LISP: A southbound SDN protocol?

Alberto Rodriguez-Natal, Marc Portoles-Comeras, Vina Ermagan, Darrel Lewis, Dino Farinacci, Fabio Maino,
Albert Cabellos-Aparicio

Abstract—The Locator/ID Separation Protocol (LISP) splits
current IP addresses overlapping semantics of identity and loca-
tion in two separate namespaces. Since its inception the protocol
has gained considerable attention from both the industry and
the academia motivating several new use cases to be proposed.
Despite its inherent control-data decoupling and the abstraction
and flexibility it introduces into the network, little has been said
about the role of LISP on the SDN paradigm. In this paper
we try to fill that gap and analyze if LISP can be used for
SDN. The paper presents a systematic analysis of the relevant
SDN requirements and how such requirements can be fulfilled
by the LISP architecture and components. This results in a set
of benefits (e.g., incremental deployment, scalability, flexibility,
interoperability and inter-domain support) and drawbacks (e.g.,
extra headers and some initial delay) of using LISP for SDN. In
order to validate the analysis, we have built and tested a prototype
using the LISPmob open-source implementation.

I. INTRODUCTION

HE Locator/ID Separation Protocol (LISP) [1] decouples

identity from location on current IP addresses by creating
two separate namespaces, Endpoint Identifiers to identify hosts
and Routing Locators to route packets. LISP original purpose
was to solve the scalability issues of the Internet Default-
free Zone (DFZ) routing tables by pushing traffic engineering
practices to the identifiers space while keeping the locators
space quasi-static and highly aggregatable. At the time of
this writing LISP has been deployed in a pilot network
(lisp4.net) that includes more than 20 countries and hundreds
of institutions. LISP hardware and software are also widely
available, both in open-source (lispmob.org, openlisp.org) and
proprietary implementations (lisp.cisco.com).

Since its inception, LISP has gained a significant traction on
both the industry and the academia. As a result of the LISP
standardization and research efforts, the protocol has grown
architecturally and has been applied to use cases beyond its
original purpose. There is a growing interest on the role of
LISP in Software Defined Networking (SDN) [2]. LISP is
already becoming part of SDN solutions, such the OpenDay-
light controller (opendaylight.org). In this paper we analyze the
relation between the LISP architecture and the SDN paradigm.

There are two well-defined parts in any SDN deployment:
the northbound and the southbound interfaces. The northbound

A. Rodriguez-Natal and A. Cabellos-Aparicio are with Technical
University of Catalonia, Barcelona, Spain. E-mail: {arnatal,
acabello}@ac.upc.edu

M. Portoles-Comeras, V. Ermagan, D. Lewis and F. Maino are with
Cisco Systems, San Jose, CA, USA. E-mail: {mportole, vermagan,
darlewis, fmaino}@cisco.com

D. Farinacci is with lispers.net,
farinacci@gmail.com

CA, USA. E-mail:

offers a high level application programming interface, where
control applications can be deployed. The southbound is a
low level interface used to operate with the raw network
elements. Currently, there is ongoing effort in defining the high
level abstraction interface (see Frenetic [3] or Procera [4] as
examples). With respect to the southbound interface there are
as well several options, being OpenFlow [5] the one that has
gained major widespread on the industry.

The main contribution of this paper is to analyze LISP as
a southbound SDN protocol. For this, the paper presents a
systematic analysis of the fundamental SDN requirements -
inferred from the literature [2], [3], [4], [5], [6], [7], [8], [10],
[11]- and how such requirements can be fulfilled by the LISP
architecture and components.

The analysis results in a set of qualitative advantages and
drawbacks as well as recommended potential improvements to
overcome the identified issues. In order to validate the analysis,
we build and test a prototype using the LISPmob open-source
implementation (lispmob.org).

