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Wireless Communications in the Era of Big Data

Suzhi Bi, Rui Zhang, Zhi Ding, and Shuguang Cui

ABSTRACT

The rapidly growing wave of wireless data service is pushagginst the boundary of our commu-
nication network’s processing power. The pervasive andoeaptially increasing data traffic present
imminent challenges to all the aspects of the wireless syddesign, such as spectrum efficiency,
computing capabilities and fronthaul/backhaul link cagadn this article, we discuss the challenges
and opportunities in the design of scalable wireless systeembrace such a “bigdata” era. On one
hand, we review the state-of-the-art networking architesst and signal processing techniques adaptable
for managing the bigdata traffic in wireless networks. On oieer hand, instead of viewing mobile
bigdata as a unwanted burden, we introduce methods to tapiteom the vast data traffic, for building
a bigdata-aware wireless network with better wirelessiserguality and new mobile applications. We
highlight several promising future research directionsvioeeless communications in the mobile bigdata

era.

I. INTRODUCTION

Decades of exponential growth in commercial data serviessushered in the so-called “bigdata” era,
to which the expansive mobile wireless network is a critidata contributor. As 02014, the global
penetration of mobile subscribers has reach&w, producing staggeringly0.7 ExaBytes (0.7 x 10'®)
of mobile data worldwide. The surge of mobile data traffic @ent years is mainly attributed to the
popularity of smartphones, phone cameras, mobile tabledsother smart mobile devices that support
mobile broadband applications, e.g., online music, videbgaming as shown in Figl 1. With a compound
annual growth rate of ovet0%, it is expected that the mobile data traffic will increasesbiymes from
2015 to 2020.
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Fig. 1. Some example sources of wireless bhigdata traffic.

In addition to the vast amount of wireless source data, mod@eless signal processing often amplifies
the system’s pressure from bigdata in pursuit of highergserdnce gain. For instance, MIMO antenna
technologies are now extensively used to boost throughmpdireiability at both mobile terminals (MTSs)
and base stations (BSs) of high speed wireless services, fithwever, also increases the system data
traffic to be processed in proportion to the number of antennause. Moreover, théG (the fifth
generation) wireless network presently under developnseliitely to migrate the currently hierarchical,
BS-centric cellular architecture to a cloud-based layeretivork structure, consisting of a large number
of cooperating wireless access points (APs) connected thgrewireline or wireless fronthaul links to
a bigdata capable processing central unit (CU). New wiseksscess structures, such as coordinated
multipoint (CoMP or networked MIMO)]1], heterogeneouswetk (HetNet) [2] and cloud-based radio
access network (C-RAN]) [3], are under development to aehmaulti-standard, interference-aware and
energy-friendly (green) wireless communications. In pcag the use of cooperating wireless APs could
easily generate multiple Gbps data from a single user’'stiaur links due to the need for baseband joint
processing, such that the high traffic load may overwhelmfibethaul link or the system computing
unit for signal processing and coordination. Such intgnkelh system traffic volume, together with the

rapidly growing mobile data source volume, surpasses b@tptocessing power improvement speed of
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our current computing capabilities and the fronthaul/lback link rate increase pace of our networking
systems. It necessitates a new wireless architecture alaimgefficient signal processing methods to
make wireless systenscalableto continued growth of data traffic.

On the other hand, timely and cost-efficient informationgessing is made possible by the fact that the
vast-volume mobile data traffics are not completely chaatid hopelessly beyond management. Rather,
they often exhibit strongnsightful featuressuch as user mobility pattern, spatial, temporal and kocia
correlations of data contents. These special charadtsrist mobile traffic present us with opportunities
to harness and exploit bigdata for potential performandesga various wireless services. To effectively
utilize and exploit these characteristics, they shoulddsniified, extracted, and efficiently stored. For
instance, caching popular contents at wireless hot spoisl effectively reduce the real-time traffic in the
fronthaul links. Additionally, network control decisiognsuch as routing, resource allocation, and status
reporting, instead of being rigidly programmed, could bedmdata-driven to fully capture the interplay
between bigdata and network structure. Presently, howthese advanced data-aware features could not
be efficiently implemented in current wireless systems,cirare mainly designed for content delivery,
instead of analyzing and making use of the data traffic.

