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Abstract—Mobile sensing is an emerging technology that
utilizes agent-participatory data for decision making or state
estimation, including multimedia applications. This article inves-
tigates the structure of mobile sensing schemes and introduces
crowdsourcing methods for mobile sensing. Inspired by social
network, one can establish trust among participatory agents to
leverage the wisdom of crowds for mobile sensing. A prototype of
social network inspired mobile multimedia and sensing applica-
tion is presented for illustrative purpose. Numerical experiments
on real-world datasets show improved performance of mobile
sensing via crowdsourcing. Challenges for mobile sensing with
respect to Internet layers are discussed.

Index Terms—crowdsourcing, mobile multimedia Internet, mo-
bile sensing, trustworthiness, social network

I. I NTRODUCTION

Wireless sensor network (WSN) explores the avenues to
collect and use information from the physcial world by de-
ploying low-cost tiny sensor nodes on the ground, in the
air, under water, on bodies, in vehicles, and inside buildings.
With sensing, processing, and communication capabilities,
networked sensor nodes cooperatively collect informationon
entities of interest and WSNs have emerged as a promising
technology with numerous and various applications. As shown
in Figure 1, sensor nodes locally collect information and then
forward the sensed result over a wireless medium to a remote
static sink, where it is fused and analyzed in order to determine
the global status of the sensed area. In order to successfully
gather sufficient information, a static sink could send a mobile
agent to collect data from individual sensor nodes by following
a trajectory spanning all the nodes (see Figure 1).

To accomplish large-scale sensing, WSN evolves not only
at the sink side (such as mobile agents), but also at the
sensor node side. Mature mobile networks consisted of mobile
devices with advanced processing and communication capa-
bilities become a possible sensing infrastructure of WSN. By
exploiting the rich set of embedded sensors (such as camera,
gyroscope, GPS, accelerator, light sensor and digital compass)
on mobile phones as the sensor nodes, a new paradigm of

static sink
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static sink
mobile phone 

with sensors

static sensors
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Fig. 1. Evolution from Wireless Sensor Networks to Mobile Sensing.

WSN is realized, which is known asmobile sensing [1]–[9].
As shown in Figure 1, mobile sensing utilizes crowdsensed
information for data analysis and decision making due to
penetration of mobile devices as well as human mobility and
ubiquity. It relies on the wisdom of crowds [10] to successfully
infer the information of interest and accomplish its tasks.
The data from the mobile crowds (e.g., users, sensors, robots,
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e.t.c.) can be either numerical or categorical, depending on
applications. Examples of crowdsensed data include numerical
environmental measurements such as temperature and air con-
ditions [3], [5], personal activities such as daily life patterns
and events [2], interactions among people such as crowd
density [7] and common interests [6], categorical recommen-
dations such as ratings for nearby restaurants [1], and user
experience/quality feedback of wireless mobile multimedia
applications [1].

It is worth noting that many multimedia applications lie
within the scope of mobile sensing, since extracting and
analyzing the information sensed or generated from the crowds
is one of the core goals for many multimedia applications, in
order to attract users’ attention. Better prediction of users’
interest leads to longer multimedia stickiness and hence more
revenues can be expected. Modern multimedia applications
often pull user-centric information from the crowds and offer
personalized contents (e.g., next video to watch). Typically,
location and social network information are widely used for
targeted advertisement and recommendation. Therefore, the
major challenge is to efficiently and accurately extract user-
centric information from the crowds and identify users of high
similarity for improved content delivery.

In recent years, many machine learning tasks and business
models have leveraged the wisdom of crowds to acquire
crowdsourced data for discriminating unknown objects. The
websiteGalaxy Zoo asks visitors to help classify the shapes
of galaxies, and the websiteStardust@home asks visitors to
help detect interstellar dust particles in astronomical images.
Business models such asAmazon Mechanical Turk (MTurk)
and CrowdFlower provide crowdsourcing services with low
prices. ForMTurk, a minimum of 0.01 US dollar1 is paid to
a labeler/worker when he/she makes a click (i.e., generates
a label) for an item. Despite the low costs for acquiring
crowdsourced data, one of the major challenges of mobile
sensing roots in dealing with noisy and potentially erroneous
data [4], [8], [11]. These undesired data can originate from
environmental/object uncertainties (e.g., channel noiseand
difficulty of object discrimination) or user intentions (e.g.,
fraudulent recommendations and irresponsible user clicks).
Consequently, identifying trustworthy data and reliable agents
becomes an essential task in mobile sensing [4], [5], [8].

