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Wireless Communications in the Era of Big Data

Suzhi Bi, Rui Zhang, Zhi Ding, and Shuguang Cui

ABSTRACT

The rapidly growing wave of wireless data service is pushingagainst the boundary of our commu-

nication network’s processing power. The pervasive and exponentially increasing data traffic present

imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency,

computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges

and opportunities in the design of scalable wireless systems to embrace such a “bigdata” era. On one

hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable

for managing the bigdata traffic in wireless networks. On theother hand, instead of viewing mobile

bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building

a bigdata-aware wireless network with better wireless service quality and new mobile applications. We

highlight several promising future research directions for wireless communications in the mobile bigdata

era.

I. INTRODUCTION

Decades of exponential growth in commercial data services has ushered in the so-called “bigdata” era,

to which the expansive mobile wireless network is a criticaldata contributor. As of2014, the global

penetration of mobile subscribers has reached97%, producing staggeringly10.7 ExaBytes (10.7× 1018)

of mobile data worldwide. The surge of mobile data traffic in recent years is mainly attributed to the

popularity of smartphones, phone cameras, mobile tablets and other smart mobile devices that support

mobile broadband applications, e.g., online music, video and gaming as shown in Fig. 1. With a compound

annual growth rate of over40%, it is expected that the mobile data traffic will increase by5 times from

2015 to 2020.
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Fig. 1. Some example sources of wireless bigdata traffic.

In addition to the vast amount of wireless source data, modern wireless signal processing often amplifies

the system’s pressure from bigdata in pursuit of higher performance gain. For instance, MIMO antenna

technologies are now extensively used to boost throughput and reliability at both mobile terminals (MTs)

and base stations (BSs) of high speed wireless services. This, however, also increases the system data

traffic to be processed in proportion to the number of antennas in use. Moreover, the5G (the fifth

generation) wireless network presently under developmentis likely to migrate the currently hierarchical,

BS-centric cellular architecture to a cloud-based layerednetwork structure, consisting of a large number

of cooperating wireless access points (APs) connected by either wireline or wireless fronthaul links to

a bigdata capable processing central unit (CU). New wireless access structures, such as coordinated

multipoint (CoMP or networked MIMO) [1], heterogeneous network (HetNet) [2] and cloud-based radio

access network (C-RAN) [3], are under development to achieve multi-standard, interference-aware and

energy-friendly (green) wireless communications. In practice, the use of cooperating wireless APs could

easily generate multiple Gbps data from a single user’s fronthaul links due to the need for baseband joint

processing, such that the high traffic load may overwhelm thefronthaul link or the system computing

unit for signal processing and coordination. Such intensely high system traffic volume, together with the

rapidly growing mobile data source volume, surpasses both the processing power improvement speed of
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our current computing capabilities and the fronthaul/backhaul link rate increase pace of our networking

systems. It necessitates a new wireless architecture alongwith efficient signal processing methods to

make wireless systemsscalableto continued growth of data traffic.

On the other hand, timely and cost-efficient information processing is made possible by the fact that the

vast-volume mobile data traffics are not completely chaoticand hopelessly beyond management. Rather,

they often exhibit stronginsightful features, such as user mobility pattern, spatial, temporal and social

correlations of data contents. These special characteristics of mobile traffic present us with opportunities

to harness and exploit bigdata for potential performance gains in various wireless services. To effectively

utilize and exploit these characteristics, they should be identified, extracted, and efficiently stored. For

instance, caching popular contents at wireless hot spots could effectively reduce the real-time traffic in the

fronthaul links. Additionally, network control decisions, such as routing, resource allocation, and status

reporting, instead of being rigidly programmed, could be made data-driven to fully capture the interplay

between bigdata and network structure. Presently, however, these advanced data-aware features could not

be efficiently implemented in current wireless systems, which are mainly designed for content delivery,

instead of analyzing and making use of the data traffic.

Bearing in mind of the aforementioned challenges and opportunities brought by bigdata traffic, we

address in this article two important problems of wireless communication system design in the bigdata

era:

Q1: What may constitute ascalablewireless network architecture for efficient handling of bigdata traffic?

Q2: How to effectively incorporate and utilize thebigdata awarenessto improve the wireless system

performance?