Bearing in mind of the aforementioned challenges and oppdrts brought by bigdata traffic, we
address in this article two important problems of wirelessimunication system design in the bigdata
era:

Q1: What may constitute acalablewireless network architecture for efficient handling ofdagga traffic?
Q2: How to effectively incorporate and utilize tHagdata awarenesso improve the wireless system
performance?
Specifically, to answeQ1, we introduce in Sectioflll a hybrid signal processing paadto enable
flexible data processing at both the BS/AP and the CU levals,carrespondingly a number of scalable
data traffic management techniques to serve the confliceegsbetween the overall system performance
and the data processing complexity. K2, we first discuss in Sectidnlll typical bigdata features and
efficient data analytics to extract these features. Nextjnt@duce a number of bigdata-aware signal
processing methods and wireless networking structureagivatize from bigdata interplay, such as mobile
cloud processing, crowd computing, and software-definédarking, etc. We also suggest in Sectfod IV
several future research directions for wireless commuioica in the bigdata era. Finally, we conclude
this article in Sectiof V.

Before proceeding to detailed discussions, it is worth meirg that the considered scalable network

August 27, 2015 DRAFT



structure and bigdata awareness are both important merharfor accommodating mobile bigdata in
future wireless networks, though they focus differentlytbe physical and network/application layers,
respectively. Nonetheless, the two solutions can also Imeptmentary to each other. For instance,
as we will discuss later, we can optimize the overall caclstrgtegy by combining long-term cache
provisioning (network/application layer) and real-timache-assisted signal processing (physical layer)
techniques. In addition, although this article focuses ln design aspects of cellular networks in the
bigdata era, most of the key enabling mechanisms for moligdaba processing are also applicable to
other wireless networking structures, such as wirelesal laea networks (WLANs) and heterogeneous

networks. Some representative system designs are alsesgéstin this article.

II. ScaLABLE WIRELESSBIGDATA TRAFFIC MANAGEMENT
A. A hybrid network structure

Neither the current cellular systems nor the next-germratioud-based C-RAN [3] under development
was designed to provide a scalable solution for the arritahe bigdata era. The curreBG and4G
cellular systems exemplify a BS-centric design, in which& lgears much the responsibilities of radio
access, baseband processing and radio resource contratiexeto serve the mobile users in the vicinity.
To meet the fast growing mobile data service demand, a snwdlesize is commonly used to improve
frequency reuse, which may generate complex and severecgltanterference. Furthermore, small cells
can also be costly because of cost from densely deployedB®scloud-centric network proposed oG
mitigates the inter-cell interference by centralized aigorocessing and reduces the unit cell deployment
cost by moving computations to the “cloud”. At the same timly inexpensive relay-like remote radio
heads (RRHs) are used for radio frequency (RF) level wiseexess. However, such fully centralized
scheme may be overwhelmed by the huge wave of data trafficndeiys fronthaul link capacities and
its computational power.

Alternatively, ahybrid structure could take advantage of the benefits from the tveogdegparadigms;
that is, a wireless system that could adaptively chooseloobl processing at the BS-level, or only central
processing at the CU-level, or parallel processing at betkls, based on, for instance, physical channel
conditions and correlations in the data contents, etc. We tonsider such a generic network structure
shown in Fig[2, which mainly inherits the skeleton of C-RANit has integrated several programmable
modules to carry out intelligent signal processing at thel®&I. In the radio access network, mobile

users could be served simultaneously by multiple BSs, whacé BS is equipped with multiple antennas
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Fig. 2. A hybrid CU-BS processing network structure.

and is linked to the CU via high-speed fiber/wireless froothdor exchanging user data and control
signals. The CU is further connected to the backhaul corerar&tfor external content access. In the
proposed hybrid network structure, baseband processiitg (BPUs) are available at both the BSs and
CU, which enable user message encoding/decoding at bagtsldm addition, learning units (LUS) are
installed for data traffic analytics, whose functions wal éetailed in Section lll. Caches are also installed
at the BSs and CU to save the fronthaul bandwidth consumeérédquent retransmissions of popular
contents.