Utilizing the concept of trust in social network, this article
proposes trust-based data analysis approaches for crowdsourc-
ing in mobile sensing schemes. In addition to scraping trust-
worthy data from the bulk, these approaches aim to identifying
reliable agents for performance enhancement. A weight of trust
is built upon the reliability of each agent for mobile sensing via
limited number of training queries. For spectrum sensing, these
approaches can be implemented by broadcasting reference
signals for reception power calibration. For annotation, these
approaches can be implemented by uploading some items
with known answers. For multimedia, these approaches can be
associated with user behaviors based on the provided contents.

This article summarizes mobile sensing network paradigms
and introduces several trust-based crowdsourcing methodsfor

1https://requester.mturk.com/pricing
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Fig. 2. Network architecture of mobile sensing.

mobile sensing. We also illustrate a prototype application
of social network inspired mobile multimedia and sensing
scheme. Numerical experiments on real-world datasets show
that mobile sensing can benefit from crowdsourcing for im-
proved performance. Potential challenges of social network
based mobile sensing with respect to mobile multimedia
Internet layers are discussed. This article therefore sheds new
light on integration of social network and mobile sensing, and
applications therein.

II. M OBILE SENSING PARADIGMS

In mobile sensing, people share and distribute sensed infor-
mation via physical proximity or social relations over portable
sensors. As illustrated in Figure 2, a mobile user plays the
roles of bothquerier andcollector, who respectively requests
and provides information. A querier can simultaneously be
a collector if he/she also participates in mobile sensing.
Network structures of mobile sensing can be classified into two
categories, namely thedirect and indirect paradigms, which
are described as follows.

A. Direct mobile sensing paradigm

A direct mobile sensing paradigm involves direct commu-
nication between a querier and crowds (i.e., the collectors).
Typically, it is achieved by adopting current device-to-device
(D2D) communication technologies, such as Wi-Fi Direct,
ZigBee, Bluetooth Low Energy (BLE), or near field communi-
cation (NFC). In such a case, thestore-carry-forward behavior
facilitates information delivery in an ad hoc fashion. Thatis,
sensed information could be stored in a sensor node in the
absence of immediate connectivity to any other node, and



could be relayed to other sensor nodes at encounters. Examples
include:

• Proximity sensing in mobile social networks (MSN):
It supports social platforms among physically proximate
mobile users. For instance, one can simply scan the en-
vironment for discoverable Bluetooth devices to analyze
crowd density and crowd flow direction [7]. By exploiting
P2P communications, one can further make new social
interactions with nearby devices. A popular example is
sensing “potential friends with similar interests nearby”.
To enjoy such new activities, mobile users have to provide
their own interests for profile matching by broadcasting
their personal profiles to all nearby users, and then
comparing their personal profiles and other users’ profiles
for friend matching [6].

• Cooperative spectrum sensing in cognitive radio net-
works (CRN): Unlicensed secondary users (SUs) sense
the surrounding environment and exploit spectrum holes
unoccupied by licensed primary users (PUs) for sec-
ondary transmission with minimal interference to PUs.
To achieve better spectrum management and to enhance
radio resource utilization, a querier could exploit obser-
vations on local spectrum vacancy from surrounding SUs
(i.e., crowds). The empowerment of cooperative spectrum
sensing improves the throughput of wireless communica-
tions and reduces potential interference among heteroge-
neous systems.

B. Indirect mobile sensing paradigm

In this paradigm a querier and crowds are indirectly con-
nected through a communication system in a centralized or
a distributed fashion. Typically, access points in WLAN and
a base station in cellular network or WiMax are exploited as
communication paths in the former case. In the latter case, a
querier/collectors could download/upload data from/to nearby
relays via localized communication technologies such as wifi-
direct, BLE or NFC. Examples include:

• Environmental measurements: Collectors provide local
measurements (e.g., temperatures, air pollution indexes,
e.t.c.) to a querier via an existing cellular infrastructure
for event detection or state estimation. Consequently,
the current environment can be understood and be im-
proved [3], [5]. For example, PEIR project [3] exploits
sensors in mobile phones to build a system that tracks
the impact of individual actions on carbon emissions.