Specifically, to answerQ1, we introduce in Section II a hybrid signal processing paradigm to enable

flexible data processing at both the BS/AP and the CU levels, and correspondingly a number of scalable

data traffic management techniques to serve the conflicting needs between the overall system performance

and the data processing complexity. ForQ2, we first discuss in Section III typical bigdata features and

efficient data analytics to extract these features. Next, weintroduce a number of bigdata-aware signal

processing methods and wireless networking structures to capitalize from bigdata interplay, such as mobile

cloud processing, crowd computing, and software-defined networking, etc. We also suggest in Section IV

several future research directions for wireless communications in the bigdata era. Finally, we conclude

this article in Section V.

Before proceeding to detailed discussions, it is worth mentioning that the considered scalable network
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structure and bigdata awareness are both important mechanisms for accommodating mobile bigdata in

future wireless networks, though they focus differently onthe physical and network/application layers,

respectively. Nonetheless, the two solutions can also be complementary to each other. For instance,

as we will discuss later, we can optimize the overall cachingstrategy by combining long-term cache

provisioning (network/application layer) and real-time cache-assisted signal processing (physical layer)

techniques. In addition, although this article focuses on the design aspects of cellular networks in the

bigdata era, most of the key enabling mechanisms for mobile bigdata processing are also applicable to

other wireless networking structures, such as wireless local area networks (WLANs) and heterogeneous

networks. Some representative system designs are also discussed in this article.

II. SCALABLE WIRELESS BIGDATA TRAFFIC MANAGEMENT

A. A hybrid network structure

Neither the current cellular systems nor the next-generation cloud-based C-RAN [3] under development

was designed to provide a scalable solution for the arrival of the bigdata era. The current3G and4G

cellular systems exemplify a BS-centric design, in which a BS bears much the responsibilities of radio

access, baseband processing and radio resource control execution to serve the mobile users in the vicinity.

To meet the fast growing mobile data service demand, a smaller cell size is commonly used to improve

frequency reuse, which may generate complex and severe inter-cell interference. Furthermore, small cells

can also be costly because of cost from densely deployed BSs.The cloud-centric network proposed for5G

mitigates the inter-cell interference by centralized signal processing and reduces the unit cell deployment

cost by moving computations to the “cloud”. At the same time,only inexpensive relay-like remote radio

heads (RRHs) are used for radio frequency (RF) level wireless access. However, such fully centralized

scheme may be overwhelmed by the huge wave of data traffic beyond its fronthaul link capacities and

its computational power.

Alternatively, ahybrid structure could take advantage of the benefits from the two design paradigms;

that is, a wireless system that could adaptively choose onlylocal processing at the BS-level, or only central

processing at the CU-level, or parallel processing at both levels, based on, for instance, physical channel

conditions and correlations in the data contents, etc. We thus consider such a generic network structure

shown in Fig. 2, which mainly inherits the skeleton of C-RAN,but has integrated several programmable

modules to carry out intelligent signal processing at the BSlevel. In the radio access network, mobile

users could be served simultaneously by multiple BSs, whereeach BS is equipped with multiple antennas
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Fig. 2. A hybrid CU-BS processing network structure.

and is linked to the CU via high-speed fiber/wireless fronthauls for exchanging user data and control

signals. The CU is further connected to the backhaul core network for external content access. In the

proposed hybrid network structure, baseband processing units (BPUs) are available at both the BSs and

CU, which enable user message encoding/decoding at both levels. In addition, learning units (LUs) are

installed for data traffic analytics, whose functions will be detailed in Section III. Caches are also installed

at the BSs and CU to save the fronthaul bandwidth consumed forfrequent retransmissions of popular

contents.

Before entering the discussions of hybrid signal processing models, it is worth mentioning that ap-

plicable fronthaul data management methods are directly constrained by fronthaul technologies in use.