Before entering the discussions of hybrid signal processimodels, it is worth mentioning that ap-
plicable fronthaul data management methods are directhgtcaned by fronthaul technologies in use.
Specifically, the system could choose between optical gnahal optical/wireless digital fronthaul tech-
nologies. Optical analog modulation using radio freque(R¥) signal as input is commonly referred
to as the radio-over-fiber (RoF). Alternatively, analog Riput signal could also be quantized and
encoded into binary codewords for digital wireless or fibptic communication (DFC). In practice,

RoF is simpler and less expensive than DFC. Furthermordsat exhibits lower processing delays and
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better interoperability with multiple wireless standarésg., 3G, LTE and WiFi, as it is oblivious to
the user codebooks and wireless modulation schemes. Howtydimitations are also evident, e.g.,
susceptibility to noise and signal distortion, and difftgudf synchronization. More importantly, available
signal processing techniques for fronthaul traffic manag@msing RoF are less sophisticated, generally
limited to simply transforming, or removing certain partstioe received RF signals, e.g., sub-channel
and antenna selection methods. In contrast, DFC could b&icesh with data compression, opportunistic
decoding and many other advanced digital signal processaimiques. In the following, we mainly focus

on data traffic management methods using digital fronthaul.

B. Hybrid signal processing models

The wireless/fiber-optic link has its own throughput linfor instance, a commercial fiber-optic link
normally operates at a link rate in the orderlof Gbps for digital communication over a single optical
carrier. Transmission rates beyond the link rate capaciy nead to severe signal distortions, and
consequently poor decoding performance. Therefore, teeesyperformance must be optimized under
the fronthaul link capacity constraints. With respect te tiybrid network structure in Fig, we now
introduce some scalable fronthaul data management tagmiq three major categories:

1) Data compression:Uplink direction would require unlimited fronthaul capicito transmit an
analog RF signal perfectly without any distortion from a BSte CU. An analog signal could be more
efficiently transmitted through the fronthaul if it is quesed and compressed into binary codewords.
From an information theoretic perspective, the effect aladaompression could be modeled as a test
channel (often Gaussian for simplicity of analysis) for @fhiuncompressed signals as the input and
compressed signals are the output. The compression desigquivalent to setting the variance of the
additive compression noisg![4]. To achieve successful cession, the encoder needs to transmit to the
decoder at a rate at least equal to the mutual informatiowdsst the input and the output over the
Gaussian test channel. Intuitively, a tighter fronthaydasaty constraint would therefore require a more
“coarse compression” with a larger compression noise.tiEgisompression designs in general take the

following approaches.

« Joint compression across different BS8Yhen multiple BSs compress and forward their received
signals to the CU in uplink, the compression design requsedtsng the covariance of the compression
noises across different BSs. A common objective is to maenihe information rate under the

fronthaul capacity constraints. In this settirdistributed Wyner-Ziv lossy compressiocan be used
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at the BSs, exploiting signal correlation across the migtidSs [4]. The distributed Wyner-Ziv

compression scheme is shown to yield significant capacitpsgaver independent quantization
methods especially in the low backhaul capacity region Biilar data compression methods
could also be applied in downlink. Interestingly, it hasebown in [3] that downlink compression
and multi-user precoding design (for interference mitmat could be designed separately without
compromising maximum system throughput, which is achielgdan optimal but much more

complicated joint compression-precoding design.

« Independent BS-level compressidite practical implementation of distributed Wyner-Ziv qomes-
sion is difficult mainly because of the high complexity in el@hining the optimal joint compression
codebook and the joint decompressing/decoding at the Cldolngly, independent compression
methods, where the quantization codebook at a BS is onlyrdeted by its local signal-to-noise ratio
(SNR), can be used to reduce the computational complexdyttaa signaling exchange overhead in
the fronthaul.

« Uniform scalar quantizationEven when using independent BS-level compression, nee-ttom-
putation and exchange of quantization codebooks usingrfoemation-theoretical source coding
approaches are often difficult to realize in practice. lagtesimple uniform scalar quantization
methods compatible with A/D modules are proposed to redoeemplementation cost [5]. Inter-
estingly, it is shown in[[5] that the achievable rate usimgp@e uniform scalar quantization in fact
performs closely to that of the Gaussian test channel mddes indicates that efficient fronthaul

capacity usage is achievable in practical systems with Isimpantization methods.

2) BS-level encoding/decodingBesides acting as relays to compress/decompress and biar
user signals, BSs with advanced baseband processing kiggaloould also encode/decode the received
messages to further improve the system performance undlegesit fronthaul capacity constraints.
« Partial cooperation: In uplink, one direct method to reduce fronthaul traffic iditoit the number
of cooperating elements when serving mobile users. Manysgpanducing optimization methods
could be applied to satisfy a certain quality of service lesgng minimum numbers of sub-channels,
antennas or cooperating BSs. In downlink, simggarse precodingnethods could be studied to
optimize precoders by jointly maximizing the user utilitige.g., data rate) and minimizing the total
number of data streams in the fronthdul [6].