• Personal activity sharing: A collector shares his/her
daily life patterns, activities (such as sports), health (such
as heart rate, blood pressure) with his/her friends using
online social networks. For example, by automatically
classifying events in people’s lives via sensors on mobile
phones, CenceMe [2] enables selective event sharing
among friends using Facebook or Twitter.

• Online recommendation: Crowds (e.g., data collected
from proximal users or users of high similarity) provide
recommendations to a user-centric query, such as the best
seafood restaurant within 2 miles, or the next video to

Fig. 3. LifeTie mobile sensing system - physical device and its mobile
multimedia interface.

watch for multimedia applications. For example, Micro-
Blog [1] encourages user to record multimedia blogs
manually or automatically (via sensors). Moreover, the
blogs from collectors in the same area are integrated to
enrich the contents. Consequently, a querier can browse
multimedia blogs at a selected region for relevant infor-
mation.

• Annotation: Crowds (e.g., machines, people, e.t.c.) an-
notate labels, such as scenery labels for a picture or
comments and interactions for multimedia contents, for
an item inquired by a user. One typical example is the
Amazon Mechanical Turk (MTurk) service.

III. L IFE TIE: A PROTOTYPESOCIAL NETWORK INSPIRED

MOBILE MULTIMEDIA AND SENSING APPLICATION

For further illustration, in this section we introduce a social
network inspired mobile multimedia and sensing application.
In Taiwan, mountainous areas are hikers’ paradise. Hikers
are used to tie trail marking ribbons on trees for direction
guidance. It is a matter of life and death to clearly know one’s
own location, especially at night time. However, trail marking
ribbons have several disadvantages such as misinterpretation,
lack of detailed information, and environmental pollution
caused by overuse. To ensure hikers’ saftey while overcoming
the aforementioned drawbacks, we propose a mobile sensing
system named “LifeTie”. Unlike traditional WSN deployed
in mountains for wildlife tracking and ecological monitoring,
LifeTie acts as an annotation platform where users can ex-
change their sensing results. The integration of tail marking
ribbon and NFC technology replaces the traditional marking
method with smartphone APP and achieves the purpose of
information exchange, rescue, and search.

The main concept of LifeTie is to exploit NFC tags as the
enabler for information exchange among people. To achieve
that, NFC tags shall be attached around a mountain, thus



creating an infrastructure. Hikers can trigger NFC tags nearby
(typical in the range of only a few inches) using their NFC
enabled mobile phones. Then the NFC enabled mobile phones
can read/write data from/to the NFC tags. With embedded
memory, LiftTie could handle a vast amount of data, which ex-
plores the possibility of multimedia information and advances
toward integration of social network and mobile sensing. The
prototype of LifeTie is shown in Figure 3. The features and
functionalities of LifeTie are summarized as follows.

A. Features

• Flexible: The shape of LifeTie was inspired by zap-
straps. It can be easily tied to tree branches.

• Recognizable: With the color of fluorescent orange and
the addition of reflective stickers, it provides direction
guidance even at night time.

• Reliable: Polypropylene (PP) is used in LifeTie for its
bendability and durability. An NFC tag is integrated in
the internal parts of a strap to resist extreme weather
conditions in mountains.

• Affordable : The cost of an NFC tag is low.
• Power-saving: An NFC tag is not powered by electricity.

As a result, no replacement for LifeTie is required, and
therefore even lower deployment cost can be achieved.

B. Functionalities

• Navigation and Warning. Via the corresponding APP,
hikers can check out LifeTie’s guestbook right after
triggering NFC tags. Depending on the current environ-
mental conditions, hikers could leave comments or draw
a simple map to make a notification or navigation. Some
useful waring icons (such as cliff, snake, wasps, slippery)
and guiding icons (such as cave, camp) are provided
when drawing the map to enable diverse multimedia
contents. The updated surrounding information facilitates
the following hikers.

• Tracking and Rescue.When a hiker is lost in a mountain
and finds LifeTie, he/she can check regular comments
to see if there is any shelter nearby. Moreover, he/she
can leave urgent comments highlighted by red. If he/she
can leave such information on several LifeTies, rescuers
can easily identify a rough search area according to
the positions of deployed LifeTie and timestamps of the
comments. As a result, the rescuing operations become
more effective and efficient.