II. BACKGROUND: LISP OVERVIEW

Locator/ID separation protocol (LISP) decouples host iden-
tity from its location. It creates two different namespaces:
Endpoint Identifiers (EIDs) and Routing Locators (RLOCs).
Hosts are identified by an EID, and their point of attachment
to the network by an RLOC. To keep LISP incrementally
deployable, in its very basic form EIDs and RLOCs are
syntactically identical to current IPv4 and IPv6 addresses.
However, the protocol allows arbitrary address families (MAC
for instance) to be used.

Figure 1 depicts LISP common operation. Packets are routed
based on EIDs within host sites and on RLOCs on transit
networks. Since host A and host B are in different sites (e.g.
two offices geographically separated), the packets from A to
B have to traverse a transit network (e.g. the Internet). To
allow transit between EID and RLOC space, LISP follows a
map-and-encap approach performed by LISP Tunnel Routers
deployed at edge points. In the image, Tunnel Router X
receives the packet from host A addressed to host B (D). It
knows that host B is in a different EID site, but it does not
know where to reach that site (i.e. its RLOC). Tunnel Router
X requests this information to the Mapping System (2). LISP
Mapping System is a distributed database that stores EID to
RLOC mappings. Tunnel Router Y has previously registered
its location and the set of EIDs it is in charge of in one of the
Mapping System internal servers. The Mapping System routes
the request internally) to find that server, and eventually it
replies back with the requested location @). Tunnel Router X
gets this information and caches it for future use. From now
on, all EID packets from host A to host B will be encapsulated

(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/MCOM.2015.7158286

Identifier
Locator

....... Control

— o ® a
......................... >
= Encap. T
Data ~

Tunnel Router X Tunnel Router Y Host B

EID space RLOC space EID space

Fig. 1. LISP Overview.

into an RLOC packet in Tunnel Router X and routed towards
Tunnel Router Y (). Upon arrival at destination, Tunnel Router
Y will decapsulate the packets and forward them natively to
host B (6.

III. LISP: AN SDN ARCHITECTURE?

In this section we analyze if the LISP architecture -as is-
can fulfill the requirements stemming from the SDN paradigm.
Even though a formal definition of such requirements cannot
be found in the literature, we infer the key SDN requirements
by revisiting the design principles of the state-of-the-art SDN
literature.

Control-Data decoupling: One of the main reasons that
motivated the emergence of OpenFlow [5] was to decouple
the network control from the data forwarding devices. With
its Mapping System in place, LISP is capable of maintaining
a distributed database where the network state and control
information are stored. This database can be updated and
queried by the LISP network elements in real time, and
any change on it is propagated over the network. With this
approach LISP is effectively decoupling control from data:
while the data-plane remains at router level, implemented on
the Tunnel Routers, all control is pushed to the Mapping
System.

Network programmability: Frenetic [3] and Procera [4]
are two examples of the interest of the community on pro-
graming the network and improving its management. The LISP
paradigm does not program the network but rather the Mapping
System. The control policies can be programmed and stored
on the Mapping System, then the LISP data-plane will operate
accordingly. LISP semantics are poor when compared to state-
of-the-art languages ([3], [4]) and focuses on representing
network state, therefore LISP should be complemented by a
rich northbound language.

Centralized control: Levin, et al. [7] expose that one core
benefit of SDN is that it enables the network control logic to be
designed and operated on a global network view, as though

it were a centralized application. Since the LISP Mapping
System stores all network control state and can be remotely
accessed and updated in real time, it provides a global view
of the network that effectively centralizes the control.

Scalability: Yeganeh et al. [8] show the concern of the
SDN community about SDN scalability. LISP is a pull-based
architecture that stores the state in the Mapping System,
network entities (e.g, LISP Tunnel Routers) retrieve and cache
only locally relevant state on demand. Furthermore, the litera-
ture shows that the Mapping System internals can be designed
to be scalable [9].