« Distributed encoding/decodingDistributed decoding allows the BSs to decode user messacpdly

without forwarding quantized signals to the CU. For instgrid] considers a rate-splitting approach
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Fig. 3. Throughput performance comparison of three netwomctures (from left to right): BS-centric, cloud-centrand hybrid processing
networks. The common-throughput (C-Thr) achieved by tmeetmetworks from (a) to (c) arz10, 230, and301 Mbps, respectively.

to divide an MT’s message into two parts, where one part i©ded locally by the serving BS
and the remainder is compressed and jointly decoded by thelfClnother case| [7] proposes an
opportunistic hybrid decoding method, where a user’s ngsss either decoded locally at a BS
when its SNR is sufficiently high, or jointly decoded by the ®dsed on signals forwarded from
a subset of cooperating BSs when the SNR at each individuas B& low. Note that the locally
decoded user messages can be used to cancel their intederenthe received RF signals at the
BSs, which can effectively reduce the amount of data trattechto the CU over the fronthaul links.
In the downlink case, BSs coukhcode and modulatihe baseband symbols to RF signals before
transmitting them to the MTs. Therefore, instead of tramng complete signal waveforms (or
waveform samples) to the BSs, CU could save fronthaul badttiwby transmitting separately the
information symbols and the beamforming vectors, whilevileggs RF modulation to the BSs.

To show the performance advantage of the hybrid signal pedeg model, we present a numerical
example in Fig[ 3 to compare the throughput performance gntloe BS-centric, the cloud-centric, and
the hybrid processing networks. Let us consider a cellyidink, where3 MTs transmit over orthogonal
sub-channels, each witth0 MHz bandwidth. Besides, each fronthaul link ha& Gbps capacity. The
decoding methods of the three networks are described asvill

« BS-centric network: BSdecodes the messages from Mand MT,, and BS decodes the message
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from MT3. Then both the BSs send the decoded messages to the CU;

« Cloud-centric network: both BSs compress the receivedassgmsing the scalar quantization method
considered in[[5]. They then forward the compressed sigtmlthe CU for joint decoding. In
particular, each user is equally allocatédd Mbps fronthaul bandwidth at a BS to transmit its
compressed signal;

« Hybrid processing network: B&and BS first decode the messages from MAnd MT;, respectively,
before transmitting the decoded messages to the CU. Mebwdach BS uses the remaining
fronthaul bandwidth to compress and transmit the signahfMT, to the CU for the joint decoding
of MT,’s message.

From the aforementioned network setups, we calculate in[Fidne achievable user data rates under a
random channel realization, and compare the common-thmugoerformance (the minimum data rate
among the three users) in different cases. We can see th@&@Skmentric network achieves the lowest
common-throughput, owing to the low data rate of the cefjeedser MT, which is only210 Mbps. The
cloud-centric network slightly improves the data rate of Mahd hence the common-throughput2p
Mbps, thanks to its joint processing gain. However, the daties of MT; and MT; are severely degraded,
since the limited fronthaul capacity introduces high coasgron noises to the useful signals. The hybrid
processing network achieves the highest common-throudlipu Mbps) among the three schemes that
we considered, which 3% and 31% higher than those of the BS-centric and cloud-centric neksjo
respectively. Compared to the cloud-centric networks, &yoding the messages from Mand MT; at
the BS-level, the hybrid processing network has a largemtfraul bandwidth to spare for transmitting
MT.’s signals to the CU with more refined compression, thus aaigea higher joint processing gain.
3) Cache-assisted processinin downlink transmission, caching at the BSs is cost-eiffedb reduce
real-time traffic on fronthaul, thereby enabling significamprovement on the overall C-RAN perfor-
mance. Cache-assisted wireless resource allocation igsa-tayer approach that incorporates the status
of application-layer data flow in wireless physical-lay@sifjn. As an illustrative example in Fig. 4, BS
serves two requests from the two MTs, whereas caches of bieg two BSs are empty. Although MT
is closer to B$ with a better wireless channel condition, the maximum davindlata rate is onlyl unit
per second if BSis selected to transmit directly, due to the constraint 0k lkongestion between BS
and the CU. Instead, the CU could select,B& send the cached contents to Mat a rate of2 units per
second, whose end-to-end data rate is not constrained lpotigestion level of the CU-to-BSink. On

the other hand, MJ could be served by two cooperating BSs {Bid BS) with an improved wireless

August 27, 2015 DRAFT



10

Information _
flow
Fronthaul link
and capacity

R1:2 @ MTI R2:3 MT,
Fig. 4. Downlink cache-assisted wireless signal procegssin

channel gain from coordinated beamforming. In particulhe CU only needs to transmit the content
requested by MJ to BS; before the cooperative transmissions of the two BSs. Thamksich wireless
cooperation, M¥ could achieve a higher data rate3atinits per second.