IV. T RUST-BASED CROWDSOURCINGMETHODS FOR

MOBILE SENSING

This section provides an overview of weight (trust) as-
signment methodologies on agents for crowdsenced data in
mobile sensing. The utility of these methods is investigated
in Sec. V and the challenges toward practice are addressed
in Sec. VI. For crowdsourcing-empowered mobile sensing, a
user (or an intermediate system) evaluates a weight of trustwi

for i-th agent and fuse information from agents via weighted
combination of agents’ observations for the user’s query. As

shown in Figure 4, the collected data from the agents can be
viewed as a matrix with rows representing agents and columns
representing observations associated with queries. The training
queries refer to the queries with known answers and they are
used for weight evaluation. The number of agents is denoted
by m.

The final output for mobile sensing is the combination of
each agent’s observation multiplied by the associated weight.
Here we discuss several crowdsourcing methods involving
different weight evaluation approaches. These methods can
be classified into two categories,unsupervised andsupervised
methods, separated by the need of training queries.

A. Unsupervised crowdsourcing methods

• majority votes: majority votes adopts uniform trust
among all agents (i.e., the weightwi = 1/m for all i) and
selects the observation that most agents agree upon as the
final output. This method may lead to poor performance
when the majority of agents have incorrect observations
or when some observations are maliciously manipulated.

• probabilistic inference: Probabilistic inference method
assumes that each observation made by an agent is
statistically independent and imposes statistical model to
infer the weights from observations. One popular method
is the weight evaluation method based on an expectation
maximization (EM) algorithm [5], [12].

B. Supervised crowdsourcing methods

Supervised crowdsourcing methods aim to find the optimal
weight of each agent by solving the optimization problem as

minimizew cost(training-queries, final-output)+ λ · R(w),

wherew = [w1, w2, . . . , wm] is the vector of weights,R(w) is
a regularization function forw, andλ ≥ 0 is the regularization
parameter forR(w). Here we introduce several supervised
crowdsourcing methods.

• weighted averagingweighted averaging is a heuristic
weight evaluation approach which assigns weight that
is proportional to the accuracy of each agent in the
training queries. Letqi be the fraction of correct queries
responded by agenti. The weight of agenti is the
normalized accuracywi = qi/

∑
m

i=1
qi.

• exponential weighted algorithm: exponential weighted
algorithm adopts exponential cost function and zero regu-
larization parameter (λ = 0) and sequentially adjusts the
weight of each agent from the training queries. Interested
readers can refer to [13] and the references therein for
more details.

• support vector machine: support vector machine adopts
the Hinge loss function as its cost function and as-
sumes the regularization functionR(w) =

∑
m

i=1
w2

i
and

positive regularization parameter (i.e.,λ > 0). Support
vector machine aims to find a separating hyperplane that
best discriminates the training queries in the data sample
space, and the weight of each agent can be determined by
the resulting separating hyperplane. Interested readers can
refer to [13] and the references therein for more details.
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Fig. 4. Illustration of crowdsourced data.

• professional search: Inspired by social networks where
problems are often resolved by professionals, professional
search aims to assign weights to only a few agents that
have outstanding accuracy in the training queries [14].
Professional search adopts the Hinge loss function as
its cost function and assumes the regularization func-
tion R(w) =

∑
m

i=1
|wi|. This regularization function is

known as a surrogate function that promotes sparsity in
w (i.e., most of the weights are zero), and hence the
professionals hidden in the crowds can be selected for
mobile sensing.

V. NUMERICAL EXPERIMENTS

In this section we use two crowd generated datasets to
investigate the performance of the crowdsourcing methods in
Sec. IV. For the first dataset, each agent only participates in
some fraction of queries and hence it resembles the dynamic
participatory nature in mobile sesing. For the second dataset
almost every agent responds to each query but none of the
agents have correct answers to all queries, which resembles
the imperfect sensing capability in mobile sensing. In both
scenarios, crowdsourcing methods can improve the query
classification performance by identifying trustworthy agents.