Core-Edge split: Casado et al. [10] analyze the main
shortcomings of existing SDN architectures and point the
Fabric architecture as a solution. Fabric is based on an element
called network fabric, a set of forwarding elements whose
main function is packet forwarding. By taking base on this
concept, they split the network into three components, hosts,
edge switches and core fabric. With this, rich network services
such as isolation, mobility or security are performed at the edge
while fabric control is only responsible for packet forwarding.
It is simple to establish a bijective relationship from Fabric
components to LISP elements: Tunnel Routers perform edge
switches function, hosts are located on the EID space and the
core fabric corresponds to the RLOC space. From an abstract
point of view, LISP offers an equivalent architecture to the one
proposed by Fabric.

IV. LISP SDN BUILDING BLOCKS

In this section we analyze how specific LISP architectural
elements can be used as SDN building blocks to understand
the technical advantages and disadvantages of LISP as an SDN
solution.

A. Flexible Namespace

The main LISP specification assumes IPv4 and IPv6 as
address families, however it is flexible enough to allow using
any other address families (for instance MAC addresses). LISP
Canonical Address Format (LCAF) allows defining ad-hoc
address types that can be used for any purpose on a LISP
system.

The template to define this type of addresses follows a
simple TLV format (type-length-value). With this format, it is
possible to define any address type including nested addresses
of the same or different type. There are several address
types defined at the time of this writing: AS number, Geo-
coordinates, Application data, NAT-Traversal data, Multicast
info, etc. As an example, Geo-coordinates addresses are used
to carry geographical information along with any other address.

In general such addresses allow LISP to map from any kind
of identifier to any kind of locator which means that, from an
abstract point of view, LISP can map from any namespace
to another. This address agnosticism enables rich network
state programmability and can help to ease the interoperability
challenges of heterogeneous SDN deployments

Others
g# DHT
J 00 /J
Mapping System internals
Mapping System interface
4 4
‘ i

@ LISP data-plane devices @

Fig. 2. LISP Mapping System

B. Distributed Mapping Database

Interface: The interface to exchange information with the
Mapping System is standard and open, and all the Mapping
System internal elements are hidden behind this interface -see
figure 2. This allows the LISP data-plane devices to remain
agnostic of the Mapping System internal implementation. Such
decoupling was put into test when the LISP beta-network
deployed on the Internet (lisp4.net) replaced the existing
Mapping System -based on BGP- to a new one -based on DNS-
without interfering with any of the LISP data-plane elements.

Arbitrary information: Using the LISP flexible addresses
(LCAF) described in the previous section the mappings can
contain any arbitrary information and be read/written from the
Mapping System using a standard interface. An SDN system
can take advantage of this feature to store the network state.
This is similar to what Onix [11] does with its own distributed
databases.

Onix is a well-known wide-area SDN deployment, it ad-
dresses the lack of a general SDN control platform that can
provide network-wide management abstractions. Onix provides
an infrastructure to manage network state on top of which,
different control-plane applications can be implemented. To
offer this, Onix deploys its own database system to keep
the network state and relies on the OpenFlow protocol to
communicate with the network devices. Onix takes care of
keeping consistent and distributed this network state over all
network elements. With a LISP deployment, Onix could take
advantage of LISP capabilities to provide similar functionality.
First, it could use the Mapping System with flexible addresses
to keep network state and policies instead of deploying its own
database system and second, it could automatically reflect this
state on the actual network if the network devices directly
pull these policies from the Mapping System using the LISP
protocol.

Internal scalability: The internal architecture of a specific
Mapping System varies depending on the type of information

it is expected to store. Figure 2 also shows how the Mapping
System can use different internal implementations.

A Mapping System indexing common IP addresses benefits
from a hierarchical structure, such DNS. This is the approach
followed by the Delegated Database Tree (DDT) based on
[9], the Mapping System design used on the current LISP
Internet deployment (lisp4.net). On the other hand, some
deployments could require a flat name space, this is the
case of non-aggregatable data such as character strings. For
such requirements, a Distributed Hash Table (DHT) design,
rather than a DNS-like one, should be used. Although some
initial efforts towards a DHT-like Mapping System can be
found in the literature [12], at the time of this writing only
a hierarchical Mapping System (DDT) has been successfully
widely deployed.