In a more general setting, caches could be located at nottbal3Ss, but also the routers and the CU.
Furthermore, distributed caching could also be adopted Bt M allow mobile users to serve popular
contents requested by nearby peer users in a device-toedé®2D) manner. We could foresee that
cache-assisted resource allocation method becomes a &blmenfactor of significant bandwidth saving,
since frequent overlapping of requested objects will ocasirthe volume of mobile traffic increases.
However, it also becomes a more challenging problem to opgéirsystem-wide resource allocation due
to the interleaving among cache placement, wireless eremte, routing, and the combinatorial nature
of node selections in the wireless network. A more comprsiverunderstanding on the design tradeoff
remains open for future study.

Another interesting topic on cache-assisted resourcealtn is oncache provisioningor popular
contents to reduce the real-time backhaul traffic. In paldic cache provisioning addresses the questions
of what, where and when to cache in the wireless infrastractin this case, accurate knowledge of

the mobile user demand profiles is a key to efficient cacheigioning. The extraction of user demand
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profiles from mobile data traffic is performed by wirelessdata analytics, which will be discussed in

the next section.

[1l. DEVELOPING A BIGDATA AWARE WIRELESSNETWORK

Instead of viewing mobile bigdata as a pure burden, we iiya&tst in this section the potential
performance gain from developing a bigdata-aware intafligwireless network. However, its efficient
operation relies on the in-depth knowledge of the wirelegddia traffic characteristics. As most of such
characteristics are implicit, we first introduce data-gitiéhl methods necessary to extract these bigdata
features. We then discuss how to leverage these bigdataateastics in designing wireless networks to

capitalize from the mobile bigdata traffic.

A. Useful mobile bigdata features and applications

There is clearly a strong connection between wireless aemsage and human behavioral patterns in
the physical world. For this reason, wireless data trafficta@ims strong correlative and statistical features
in various dimensions, such as time, location and the uyiderisocial relationship, etc. On one hand,
mobile traffic has strongggregate featured-or instance, there exist severe load imbalances spyadiadi
temporally, such that, presently)% of “popular” BSs carry abous0% ~ 60% traffic load. The peak
traffic volume at a given location is much higher than the fagaverage. These aggregate features could
be exploited to reduce real-time fronthaul/backhaul ta#find to improve wireless network efficiency.
Example applications include: cell planning according éographical data usage distribution, peak load
shifting via load-dependent pricing, and cache provisignbased on aggregate demand profile, among
others.

On the other hand, each mobile user’s data usage profiledsoits a unique set ahdividual features
such as mobility pattern, preference of various data apiplins, and service quality requirements. For
instance, a mobile user’s trajectories often consist ofrg M@ited number of frequent positions and quasi-
repetitive patterns. Besides, the recent popularity of ilmadocial networking interconnects seemingly
uncorrelated individual data usages into a unified sociafilpr thereby presenting a novel perspective to
analyze the mobile traffic pattern. These individual andaddeatures are useful for system operators to
personalize and improve wireless service quality. Mangliigient data-aware services could be provided
according to user profiles. Examples include resource vasen in handoff using location prediction,

context-aware personal wireless service adaptation, astality-based routing and paging control.

August 27, 2015 DRAFT



12

B. Bigdata analytical tools

The ability to acquire, analyze, and exploit mobile trafficacacteristics can be accomplished by
specially designed learning units (LUs) installed at bb#nBSs and CUs (see Fid. 2). Their core enabling
factors are the embedded data-analytical algorithms. Smmmenonly used algorithms for wireless traffic
analysis and their main applications to wireless commuiaica are classified as follows and summarized
in Table 1.

1) Stochastic modelingStochastic modeling methods use probabilistic models pouca theexplicit
features and dynamics of the data traffic. Commonly usedhattic models include: ordét- Markov
model, hidden Markov model, geometric model, time seriegak/nonlinear random dynamic systems,
etc. For example, Markov models and Kalman filters are widsld to predict user mobility and service
requirements[8]. The collected user data are often usegpdoameter estimation of stochastic models,
such as estimating the transition probability matrix of arké& chain.

