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Abstract

Rapid proliferation of wireless communication devices andthe emergence of a variety of new applications have

triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G–4G systems covering

large areas were envisioned to serve both indoor and outdoorenvironments. However, in the 5G-era, 80% of overall

traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there

is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60 GHz mmWave picocell

architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a

combination of-, and interplay between, 2.4/5 GHz having robust coverage and 60 GHz links offering high datarate.

This requires an intelligent coordination and cooperation. We propose 60 GHz picocellular network architecture,

called CogCell, leveraging the ubiquitous WiFi. We proposeto use 60 GHz for the data plane and 2.4/5GHz for

the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5 GHz in case of poor

connectivity in the 60 GHz domain. Further, to avoid the frequent re-beamforming in 60 GHz directional links due to

mobility, we propose a cognitive module – a sensor-assistedintelligent beam switching procedure – which reduces the

communication overhead. We believe that the CogCell concept will help future indoor communications and possibly

outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.

I. I NTRODUCTION

The unprecedented but anticipated massive growth of mobiledata traffic is posing many challenges for 5G

communication systems. 5G networks aim to achieve ubiquitous communication between anybody and anything,

anywhere and at anytime. The performance requirements are far beyond what is offered by current systems –

in particular a 1000x increase in network capacity is targeted. All this requires new network architecture and

technologies. Moreover new spectrum will be needed. For example, millimeter wave (mmWave) communication

requires very different approaches for PHY, MAC and networklayers. The general consensus among researchers

and industry is that 5G will not be a mere incremental evolution of 4G [1]. However, 2G – 4G will have to be

integrated with the new technologies to ensure the support of legacy systems.

Fig. 1 shows 5G communication scenario, where multiple radio access technologies (RATs), i.e., 60 GHz Wireless

Local Area Networks (WLAN), 2.4/5 GHz WiFi, 28-30 or 38-40GHz outdoor mmWave base stations (BSs) and

http://arxiv.org/abs/1505.01733v1
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Fig. 1. A 5G scenario with multiple radio access technologies.

macro & femto cell BSs are present. For efficient spectrum utilization, multiple licensed as well as unlicensed

bands will need to work in cohesion for different applications. mmWave based mobile communication (28-32 and

38-42 GHz spectrum) and WLANs at 60 GHz will coexist with legacy cellular networks and WLANs. Thus 5G

spectrum would span from sub-GHz to mmWave frequency bands to support diverse applications and services.

To exploit the available spectrum across the various frequency bands, a highly flexible communication interface is

required which can support multiple RATs for various, possibly very different, services at the same time. To meet

the above stated requirements, various solutions are beingdiscussed. We summarize them as follows.

Network architecture: Instead of a rigid and infrastructure-centric approach adopted by previous generations,

device- and user-centric architectures are being advocated for 5G, in order to better support ubiquitous and seamless

communication. Further, the concept of cloud-based radio access network (C-RAN) is proposed to reduce operational

costs by efficient utilization of radio resources [2]. In C-RAN, traditional base station functionality such as baseband

processing and resource allocation is offloaded to a centrallocation, to provide dynamic resource allocation leading

to a better utilization of baseband processing resources. Another architectural change expected is the macro-assisted

small cells – also calledphantom cells [3]. In this approach, the control plane and data plane are decoupled. The

macro cell covering a large area is responsible for the control and management functions, while small cells are used

solely for providing high datarate communications. Usually small cells remain in a turn-off state to save energy.

Furthermore, for devices which are in the proximity of each other, direct device-to-device (D2D) communication

is considered and is expected to become an integral part of 5G.

Medium access control and signaling: 5G need to support a variety of applications, which are verydifferent in
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terms of traffic patterns, datarates and latency constraints. For example, machine-to-machine (M2M) communication

will have infrequent small packets with low datarates but with critical latency requirements. Video applications,

e.g., 4K video, have some latency requirements, can tolerate errors to an extent, but will require very high datarates.