Consistency: Levin, et al. [7] expose the impact of a
distributed SDN state on a logical centralized control appli-
cation. While LISP still needs to deal with distributed trade-
offs, its design allows mitigating them. LISP Mapping System
is consistent and any snapshot of the distributed information
reflects the desired control state. However, LISP network
elements are eventually inconsistent, since an update on the
Mapping System is not instantaneous reflected on the data-
plane. For instance a LISP Tunnel Router can register new
mapping information into the Mapping System at any time,
however an old version of the mapping can still be cached
by remote Tunnel Routers. In order to minimize network
inconsistency time, LISP defines two mechanisms to enforce
up-to-date information at the data-plane. First, data-packets
can carry an index of the current version of the mapping and
second, a special control message can be used to explicitly
notify remote parties of the mapping update.

C. Network landmarks

Re-encapsulating Tunnel Routers (RTR) are special LISP
Tunnel Routers that can be deployed on the RLOC space,
rather than on the EID-RLOC edges. They receive LISP
traffic, decapsulate it, look-up on the Mapping System for the
next hop, re-encapsulate the traffic and forward it. They give
flexibility to the data path, offering network landmarks that
data-packets can use.

These routers are a key element of a LISP SDN deploy-
ment. They can process the decapsulated traffic prior to re-
encapsulate it again. This means, for instance, that traffic
can be inspected, accounted, dropped or modified at the Re-
encapsulating Tunnel Routers. An SDN approach can take
advantage of these elements to set up network function devices.
Devices like firewalls, traffic analyzers, accounting points,
can be plugged, implemented or virtualized on top of re-
encapsulating devices. In that sense, figure 3 shows the abstract
representation of a Re-Encapsulating Tunnel Router device
with some network functions integrated that are used on
demand.

D. Traffic Engineering

A mapping on the LISP Mapping System can link an
identifier to several locators. LISP allows defining a different

Data path

— — Optional path
Network function | Network function | ... Control
1
I
Re-encapsulation logic PR N Mapping
System
LISP in LISP out

Fig. 3. LISP Re-Encapsulating Tunnel Router

priority and weight per locator. These values are used to
specify the preference of the RLOCs to use to reach an EID as
well as how to balance traffic among them. Besides that, LISP
also introduces advanced Traffic Engineering capabilities by
means of the Explicit Locator Path (ELP). An Explicit Locator
Path is a list of hops through where packets have to be routed.
The packets have to visit those locators in the same order as
they are listed in the explicit path. These explicit paths serve
as a mechanism to force traffic to follow a certain path on the
locators space.

Priorities and weights also apply to locators paths, which
means that an EID can map to several locator paths with
different priority/weight attributes. Furthermore, such paths
can be nested, creating sub-paths. This is done using EIDs
instead of RLOCs as hops in the path. The final locator-only
path will be obtained by a recursive look-up process. When a
device finds that the next hop of the path is an EID, it will
look-up on the Mapping System to know the sub-path that
this EID represents. Note that these sub-paths are subject to
priority and weight values the same way as any other locator
on the path. Using priority and weight, a LISP system can use
different paths for the same destination where one path could
be the most preferable while the others serve as backup, or
many paths can be used at the same time to balance traffic.

Figure 4 shows an example. The traffic going to endpoint C
should first go through M and N before being delivered at U.
If that path is not available, then the traffic should be balanced
in a 70/30 fashion over locators V and W. The traffic going to
D should follow the path defined by « before reaching Z. As a
backup, it can be also delivered directly on Z. In the example,
« is used as a special identifier that represents a path instead
of an endpoint.