2) Data mining: Data mining focuses on exploiting tlplicit structures in the mobile data sets. Also
taking the mobility prediction problem as an example, imdliial user’s mobility pattern could be extracted
and discovered by finding the most frequent trajectory segsn@ the mobility log. Prediction could be
made accordingly by matching the current trajectory to ttubitity profile. Clustering is another useful
technique to identify the different patterns in the dates.sHtis widely used in context-aware mobile
computing, where a mobile user’s context and behavioralrmétion, such as sleeping and working, are
identified from wireless sensing data for providing cortetated services [9].

3) Machine learning: The main objective of machine learning is to establish fiomal relationship
between input data and output actions, thus achieging-processingapability for unseen patterns of
data inputs. Among the many useful techniques in machineilegapplied to wireless communications,
classification (determining the type of input data) and esgion analysis (data fitting) are two common
methods, whose applications include context identificatodd mobile usage and prediction of traffic
levels (classification), or fitting the distributions of jgretory length, mobile user location, and channel
holding times (regression). Besides, reinforcement lagfrsuch as Q-learning [10], is useful for taking
proper real-time actions to maximize certain long-termawls. A typical example is making the handoff
and admission control decision (action), given the curteaffic load (state) and incoming new requests
(event), in which the reward could be evaluated againstetieation of dropped calls or failed connections.

4) Large-scale data analyticsireless bigdata poses many challenges to the aforemextioonven-

tional data-analytical methods due to its high volume, dadimensionality, uneven data qualities, and
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TABLE |
SUMMARY OF COMMON WIRELESS BIGDATA ANALYTIC TOOLS AND EXAMPLE APPLICATIONS

Subjects Models/algorithms Example wireless applications
Markov models, time series, mobility prediction, resource provision,

geometric models, Kalman filters device association/handoff prediction

mobility prediction, social group clustering,

Statistical modeling

Data mining pattern matching, text compression, )
context-aware processing, cache
clustering, dimension reduction management, user profile management
classification algorithms, context identification, traffic prediction,
neural network, fitting trajectory length, user location
regression analysis, and the channel holding time
dimension reduction algorithms: user data compression/storage, traffic
PCA, PARAFAC, Tucker3 feature extraction, blind multiuser detection
Machine learning Q-learning handoff and admission controls

distributed routing/rate control
and wireless resource allocation
online convex optimization, on-line mobility predictions, handoffs,
stochastic learning and resource provisioning
active learning, deep learning | incomplete/complex mobile data processing

primal/dual decomposition, ADMM

the complex features therein. To improve signal processifigiency, one can combine the following
complexity reduction techniques with the conventionahdatalytical tools for large-scale data processing.

« Distributed optimization algorithmssuch as primal/dual decomposition and alternating doect
method of multipliers (ADMM), are very useful to decouplege-scale statistical learning problems
into small subproblems for parallel computations so as lieve both the computational burden at
the CU and the bandwidth pressures to the fronthaul/badkimés.

« Dimension reductioimmethods are useful to reduce the data volume to be procedscapturing
the key features of bigdata. Among various methods, priecgomponent analysis (PCA), along
its many variants, is the mostly used method today. In amltitiensor decomposition methods are
also popular in mobile data processing, which seek to apmately represent a high-order multi-
way array (tensor) as a linear combination of outer prodatisw-order tensors. By doing so, the
hardware requirement and cost for storing the high-ordetyarof mobile data could be reduced.

« Other advanced learning methodsuld be used to handle incomplete or complex data sets- Inte
esting examples include active learning, which deals wéttiglly labeled data set; online learning
for responding in real-time to sequentially received dataghastic learning that makes a decision
periodically in each time interval; and deep learning fordeling complex behaviors contained in

a data set.
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C. Bigdata aware wireless network

Once identified and extracted, data characteristics cailgsbd to improve wireless service quality and
generate new mobile applications. For simplicity of ilhasion, we have postulated in Fig.a structure
of bigdata aware wireless network, consisting of severalally complementary components that enable
data-driven mobile services, whose functionalities argcdbed below.