Web browsing and file sharing applications, on the other handhave again different requirements. In case of M2M,

signaling and control mechanisms employed in current networks would cause high overheads. Widespread use of

M2M may lead to situations where thousands of devices try to access a channel simultaneously. Current access

mechanisms are not designed to do this. Furthermore, to enable D2D, very efficient signaling mechanisms are

required so that spectrum utilization can be increased. In case of ultra-dense networks, coordination among small

cells, needed to mitigate the interference, will lead to high signaling overhead. Thus flexible medium access and

signaling protocols are needed to optimize the channel utilization for a wide variety of applications

Physical layer techniques: From the perspective of the physical layer, to combat the scarcity of available radio

spectrum in the lower frequency bands, mmWave frequencies (30 GHz to 300 GHz) are being explored as alternatives

for both outdoor and indoor communication due to the huge bandwidth they provide. Licensed 28-30GHz and 38-

42 GHz bands are suitable for outdoor cellular networks [4],while the unlicensed 60 GHz band is suitable for indoor

communication due to its propagation characteristics [5].Another breakthrough technology which will certainly have

a distinct place in 5G is Massive MIMO [6], [7]. In Massive MIMO the number of antennas at a BS are much

higher than the number of devices being served. This enablessimplespatial multiplexing anddemultiplexing. The

small size of antennas and antenna spacing at mmWave frequencies make massive MIMO a suitable beamforming

technology for devices1 as well as BSs.

It is predicted that by year 2020 indoor/hotspot traffic willaccount for 80-90% of total traffic volume [8]. Datarates

on the order of multi-Gb/s will be required in indoor environment to support high definition video streaming and

gaming applications. Existing 3G and 4G systems were designed to support the same set of services both in indoor

and outdoor environments. However, this will not be the casein 5G. A variety of services are emerging and many

of them, in particular, high datarate uncompressed video will be mainly confined to indoors and hotspots. Therefore,

5G networks must take care of the traffic dissimilarities between indoor and outdoor environment. To tackle this

challenge, high capacity indoor local small cells need to bedesigned that can provide multi-Gb/s connectivity with

better coverage.

The 60 GHz frequency band has emerged as the most promising candidate for high speed indoor communications.

However, its inability to penetrate walls poses a serious challenge for providing seamless connectivity. Further, the

use of narrow beamforming makes it challenging to support mobile devices, due to the link outages caused by antenna

beam misalignment resulting from mobility of users. This requires beam tracking and adaptive beamforming. We

propose CogCell concept, a 2.4 GHz assisted 60 GHz picocellular network architecture in which 60 GHz is used for

high speed data communication (data-plane traffic) while 2.4/5 GHz WiFi is used for control purposes (control-plane

traffic). Several 60 GHz picocells are managed by a single WiFi cell thus facilitating easy and robust network and

1We use the term device to mean a mobile station or a handheld user equipment.
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mobility management with picocells. In the absence of a 60 GHz link, 2.4 GHz can also be used as a fall-back data-

plane option in CogCell making the best of both worlds. The problem of frequent re-beamforming in 60 GHz can

be circumvented by leveraging the sensing and processing capabilities of smart devices that are using the 60 GHz

links. We will show how motion sensors (present in smart phones and tablets) will be used to predict user movement

and thus maintain the beam alignment. CogCell architecturehas many features: (i) Better spectrum utilization by

switching between 2.4 and 60 GHz bands for control and data transmission, respectively; (ii) Opportunistic fall-back

to 2.4 GHz band for data transmission, if the 60 GHz link is notavailable; and (iii) Sensor assisted cognitive and

adaptive beam-tracking which reduces the need for frequentre-beamforming of 60 GHz links in case user devices

move.

II. 60 GHZ COMMUNICATION FOR MULTI -GB/S INDOOR CONNECTIVITY

Despite very sophisticated PHY/MAC layer techniques such as MU-MIMO, higher order modulations, channel

bonding and frame aggregation, it is hard to improve the WiFidatarate further. For example, despite using channel

bonding and multi-user MIMO schemes IEEE 802.11ac can only provide a peak datarate of around 1 Gb/s because of

limited bandwidth in the 2.4/ 5 GHz frequency bands. On the other hand, large bandwidth is available in unlicensed

60 GHz band. The 60 GHz MAC standards IEEE 802.15.3c [9] and IEEE 802.11ad [10] has already been completed,

providing datarates up to 5-7 Gb/s for a range of 10 to 20 m. IEEE 802.11ad is backward compatible with IEEE

802.11b/g/n/ac. However, there remain several issues which need to be addressed to realize multi-Gb/s 60 GHz

indoor networks.