Locator paths and re-encapsulating devices are tightly cou-
pled, since in most of the cases the locator paths are used to
force traffic to go through re-encapsulating devices. Explicit
locator paths combined with re-encapsulating devices enables
network programmability due to the ability to define custom
programmable paths for packets on real time. Priority and
weight parameters serve a fundamental role when deploying
traffic rules. Traffic can be balanced among several paths and,
thanks to recursion, to an arbitrary number of sub-paths. An

®-B 0100
O o

Identifier

Locator

)

O
() oty
>

Weight

@{@~@f>@l
() — [12%> (@)

(2] ~(as)— 000> (D0 @)

Fig. 4. LISP Traffic Engineering

SDN approach can deploy several re-encapsulating devices,
that also may implement (virtualized or not) network functions,
and then program the Mapping System to force the traffic to
flow through these devices using explicit paths. Path nesting
allows defining common sets of re-encapsulating devices that
can be applied at once to specific traffic.

E. Label system

Instance-ID is a 24 bit length identifier that can be associated
to a certain EID. The identifier is included in the LISP header,
and hence in all data-packets. Typically, this is used to carry
VLAN tags or VPN identifiers. With this, network operators
can split network policies and traffic enabling multi-tenancy
deployments.

However, Instance-ID can be used beyond its original pur-
pose. It is a 24 bit tag that can be appended to any data-packet
to enable further features, not only multi-tenancy or address
reusing. Specifically it can be used for routing scalability as
well as management. In an SDN proposal like Fabric [10],
Instance-ID can be used to tag flows that should be forwarded
in the same way, simplifying forwarding on the core fabric
and improving management and scalability.

V. LISP FOR SDN

Based on the previous analysis, this section discusses the
advantages and drawbacks of applying LISP for SDN.

A. Highlights

Based on the analysis of section IV we highlight the most
relevant features of LISP in SDN environments.

o Scalability: As described on section IV-B, the Mapping
System provides scalability to the LISP system, an SDN
solution can leverage this to provide a scalable network
state database that can be directly queried by both data
and control devices

e Interoperability: Given its flexible namespace (section
IV-A) and its label system (section IV-E), LISP is

agnostic to the protocols it encapsulates and is well-
suited to deploy overlays.

e [Inter-domain: Network landmarks (section IV-C) and
LISP traffic engineering capabilities (section IV-D) allow
LISP to enforce policies on transit networks and make
it suitable for inter-domain deployments.

B. Benefits

First LISP has been designed to be incrementally deployable
and to leverage on current IP-based networks. Any existing
IP-based network can incorporate common SDN features by
simply upgrading some routers to LISP Tunnel Routers and
connecting them to a Mapping System.

Second, the shortcomings of traditional SDN protocols are
motivating the emergence of hybrid SDN proposals that com-
bine SDN with traditional network solutions [14]. Interestingly,
due to its scalability and interoperability LISP eases the
deployment of the aforementioned hybrid SDN networks, spe-
cially since LISP can be incrementally deployed. Furthermore,
thanks to its flexibility LISP is well-suited to accommodate
future protocols and new network approaches.

Finally, in contrast to common SDN protocols that are de-
signed to operate mostly within a single domain, LISP allows
SDN policies to be enforced across domains (e.g., DC-to-
DC, DC-to-user’s home). Well-placed LISP elements (e.g., Re-
encapsulating Tunnel Routers) make possible a programmable
SDN deployment over a transit network (e.g., the Internet),
something that is more complex to accomplish with traditional
SDN protocols.

C. Drawbacks

Due to both how the protocol operates and its nature as a
map-and-encap approach, LISP has some limitations that must
be taken into account when considering LISP as a southbound
SDN protocol.

e Extra headers: In order to encapsulate the traffic, LISP
adds extra headers to the packets. This increments the
packet size and reduces the available payload.

e Mapping resolution: LISP devices resolve and cache the
mapping information on demand. The first packets of
non-cached flows need to be either buffered or dropped
until the mapping resolution process has been completed.

e Mapping updates: Any update on the Mapping System is
propagated over the network. However, this propagation
involves some delay due to the signaling process. This
can introduce latency in the system and/or produce
packet losses.

o Look-up support: While LISP defines how to convey
different types of addresses in control messages, it does
not define how to use all of those addresses to perform
look-up operations.

e Flat data support: Generally, Mapping System imple-
mentations have been designed with hierarchical data in
mind (e.g., IP addresses) and as such do not perform
well when storing flat data (e.g., character strings).