. Data-aware cache managemenEor quick access under high traffic volumes, cached contexed

to be carefully categorized, compactly organized and traeldated. Many types of content objects,
such as music and video files, are embedded widtadata labelghat describe the properties of
the contents, from which the data contents could be wellstlad. By classifying data into a

number of sub-classes based on contents, such as sports \dadd news pictures, the LUs could
achieve more accurate evaluation of the content populéstyointly considering its own access
count and the total access count of its type, which reflects average frequency of potential
future accesses. Accordingly, popular contents are cootisly cached while unpopular contents
are removed regularly to maximize the effective system hadhith given limited cache size.

« Crowd computing: Mobile users of similar interests could share their resesireith peers in

their vicinity, either with or without taking advantage dfet wireless infrastructure. For instance,

a complete 3D street view could be generated by a BS fromaetgvhotos contributed by users
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from different angles. Meanwhile, when MT-to-BS connegtie unavailable, an MT could ask for

assistance from its neighboring MTs to share availableerdstand applications, or to even act as
relays to the cellular network, etc. Such an idea is explanefll], where a crowd-enabled data

transmission mechanism is proposed to let mobile userstdhsi data dissemination of other users.
In particular, it makes use of personal social informatiod enarket incentives to enhance the “will-

ingness” of mobile users for acting as a data broker of othech that higher chance of successful
data delivery could be achieved. Essentially, this pegreter nature of crowd computing exploits

user mobility and spatial correlation of data traffics, whalso helps us reduce the conventional
cellular traffic to and from the wireless infrastructure.

« Mobile cloud processing:Multiple interconnected C-RANSs constitute a mobile cloudhich could
optimize the wireless services based on knowledge witheitdp mobile traffic patterns, especially
when user mobility spans across different C-RAN cluster. iRstance, based on the mobility
pattern of an MT, a CU could reserve channel resource in agvand pre-feed the contents to the
BSs along the anticipated MT'’s route. As such, chunks ofa@astcould be sent from different BSs
to achieve seamless handoffs. Similarly, aggregate ctesistcc behavior of data traffic could also
be used to allocate resources such as bandwidth and caate tepaome popular locations ahead
of some real-time events. This approach could evidentlyeedconnection time, delay jitter, and
burden of real-time traffic bursts on both cellular fronthand backhaul.

« Wireless cloudlet: The concept of cloudlets introduced in [12] defines a sajfaized light cloud
with limited storage and computing power installed at thes BSenhance their local data processing
capability. The deployment of cloudlets could effectivedguce the packet round-time delay by an
order of magnitude. A cloudlet may be owned by the networkratpe but leased to commercial
clients for improving performance of delay-sensitive &mdions, such as online gaming. Besides, a
cloudlet could also allow commercial clients to accesslleceahe to provide better location-based
services. For instance, an advertising company could send subscribers in the vicinity the latest
deals based on the information posted by local stores andegumade by prospective customers.
With cloudlet, real-time traffic in the backhaul network talso be largely reduced, since many
services could be provided locally instead of burdeningdbee network.

« Context/social-aware processingContext/social-aware computing is an emerging paradigm fo
exploiting complex data characteristics besides coneeatiuser profiles such as mobility pattern and

demand distribution [13]. The idea of context-aware conmguts to provide personalized services
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adaptive to the MT'’s real-time “context”, such as travelimgrking, and recreation, either directly

reported by the MT or inferred from various available dataci& computing, on the other hand,

calls for wireless resource allocation to follow closelg thteraction within and among social groups
[13]. Conceptually, a social group is a subset of users thatessome similar interests, professions,
hobbies, and life experiences, etc. In general, a socialpgtas unique “eigenbehaviors”, such
that the group members require and generate similar dateerdsn The knowledge of a social

community’s composition, activities and interests coudused to improve the wireless services for
the targeted social group members.

« Software-defined-network (SDN3DN replaces the conventional hardware-configured roudimg)
forwarding devices by software programmable units. Inipaldr, it decouples the user’s data plane
(U-plane) from the control and management plane (C-plase¢h that the network is managed
by a central controller while the underlying devices areyordsponsible for simple functions
such as packet forwarding. Such decoupling provides ueperted flexibility to network traffic
management, where packet forwarding decisions may now bgrggmmed based on many new
considerations such as QoS (quality of service) requirénagaplication types, and payload length,
in addition to the conventional destination oriented anstatice-based metrics. For SDN-enabled
wireless networks| [14] proposes a flow-based resource geament framework in C-RAN, where the
packet routing in the backhaul network and beamforminggiesi the wireless access network are
jointly optimized based on individual data flow’s sourcestil@ation pair, wireless channel condition,
backhaul link capacity, and user QoS requirements, etchéndase of WLAN networks, [15]
introduces a SDN-based enterprise WLANs framework named,@dhich is built with programable
functions, global knowledge of network status, and directtio| of network devices. The SDN-based
system makes many difficult or costly tasks in convention&lANs easier and less inexpensive,

including seamless user handoffs, global load balancind,radden terminal problem mitigation.