Access delay: 60 GHz devices and access points (AP) employ directional antennas to compensate for free

space path loss. IEEE 802.11ad and IEEE 802.15.3c divide thearea around an AP in sectors, e.g., a sector

can span over 60◦or 90◦. CSMA/CA based random access is used during predefined time periods – in

each sector in a round robin fashion – called Contention Based Access Period (CBAP). A device has to

wait for the CBAP period allocated to its sector. For example, if each sector spans an angle of 90◦then

there are four sectors. Thus, if a device generates a requestjust after the allocated CBAP period for its

sector, it has to wait until the next three CBAP periods. Thiscould introduce a considerable amount of

delay before the request is fulfilled.

Re-beamforming: Although the peak PHY datarate promised by IEEE 802.11ad isabout 7 Gb/s, realizing

a seamless multi-Gb/s WLAN system providing a sustained peak datarate is difficult. 60 GHz links

are highly susceptible to blockage caused by obstacles suchas humans, furniture, walls, etc. Further,

communication using narrow beams has to track moving devices to maintain the link. With narrow beams,

beam misalignment caused by small movements may result in broken links. If a device moves away

from the beam coverage area, an exhaustive beam-search is required, resulting in excessive delays and

communication overhead. It is therefore important to keep beam alignment in order to maintain a stable

link.

Hand-off: While using directional antennas at 60 GHz, AP/device discovery and fast handover are difficult.
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Since 60 GHz signals cannot penetrate walls, there will be many 60 GHz APs in an indoor area. This can

result in frequent hand-off when a user moves in the indoor area. When moving from one room to another,

one should be able to quickly reconnect with another AP. To ensure this, fast discovery and authentication

are needed. Since the datarate is very high, a small interruption in signal coverage can lead to the loss of

a large amount of data. Further, frequent device discovery and association could lead to excessive energy

consumption resulting in fast battery drain.

To address the above issues, we propose to use WiFi and mmWaveCogCell hybrid architecture. This will enable

smooth network management, fast channel access and device discovery. Here WiFi supports control plane functions

while 60 GHz offers data plane functionality. To avoid frequent re-beamforming caused by mobility, we employ

motion sensors to predict the next location of the user so that appropriate beam switching can be performed.

III. I NDOOR NETWORKS BASED ON COMBINATION OFWIFI AND 60 GHZ COMMUNICATION

In this section we discuss the capacity and coverage limitations of 2.4/5 and 60 GHz signals, respectively. We

illustrate that 2.4 GHz and 60 GHz systems are complementaryin terms of coverage and capacity, and explain how

the proposed CogCell architecture enables interplay of both to provide a robust multi-Gb/s WLAN connectivity.

A. Complementarity of 2.4 and 60 GHz

Fig. 2(a) shows the coverage of 2.4 GHz (left) and 60 GHz (right) signals in an indoor environment. Radio-wave

Propagation Simulator (RPS) [11] employing ray tracing is used to determine the coverage in the indoor area. To

calculate the signal power, reflections, up to second order,are considered and all the antennas are assumed to be

omnidirectional. The transmission power of antennas is 10 dBm. It is clear that three antennas operating at 2.4 GHz

are sufficient to cover the whole area. On the other hand, at 60GHz every room needs a dedicated 60 GHz antenna.

This is due to the fact that signal propagation characteristics are significantly different at 2.4 GHz and 60 GHz.

mmWaves at 60 GHz do not penetrate through walls. A significant fraction of signal power is absorbed by the

walls. This is illustrated by the black ellipses over the blue colored areas in Fig. 2(a).