For crowdsourcing methods involving a regularization func-
tion R, we use leave-one-out-cross-validation (LOOCV) ap-
proach [13] to determine the optimal regularization parameter
λ, by swiping λ from 0 to 200 to select the optimal value
that leads to minimum training error. One-to-all classification
approach is used for multiple (more than two) categorical
datasets (e.g., the exam dataset).

A. Text relevance judgment

The text relevance judgment dataset is provided by the text
retrieval conference (TREC) crowdsourcing track in20112,

2https://sites.google.com/site/treccrowd/2011

where689 agents (participants) are asked to judge the rele-
vance of paragraphs excerpted from a subset of articles with
given topics. Each agent then generates an observation, either
“relevant” or “irrelevant”, for an article. It is worth mentioning
that this dataset is sparse in the sense that in average each
agent only read roughly26 out of 394 articles. For supervised
crowdsourcing methods we use roughly10% (40 training
queries) of articles to evaluate each agent’s weight. The rest
of data samples are used to test the accuracy of crowdsourcing
algorithms and the results are summaried in Table V-A. It is
observed that supervised methods can achieve higher accuracy
than unsupervised methods via training queries. Also note that
support vector machine and professional search outperform
other methods since their main objective is to assign more
weights on the trustworthy agents/data samples possessing
eminent discriminant capability.

B. Science exam dataset

The science exam dataset is collected by the authors and
it contains40 questions. Each question has four choices and
the correct answer is one of these four choices. There are183
agents (students) taking the exam and producing observations
(their answers). Unlike the TREC dataset, this exam dataset
is dense in the sense that almost every student has provided
an answer for each question. We use10 questions as training
queries and use the rest to test the accuracy. The results are
summarized in Table V-A. The baseline accuracy (random
guess) is25%. None of the methods can achieve accuracy
as high as in the TREC dataset due to the following facts.

1) The observations of TREC dataset only have two cat-
egories, whereas the observations of the exam dataset
have four categories, which renders the latter more
difficult to be discriminated.

2) The exam is challenging since majority votes method
leads to low accuracy and there is not a student who



TABLE I
THE TREC 2011DATASET. SUPERVISED METHODS ATTAIN HIGHER ACCURACY THAN UNSUPERVISED METHODS VIA ACQUIRING A FEW TRAINING

QUERIES FOR WEIGHT(TRUST) ASSIGNMENT.

unsupervised supervised

Methods
majority

votes
expectation

maximization
weighted
averaging

exponential
weighted
algorithm

support
vector

machine

professional
search

Accuracy (%) 79.38 78.81 83.05 80.51 83.33 84.46

TABLE II
THE SCIENCE EXAM DATASET. DESPITE THE FACT THAT NO STUDENTS ANSWER ALL QUESTIONS CORRECTLY, PROFESSIONAL SEARCH CAN STILL

ACHIEVE MORE THAN TWICE OF ACCURACY THAN RANDOM GUESS(25%ACCURACY).

unsupervised supervised

Methods
majority

votes
expectation

maximization
weighted
averaging

exponential
weighted
algorithm

support
vector

machine

professional
search

Accuracy (%) 46.67 50 46.67 26.67 50 53.33

answers all questions correctly. The best student only
has70% accuracy.

Nonetheless, crowdsourcing methods such as support vector
machine and professional search can still attain relatively good
accuracy by identifying reliable agents.

VI. ONGOING CHALLENGES: ASPECTS FROMMOBILE

MULTIMEDIA INTERNET LAYERS

In this section we discuss some ongoing challenges toward
integration of social network and mobile sensing, particularly
on the aspects of mobile multimedia Internet. Issues corre-
sponding to each layer of mobile multimedia Internet are
specified as follows.

A. Application Layer

• Conflict between privacy and trustworthiness. Al-
though such an integration of social network and mobile
sensing is exciting and promising, the collection and
sharing of personal information related to human activity
introduces the concern of privacy, where the participants
are reluctant to reveal any sensitive personal information
(such as time, location, pictures, sound, acceleration, and
biometric data). As a result, it is crucial to design an
approach to collecting sufficient information from par-
ticipants without violating their privacy [8]. Specifically,
authentication shall be supported to identify legal mobile
users and adversaries. Moreover,anonymity shall be pre-
served to hide sensitive information by using technology
such as k-anonymous or pseudonyms. These avenues
prevent adversary from traversing relationship between
users’ contributions and identities.
In particular, trust-based crowdsourcing methods aim to
preserve trustworthiness in harsh environment where ma-
licious participants may deliberately feedback fraudulent

data. Obviously, to counteract this effect we need to ob-
serve contributions made by each user for a period of time
and hence to evaluate his/her trustworthiness. However, it
may conflict with the privacy consideration where actual
attribute values of a specific user are obscured and the
links between multiple contributions from the same user
are broken. How to acquire linkability across multiple
contributions from the same user while preserving privacy
is a challenging issue [5].

