CSCs were presented and discussed. Follow-

the attractive advantages of game-theoretic models, i.

distributed and autonomous decision-making, a framework
of game-theoretic solutions for self-organizing optintiaza
F’u CSCs was established, and some featured game-theoretic
models were proposed. Specifically, the basic game-theoret

) ) _ models are presented, some insights are discussed, some
1) Develop or investigate new game-theoretic models fakamples are discussed and future research directions are

self-organizing optimization from social/biological bejyen,

haviors. The rationale behind is that in old days hu-
manity first self-organized and then evolved success-
fully with population growth. For example, motivated
by the local altruistic behavior in biological systems,[l]
a local altruistic game with each player maximizing
its utility and the aggregate utilities of its neighbors(2]
was proposed to achieve global optimization via local
information exchange [10]. The key design of this issue
is to properly abstract and model the social/biological3]
behaviors, which is interesting and challenging.

It is noted that each kind of presented game mainlys
addresses a single aspect of challenges in CSCs. How-
ever, as can be expected, one may combine more than
one game-theoretic model, e.g., robust discrete-Qofs)
aware game or Stackelberg graphical game, to address
multiple aspects of challenges of CSCs simultaneously.
Such combinations bring about new challenges since thg
game structure is completely changed.

Design and analyze heterogeneous learning algorithmﬁ]
In most existing studies, it is assumed that all the
decision-makers employed the same learning algorithnfsl
However, this assumption is for academic research but
not true in practical systems. In practice, the small
cells may belong to different holders, which may adopt9]
different learning algorithms; in addition, even the sma
cells belonging to the same holder may have different
processing ability and preference, and hence choose
heterogeneous learning algorithms. Introducing hetergH!
geneity into the learning procedure will change the
convergence and asymptotic behavior, which needs to
be further studied. [12]
Design knowledge-assisted learning algorithms. Thes)
common procedure in existing learning algorithms is
to update the strategies based on the historical acti(m,:]
payoff information. It may take long time to converge
to stable solutions since the players need to explore all
the possible actions. As shown in Fig. 1, knowledg 5
can be viewed as high-level intelligence obtained from
the contextual information, which is truly beneficial for
decision-making. Thus, we should develop some new
knowledge-assisted learning technologies to increase the
converging speed and achieve better performance.

V. CONCLUSION

In this article, we investigated self-organizing optintiaa
for CSCs, which will play an important role in future coguéi
cellular systems. By exploring the inherent features, some
fundamental challenges and requirements for self-orgamiz
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