Fig. 2(b) compares the maximum datarates promised by different WLAN standards operating at 2.4/5 GHz

and 60 GHz frequency bands. Even though IEEE 802.11n and IEEE802.11ac use very sophisticated PHY layer

techniques such as MIMO, MU-MIMO, channel bonding, and frame aggregation at the MAC layer, the expected

datarate is much lower compared to what can be achieved at the60 GHz frequency band.

It is evident from Fig. 2 that the 2.4 GHz and 60 GHz signals complement each other in terms of capacity

and coverage. The capacity of 60 GHz signals is at least ten times higher than the 2.4 GHz systems. Thus a

hybrid solution, involving 2.4 GHz transmission assistingthe 60 GHz devices can be very effective. Almost every

consumer electronic device, such as smartphones, tablets,laptops, cameras, etc., is equipped with WiFi and this

trend is expected to continue. Hence, assistance of 2.4/5 GHz band for 60 GHz communications seems a pragmatic

solution.
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(a) Signal coverage comparison at 2.4 GHz and 60 GHz.
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B. Hybrid 2.4 and 60 GHz WLAN Architecture

There can be two types of solutions: (i) utilizing the existing 2.4 GHz WiFi and IEEE 802.11ad, and modify them

accordingly; or (ii) a new system other than IEEE 802.11b/g/n and IEEE 802.11ad. The former category is more

likely to succeed as majority of wireless communication devices are already equipped with IEEE 802.11b/g/n.

One possible approach in the first category could be to use WiFi as a supportive technology to manage the

60 GHz network. The WiFi AP can cover several 60 GHz APs and hence, several 60 GHz APs can be managed

by a single WiFi AP. This is the basic idea behind the proposedCogCell architecture. We propose to split control

and data plane over 2.4 GHz and 60 GHz, respectively. This scheme is similar to the concept ofPhantom Cells [3]

proposed for 5G networks.

Fig. 3(a) shows the conceptual diagram of CogCell architecture. One 2.4 GHz AP covers all the rooms. Further,

every room has a 60 GHz PCP/AP (802.11ad APs are called PCP/APs) dedicated for high speed data transmission.

In a smaller indoor area such as small homes, a single 2.4/5 GHz AP can be sufficient to provide the coverage but

if the indoor area is large (e.g., big office, shopping malls or airports), multiple 2.4/5 GHz APs would be needed

to cover the complete area. Moreover, when areas are separated by walls, they always require a separate 60 GHz

PCP/APs.

In the proposed CogCell architecture, device discovery, association and channel access requests are transmitted

over the 2.4 GHz channel, while data is transmitted over 60 GHz channel. If a device wants to transmit data, it first

sends its request using the 2.4 GHz frequency band. Thereafter, the appropriate 60 GHz AP is directed to facilitate

the high speed data transmission. IEEE 802.11ad PCP/APs aretri-band devices, hence WiFi AP can communicate

with 60 GHz PCP/AP over 2.4/5 GHz. Fig. 3 shows the schematic of the CogCell architecture.

C. Advantages and Challenges of WiFi and 60 GHz Interplay

It is to be noted that, other than WiFi, LTE may also assist themmWaves communications (LTE-WiGig) [12].

Especially in outdoors, LTE can provide better control functionality instead of WiFi due to its limited range. However,

in indoor environments, exploitation of WiFi would be more suitable instead of LTE due to the prevalence of WiFi

networks over licensed LTE cells. Furthermore, WiFi would be more suitable for indoor mobility management due

to its localization capabilities which are accurate up to a meter and can help in handover between 60 GHz APs,

where room level positioning accuracies would be required.When LTE is used in conjunction with WiGig, the data

path could be via LTE base station or there must be different backhaul connectivity to the WiGig AP. In the first

case, LTE BS would be the bottleneck and it would defeat the purpose of having WiGig. In the latter case where a

backhaul is used for data path via WiGig AP, then it would indeed be similar to CogCell except that LTE handles

the control (rather than a WiFi AP as in the CogCell). LTE-WiGig, of course, helps in outdoor environments and it

can provide high data rate if backhaul connectivity exists.Now, we briefly describe the advantages and challenges

of interplay between WiFi and 60 GHz.