Both Extra headers and Mapping Resolution drawbacks are
inherent to the LISP architecture, however they do not have a

strong impact on performance given that first, LISP encapsula-
tion typically adds only 36 bytes (IPv4) or 56 bytes (IPv6) [1],
and second the LISP entities cache the mappings and because
of the strong locality of traffic [13] achieve a hit-rate above
99%.

Regarding Flat data support, the limitation can be solved
with a DHT-based Mapping System. Given that the interface
to read/write mappings is open and standard, this limitation is
not architectural and can be solved taking advantage of existing
DHT databases.

To overcome the rest of the drawbacks we propose potential
enhancements for the protocol in section V-D.

D. Proposed Improvements

The Mapping updates limitation requires optimizing the
mapping update signaling on SDN scenarios. In this context,
we propose implementing a publish/subscribe mechanism for
LISP mappings. The proposed mechanism is already being
prototyped for the LISP project in OpenDaylight (openday-
light.org). The system operates as follows, whenever a LISP
data-plane device requests a mapping, the Mapping System
adds it to the list of subscribers for that mapping. Whenever
the mapping data changes, the subscribers of that mapping
are immediately notified, and thus they do not need to wait
for the standard mapping update propagation. The requester
has to renew its subscription by explicitly requesting the
mapping before a time-out. For scenarios where scalability
and/or security is a concern the subscription may be restricted
to a set of pre-defined mappings or subscribers.

The Look-up support needs to be extended beyond its
current focus mostly in IP-prefixes. Most of the current SDN
solutions operate the network in terms of flows. Traditionally,
the minimal amount of information to identify a flow is its 5-
tuple, even though normally in SDN more fields are used (e.g.
OpenFlow). We advocate that LISP requires, at least, a look-
up mechanism based on 5-tuples, despite in the future further
look-up processes can be implemented, potentially leveraging
on OpenFlow tuple matching process.

VI. PROTOTYPE

This section presents a prototype of a LISP-based SDN
solution in order to validate its feasibility.

A. Setup

The prototype topology is depicted in figure 5. Two hosts (A
and B) in different LISP sites are connected through the transit
network via two Tunnel Routers (X and Y) and optionally via a
Re-Encapsulating Tunnel Router. The Mapping System stores
mappings of source-destination EID tuples to RLOC space
paths. These mappings are loaded by (borrowing OpenFlow
terminology) a controller.

To implement the prototype, we instantiate a virtual machine
running Linux for each of the elements on the topology. We
connect the machines using virtual networks, emulating the
topology depicted in the figure. On the machines that need

C] Identifier 0.8

0.7 Linux (2+2 hops)

O vocator @ :) @ ® ¢ @ 0.6 Linux (3+3 hops)

....... Control 0.5 LISPmob (2+2 hops)

@ @ 0.4 LISPmob (3+3 hops)
- Data 0.3
0.2
= oo

ata
0
/J = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RTT (in miliseconds)
'

0.8

0.7 LISPmob look-up & encap

o 0.6 ; : ;
R ‘.,.. 0.5
N e) o
0.3
. . : /v ~ 0.2
z < .1
[Tunnel RouterY] [HostB] 0 0
EID space 0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09 0.1
RLOC space Re-Encapsulating EID space
Tunnel Router R Time (in miliseconds)
Fig. 6. LISPmob induced delay
Fig. 5. LISP SDN prototype

LISP capabilities we run the open-source LISPmob imple-
mentation (lispmob.org) modified to support look-ups based
on destination-source EID tuples.

On the described prototype we test two different scenarios,
one where the traffic goes directly to its destination and another
one where the traffic goes through the detour introduced by
the Re-Encapsulating Tunnel Router. We have a simple SDN
application running on the controller that can dynamically set
which path has more priority.