• Data integrity on complicated multimedia content.
By manually recording via users or automatically col-
lecting via sensors, a huge amount of information can
be retrieved in mobile sensing. The multimedia contents
generated from the retrieved materials via application like
Micro-Blog [1] contain abundant yet complicated infor-
mation, which burdens data integrity. Unlike the example
raised in Figure 4 where we just need to identify the
color of a cloth, multiple parts in one clip or video might
lead to distinct conclusion that is highly dependent upon
a viewer’s ideology. Extra meta information shall also be
included to increase data integrity like user reviews (such
as IDMB, Youtube) or user preference (such as Netflix).

• Incentives of participation. Mobile sensing requires
participants to spend their time, attention, and mobile
phone’s battery power for contributing data. Obviously,
the amount of collected information and the number of
participants are proportional to the degree of voluntary.
When the amount of collected information is insufficient,
the sensing results might not be precise. Thus, mobile
sensing needs incentive and mechanism design to encour-
age people to participate [15].

B. Network Layer

• Data retrieval in distributed environment. In dis-
tributed scenarios (such as proximity sensing, spectrum



sensing, or annotation), a querier can only retrieve in-
formation from localized collectors, which might lead to
biased inference results. To overcome this issue, current
researches propose to enableinformation relay for each
individual. Leveraging human mobility and the store-
and-forward features, the amount of data collected from
crowds grows substantially via information exchange,
thereby improving the accuracy of estimation. In addi-
tion, in indirect mobile sensing paradigm involving data
retrieval and analysis from distributed systems (e.g., data
storage servers), distributed computation is known to be
one of thebig data challenges.

• The limitations of D2D communications. In the direct
sensing paradigm, a querier could communicate with
collectors via D2D communications like Wi-Fi Direct,
ZigBee, BLE, and NFC. However, current D2D com-
munication technologies typically require manual mutual-
authentication when making a connection, which is unfa-
vorable for automatic data collection and device connec-
tivity. Moreover, mobile sensing applications should be
capable of integrating the features of different D2D com-
munication technologies (such as transmission ranges,
transmission rates, and power consumptions) for ubiq-
uitous multimedia content delivery.

C. Link Layer

• Unreliable link due to mobility and interference.
The mobile nature of users and agents may hinder the
performance of mobile sensing due to change in loca-
tion, environment, and participatory agents. The highly
dynamic positions of agents incur ever-changing received
interference, thereby affecting the link reliability. To
accommodate this effect, a crowdsourcing aided mobile
sensing method should possess adaptivity and robustness
in such a dynamical situation in order to identity inade-
quate agent participation and obsolete data collection.

D. Physical Layer

• Tradeoff between power consumption and sensing
accuracy. Apparently, the higher sensing accuracy is
attained, the more energy is consumed in mobile devices
with limited power due to the increase in data acquisition
frequency, which might violate the design rationale of
sensing paradigms. Consequently, power consumption
fairness and energy-efficient scheduling for participatory
devices should be jointly considered and new through-
put measures should be studied to balance the tradeoff
between power consumption and sensing accuracy.

VII. C ONCLUSION

This article propose to incorporate crowdsourcing meth-
ods for mobile sensing and introduces several crowdsourcing
methods for evaluating the weight of trust among agents.
The direct and indirect mobile sensing network paradigms
are discussed. A prototype social network inspired mobile
multimedia and sensing application is illustrated toward in-
tegration of social network and mobile sensing. Numerical

experiments on real-world datasets show that mobile sensing
can benefit from crowdsourcing methods for performance
improvements. Ongoing challenges of integration of social
network and mobile sensing are addressed from the aspects
of mobile multimedia Internet layers. This article therefore
paves new avenues to various mobile applications and future
mobile technology development.
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