Advantages: The advantages of a hybrid 2.4 and 60 GHz WLAN system are manifolds: Firstly, isolated (behind

the walls) 60 GHz APs can still facilitate a seamless WLAN experience to the indoor users. Secondly, device
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(a) Network architecture.

(b) Sequence diagram of dual band transmission.

Fig. 3. Interplay of 2.4 and 60 GHz frequency bands in the proposed indoor network in 5G.
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discovery and association can be easily performed over 2.4 GHz. As users move from one room to another room,

they are still under the same 2.4 GHz APs. Thirdly, information sent over the 2.4 GHz channel can also help in

60 GHz beamforming procedure. Instead of using two level exhaustive beam searching as in IEEE 802.11ad, devices

can estimate the approximate direction of each other using 2.4 GHz frames.

Generally, 2.4/5 GHz communications (IEEE 802.11n, IEEE 802.11ac) employ multiple antennas in which

approximate direction of arrival can be obtained. Using this rough estimate of direction of arrival, the search

space of exhaustive beam searching for 60 GHz is reduced. A similar approach has been employed in [13] which

shows that inferring the direction of 60 GHz transmission using 2.4/5 GHz can reduce the link setup overhead by

avoiding exhaustive beam searching.

Fig. 4(a) shows results from MATLAB simulations for the WiFiassisted device discovery mechanism assuming

devices can infer the rough sector estimates using 2.4 GHz transmissions. The beamwidth of all the devices and

PCP/AP is assumed to be 60◦. All the parameters are listed in Table I. The results are compared with the standalone

60 GHz directional device discovery scheme proposed in [14]. It can be observed that the WiFi assisted scheme is

nearly 150% to 300% faster than the 60 GHz directional devicediscovery scheme. The results also show the effect

of signaling overhead due to 2.4 GHz control frame transmission which is obtained by including the time required

for transmission of extra management frames over 2.4 GHz.

Furthermore, the CogCell architecture can reduce the channel access delay because a device can place the data

transmission request over 2.4 GHz channel whenever it wants. On the other hand, in sectorized MAC protocols

such as IEEE 802.11ad, a device has to wait for channel accessif the 60 GHz AP is serving a different sector.

Challenges: The hybrid 2.4/5 GHz and 60 GHz network poses many challengesalso. Firstly, increased number

of WiFi devices can hinder the control plane communication.To address this issue, we propose to prioritize the

60 GHz channel access requests over the 2.4 GHz requests. We define two categories of frames sent over 2.4 GHz

channel: (i) 60 GHz channel request frames and (ii) 2.4 GHz channel request frames by non-60GHz devices. We

assign different contention window sizes and allowed maximum number of retransmissions for these categories,

which are shown in Table I. Fig. 4(b) and Fig. 4(c) show the MATLAB simulation results for the average channel

access delays and transmission probabilities for both typeof requests. It can be seen that a significantly faster

channel access and higher transmission probabilities can be guaranteed for the 60 GHz channel requests.

Secondly, power consumption of multiple radios working simultaneously can drain the batteries of mobile devices.

Hence novel schemes are required to reduce the device power consumption. One possible solution could be to turn

on the 60 GHz radio only when data plane communication is required. Thirdly, 2.4/5 GHz control plan would also be

used as a fall-back options if 60 GHz data plane is not available. This requires intelligent mechanism to determine

when the data plane fall-back should be triggered as 60 GHz link quality can deteriorate due to multiple reasons

such as antenna misalignment due to user movement, blockagedue to obstacles, etc.
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Fig. 4. Device discovery time comparison and channel accessperformance.

IV. SENSOR-ASSISTEDINTELLIGENT BEAM SWITCHING

Communication using narrow beam directional antennas can cause frequent link degradation due to device

movement. This is particularly the case with handheld devices such as smartphones, tablets, etc. To set up the

directional link between two devices, IEEE 802.11ad provides a beamforming mechanism for the selection of the

best transmit and receive antenna-beam pair. In case of device mobility, beam alignment can be disturbed; this

could result in frequent outages of links. If the link quality degrades below a certain limit, the mechanism to select

the best beam-pair is restarted (we call this re-beamforming). The re-beamforming procedure involves exhaustive

searching in all the possible transmit and receive directions. This leads to a considerable amount of communication
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TABLE I

MAC PARAMETERS FOR PRIORITIZED CONTROL CHANNEL ACCESS.