V. FUTURE RESEARCHDIRECTIONS

In the mobile bigdata era, wireless system designs conteinresearch problems of important ap-
plications and impact that are yet to be studied. Beyond theymesearch issues that arise among the
number of topics we have discussed so far, here in this sgatie highlight several interesting research

topics that we particularly find exciting.
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A. Reduced-complexity fronthaul processing

In many data compression proposals, real-time calculatidhe optimal compression noise covariance
matrix is often impeded by the large number of fronthaul cétgaconstraints and the non-convex nature
of many fronthaul-constrained problems. The problem itherexacerbated by the difficulty in generating
practical joint compression codebooks based on the olatatoeariance matrix. Therefore, sub-optimal
but practical compression schemes, such as scalar quariizahould be given more consideration in
future study of fronthaul-constrained compression desggmilarly, CU-level encoding and decoding also
suffers from high computational complexity on large-scalalti-user detection and the combinatorial
nature of many limited cooperation schemes, such as optmiEnna, relay, modulation and coding
combinations, as well as BS selections. It therefore caltspfactical complexity-reduction algorithms

that are truly scalable to the number of mobile users and ork&tentities.

B. Cache-assisted wireless resource allocation

BS-level caching is expected to play an important role irufeitwireless bigdata processing, due
to its simplicity, low cost, and natural integration withgdata analytical tools. However, research on
cache-assisted wireless resource allocation is stilsimiiancy. For cache-assisted cellular networks with
BS-level caching, currently there is a shortage of both petecdheoretical analysis on the capacity gain of
cache-assisted processing and practical optimizationewaorks for cache-assisted resource allocation.
Furthermore, effective and optimized integration of vasddentified bigdata characteristics in cache-

assisted network design is an interesting problem thattaviature investigations.

C. Distributed network traffic control

In large-scale wireless networks, distributed contratipating algorithms could be integrated to alle-
viate computational complexity of the CU, to reduce backhiaffic volume and to mitigate the risk of
single point failures without compromising overall systperformance. Owing to the programmability
of SDN-enabled system infrastructure, distributed cdntrechanisms could be implemented with much
better flexibility and lower cost. However, the feasibilijnd complexity reduction of distributed algo-
rithms are often constrained by the underlying problemcstme, such as the coupling constraints in the
backhaul and the partial knowledge of data traffic, etc. ribisted control, or a mixed centralized and
decentralized control framework, is a promising workingedtion towards a future wireless networking
design supporting mobile bigdata. Additionally, the SDakbd design may also incorporate distributed
caching (at BSs and routers) to enhance the efficiency ofahtng decision.
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D. Mobile data security and privacy

Harvesting over large mobile data sets and data analyticsally give rise to concerns with respect to
data security and privacy. In a cloud-based wireless né&twarge amount of data is stored in the
fronthaul/backhaul network either for customers’ persamse or as commercial database for future
analytical purposes. The system operators or commerctélesnthat collect the user data should be
responsible for data security and privacy. For examplesqreal data should be only available for legitimate
and authenticated users. Similarly, data integrity shbelguaranteed such that no data is lost or modified
by unauthorized entities. Furthermore, it is also impdrtanmaintain confidentiality of user data when
they are either in storage or during processing. It is tloeeefmportant to develop secure yet efficient
data processing and storage methods. Promising securagures may include privacy aware distributed

data storage and decentralized processing, which aim totamailocal data confidentiality.

V. CONCLUSIONS

This article addresses challenges and opportunities teatage in the era of wireless big data. We
first reviewed state-of-the-art signal processing mettaas networking structures that may allow us to
effectively manage and in fact take advantage of wirelegddia traffic. We outlined the major obstacles
of bigdata signal processing and network design with regpeibe scale of problem size and the complex
problem structures. Nevertheless, research on big dataifeless communications and networking is not
only promising but also inevitable in light of the continginlata volume explosion. We also suggested
several interesting research problems aimed at stimgldtiture wireless research innovations in the

bigdata era.
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