B. Metrics

To extract relevant metrics we run 10 iterations injecting
ping packets traffic during 10 secs per scenario (with and
without detour) at a data-rate of 1000 pkts/s.

a) Packet loss: The initial packet loss is due to the
required mapping resolution signaling (see section V-C) when
we send a flow over a new path. We have measured an average
initial packet loss of 3.0 packets dropped per iteration on the
scenario without detour. This average packet loss goes up to
5.1 packets per iteration on the scenario with the extra LISP
router due to the introduction of additional mapping resolution
operations.

b) Delay: To measure how much delay is introduced
by LISPmob we built an equivalent prototype without LISP
capabilities, where traffic paths were configured modifying
the routing tables on the Linux boxes. The top of figure 6
shows the PDF (Probability Distribution Function) of the RTT
(Round Trip Time) for the scenarios considered. Note that
without the detour round-trip traffic goes through 4 hops (i.e. 2
from A to B and 2 from B to A), while the detour introduces
one extra hop in each direction (3+3) for a total of 6 hops.
The bottom part of figure 6 shows how much time elapses
since LISPmob receives a new packet until it delivers the
LISP encapsulated packet, i.e. LISP look-up and encapsulation.
The plots in figure 6 show that each LISP hop adds roughly
50 microseconds to the RTT, of which no more than 30 are
due to LISP operations. The remaining latency is mostly due

to the user <+ kernel communication required by LISPmob.
Nevertheless, the lookup and encapsulation operations may be
optimized by router manufactures to enable the performance
of hardware implementations to be similar to that of traditional
IP datagram forwarding.

VII.

In this paper we have analyzed if LISP -as is- can be used
for SDN. Our analysis concludes that the control-data decou-
pling, the network programability and the centralized control
enabled by traditional SDN solutions are already enabled by
the LISP Mapping System and supported by the rest of the
LISP components. The major benefits of using LISP for SDN
are that it keeps its incremental deployability and flexibility
while providing scalability, interoperability and inter-domain
support, making LISP specially suitable for SDN deployments
over legacy or transit networks, such the Internet. However,
despite its potential as an SDN enabler, there are some aspects
of the protocol that should be extended to better fit the SDN
use-case, mainly the signaling for the mapping updates and
implementing support for advanced look-up process. Finally,
the presented prototype demonstrates that LISP is feasible for
SDN scenarios.

CONCLUSIONS

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments.

This work has been partially supported by a Cisco research
grant, by the Spanish Ministry of Education under grant
FPU2012/01137, by the Spanish Ministry of Economy and
Competitiveness under grant TEC2014-59583-C2-2-R and by
the Catalan Government under grant 2014SGR-1427.

REFERENCES

[1] D. Farinacci et al., ”The Locator/ID Separation Protocol (LISP),” IETF

RFC 6830, 2013.

[2] M. Jarsche et al., "Interfaces, attributes, and use cases: A compass for
SDN,” Communications Magazine, IEEE , vol.52, no.6, pp.210,217,
June 2014

[3] N. Foster et al., “Languages for software-defined networks,” IEEE
Communications Magazine, vol 51, no. 2, 2013, pp. 128-134.

[4] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Communications Magazine, vol.
51, no. 2, 2013, pp. 114-119.

[5] N. McKeown et al., "OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, 2008, pp. 69-74.

[6] S. Sezer et al., ”Are we ready for SDN? Implementation challenges for
software-defined networks,” IEEE Communications Magazine, vol. 51,
no. 7, 2013, pp. 36-43.

[71 D. Levin et al., "Logically centralized?: state distribution trade-offs in
software defined networks,” Proceedings of the first workshop on Hot
topics in software defined networks, ACM, 2012, pp. 1-6.

[8] S.H. Yeganeh et al., "On scalability of software-defined networking,”
IEEE Communications Magazine, vol. 51, no. 2, 2013, pp. 136-141.