Parameters Typical values Parameters Typical values

Control frame transmission rate 1 Mbps Retry limit[2.4 GHz] 5

WiFi datarate 54 Mbps CWmax[60 GHz] 16

SIFS[2.4 GHz] 10µs CWmax[2.4 GHz] 256

SIFS[60 GHz] 3µs RTS 20 Bytes

Slot time[2.4 GHz] 20µs CTS 14 Bytes

Slot time[60 GHz] 5µs ACK 14 Bytes

DIFS[60 GHz] SIFS + Slot time PHY Header 16 Bytes

DIFS[2.4 GHz] SIFS + 2×Slot time MAC Header 24 Bytes

RIFS 300µs WiFi data 1024 Bytes

CWmin[60 GHz] 8 Association request 1024 Bytes

CWmin[2.4 GHz] 32 Association response 16 Bytes

Retry limit[60 GHz] 5 Sector sweep and feedback frame 1024 Bytes

overhead as well as degradation of Quality of Service (QoS).

If the next position of the users is known, the PCP/AP and the device can switch their beams to the appropriate

beam sectors. We proposes to use the motion sensors such as accelerometer and gyroscope to identify the device

movements and predict the next location of device. These sensors are already embedded into most modern devices,

hence this method is not unrealistic and is economically viable. To retrieve the useful information from these sensors

it is possible to combine the data from two or more sensors. Such combination of sensors is referred to as a virtual

sensor. Therotation vector sensor is such a virtual sensor, where accelerometer, gyroscope and magnetometer data

are fused. The rotation vector sensor gives the orientationof the device relative to the East-North-up coordinates.

The azimuth angle from this sensor can be used as an indication of the direction of the user which can assist in

identifying the next beam-pairs.

Fig. 5(a) shows the system diagram of sensor assisted beamforming. Whenever a movement occurs, based on the

gathered sensor data, the next location of the user is predicted and beam switching is performed to maintain beam

alignment. Fig. 5(b) shows the preliminary simulation results when a device moves along the stated route in [15].

When the PCP/AP beamwidth is 30◦, 14 instances of re-beamforming are required without usingsensor data. On the

other hand, with the help of sensor prediction, the number ofre-beamformings can be reduced to 4. Similarly, when

the PCP/AP beamwidth is 20◦, instead of 18 re-beamforming instances without sensor prediction, re-beamforming is

needed only 5 times using the rotation vector sensor data. Inthis simulation, we assumed that the PCP/AP knows the

sensor information. However, in practical scenarios, sensor information needs to be communicated to the PCP/AP.

This can be done by including sensor information in the 802.11ad data frames. This preliminary examination of

using sensor data for beam switching seems encouraging and requires further investigations.
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(a) System diagram of sensor assisted beamforming.
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Fig. 5. Sensor-assisted intelligent beamforming.

V. CONCLUSIONS

In this paper, we proposed a novel indoor network architecture, CogCell, for 5G. The proposed CogCell archi-

tecture enables the interplay between 2.4 and 60 GHz bands for control and data plane transmissions, respectively.

CogCell promises a robust multi-Gb/s WLAN experience at 60 GHz frequency bands enabling faster device discovery

and medium access. We believe that the combination of 2.4/5 GHz WiFi and 60 GHz communication will play an

important role in the indoor networks in 5G era and we showed the approach to exploit them together. Further, a

sensor-assisted intelligent beam switching scheme for 60 GHz communication was proposed. It was shown that with

the help of rotation-vector sensor-data, frequent re-beamforming in the 60 GHz directional links can be significantly

reduced. Thus, link maintainability in 60 GHz is guaranteed. This results in less requests on WiFi APs leading to

efficient use of 60 GHz and WiFi.
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