[9] L. Jakab et al., "LISP-TREE: a DNS hierarchy to support the lisp
mapping system,” IEEE Journal on Selected Areas in Communications,
vol. 28, no. 8, 2010, pp. 1332-1343.

[10] M. Casado et al., “Fabric: a retrospective on evolving SDN,” Proceed-
ings of the first workshop on Hot topics in software defined networks,
ACM, 2012, pp. 85-90.

[11] T. Koponen et al., ”Onix: A Distributed Control Platform for Large-
scale Production Networks,” OSDI, vol. 10, 2010, pp. 1-6.

[12] L. Mathy and L. Iannone, "LISP-DHT: Towards a DHT to map
identifiers onto locators,” Proceedings of the 2008 ACM CoNEXT
Conference, ACM, 2008.

[13] F. Coras, A. Cabellos-Aparicio, and J. Domingo-Pascual, ”An Analyti-
cal Model for the LISP Cache Size,” Proceedings of IFIP Networking,
2012.

[14] S. Vissicchio, L. Vanbever, and O. Bonaventure. 2014. ”Opportunities
and research challenges of hybrid software defined networks”. SIG-
COMM Comput. Commun. Rev. 44, 2 (April 2014), 70-75.

Alberto Rodriguez-Natal received a BSc (2010) and a MSc (2012) in
Computer Science from the University of Leon (Spain) and the Technical
University of Catalonia (Spain) respectively. He is now a PhD candidate at
the Technical University of Catalonia and has been a visiting researcher at
Cisco Systems (USA) and the National Institute of Informatics (Japan). His
main research interests are future Internet architectures and Software-Defined
Networking.

Marc Portoles-Comeras received his Degree in Telecommunications Engi-
neering from the Technical University of Catalonia (UPC) and is currently
working as a Software Engineer at Cisco Systems Inc. participating in the
development of the LISP protocol architecture. Before joining Cisco he was
a Research Engineer at the Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC) where he participated in multiple R&D projects. His current
research interests are on SDN and network virtualization solutions.

Vina Ermagan is a Technical Lead in the Chief Technology and Architecture
Office at Cisco Systems. She joined Cisco in 2008, and has been working
on research, design, and development of SDN and network virtualization
technologies ever since. She has initiated projects to implement LISP in Open
vSwitch (OVS), OpenStack, and OpenDaylight. Vina received her MSc in
Computer Science from UC San Diego in 2008, and her BSc in Computer
Engineering from Sharif University of Technology.

Darrel Lewis has over 25 years of experience as an engineer for routing
infrastructure vendors and network service providers. He has co-authored
several LISP RFCs and he is currently a Technical Leader at Cisco Systems.
Previously, Darrel worked for Riverhead Networks as the lead Consulting
Engineer. Darrel is active in the North American Network Operators Group
(NANOG), the Internet Engineering Task Force (IETF), and is a noted
instructor in the fields of both Internet Routing and Security.

Dino Farinacci is a technologist advancing the state of the art for the next-
generation Internet. He was the original co-author for LISP dating back to
2007 and has the pleasure of writing 2 implementations of the protocol. He
currently does consulting for large and startup networking vendors as well as
users of such products. He is a software engineer by trade and a technology
visionary by passion.

Fabio Maino is a Distinguished Engineer at Cisco Systems, in the Chief of
Technology and Architecture Office, where he leads the LISP research team.
He has about 50 patents issued or filed with the US PTO, and has contributed
to various standardization bodies including IEEE, IETF, and INCITS. Fabio
has a Ph.D. in Computer and Network Security and a M.S. ("Laurea”) in
Electronic Engineering from Politecnico di Torino, Italy.

Albert Cabellos-Aparicio received a BSc (2001), MSc (2005) and PhD (2008)
degree in Computer Science from the Technical University of Catalonia (UPC),
where he is now an assistant professor. In 2010 he joined the NaNoNetworking
Center in Catalunya where he is the Scientific Director. He has co-authored
more than 15 journal and 40 conference papers and his main research interests
are future architectures for the Internet and nano-scale communications.