Specifically, the system could choose between optical analog and optical/wireless digital fronthaul tech-

nologies. Optical analog modulation using radio frequency(RF) signal as input is commonly referred

to as the radio-over-fiber (RoF). Alternatively, analog RF input signal could also be quantized and

encoded into binary codewords for digital wireless or fiber-optic communication (DFC). In practice,

RoF is simpler and less expensive than DFC. Furthermore, it also exhibits lower processing delays and
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better interoperability with multiple wireless standards, e.g., 3G, LTE and WiFi, as it is oblivious to

the user codebooks and wireless modulation schemes. However, its limitations are also evident, e.g.,

susceptibility to noise and signal distortion, and difficulty of synchronization. More importantly, available

signal processing techniques for fronthaul traffic management using RoF are less sophisticated, generally

limited to simply transforming, or removing certain parts of the received RF signals, e.g., sub-channel

and antenna selection methods. In contrast, DFC could be combined with data compression, opportunistic

decoding and many other advanced digital signal processingtechniques. In the following, we mainly focus

on data traffic management methods using digital fronthaul.

B. Hybrid signal processing models

The wireless/fiber-optic link has its own throughput limit.For instance, a commercial fiber-optic link

normally operates at a link rate in the order of10 Gbps for digital communication over a single optical

carrier. Transmission rates beyond the link rate capacity may lead to severe signal distortions, and

consequently poor decoding performance. Therefore, the system performance must be optimized under

the fronthaul link capacity constraints. With respect to the hybrid network structure in Fig.2, we now

introduce some scalable fronthaul data management techniques in three major categories:

1) Data compression:Uplink direction would require unlimited fronthaul capacity to transmit an

analog RF signal perfectly without any distortion from a BS to the CU. An analog signal could be more

efficiently transmitted through the fronthaul if it is quantized and compressed into binary codewords.

From an information theoretic perspective, the effect of data compression could be modeled as a test

channel (often Gaussian for simplicity of analysis) for which uncompressed signals as the input and

compressed signals are the output. The compression design is equivalent to setting the variance of the

additive compression noise [4]. To achieve successful compression, the encoder needs to transmit to the

decoder at a rate at least equal to the mutual information between the input and the output over the

Gaussian test channel. Intuitively, a tighter fronthaul capacity constraint would therefore require a more

“coarse compression” with a larger compression noise. Existing compression designs in general take the

following approaches.

• Joint compression across different BSs:When multiple BSs compress and forward their received

signals to the CU in uplink, the compression design requiressetting the covariance of the compression

noises across different BSs. A common objective is to maximize the information rate under the

fronthaul capacity constraints. In this setting,distributed Wyner-Ziv lossy compressioncan be used
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at the BSs, exploiting signal correlation across the multiple BSs [4]. The distributed Wyner-Ziv

compression scheme is shown to yield significant capacity gains over independent quantization

methods especially in the low backhaul capacity region [4].Similar data compression methods

could also be applied in downlink. Interestingly, it has been shown in [3] that downlink compression

and multi-user precoding design (for interference mitigation) could be designed separately without

compromising maximum system throughput, which is achievedby an optimal but much more

complicated joint compression-precoding design.

• Independent BS-level compression:The practical implementation of distributed Wyner-Ziv compres-

sion is difficult mainly because of the high complexity in determining the optimal joint compression

codebook and the joint decompressing/decoding at the CU. Accordingly, independent compression

methods, where the quantization codebook at a BS is only determined by its local signal-to-noise ratio

(SNR), can be used to reduce the computational complexity and the signaling exchange overhead in

the fronthaul.

• Uniform scalar quantization:Even when using independent BS-level compression, real-time com-

putation and exchange of quantization codebooks using the information-theoretical source coding

approaches are often difficult to realize in practice. Instead, simple uniform scalar quantization

methods compatible with A/D modules are proposed to reduce the implementation cost [5]. Inter-

estingly, it is shown in [5] that the achievable rate using simple uniform scalar quantization in fact

performs closely to that of the Gaussian test channel model.This indicates that efficient fronthaul

capacity usage is achievable in practical systems with simple quantization methods.

2) BS-level encoding/decoding:Besides acting as relays to compress/decompress and forward the

user signals, BSs with advanced baseband processing capabilities could also encode/decode the received

messages to further improve the system performance under stringent fronthaul capacity constraints.

• Partial cooperation: In uplink, one direct method to reduce fronthaul traffic is tolimit the number

of cooperating elements when serving mobile users. Many sparsity inducing optimization methods

could be applied to satisfy a certain quality of service level using minimum numbers of sub-channels,

antennas or cooperating BSs. In downlink, similarsparse precodingmethods could be studied to

optimize precoders by jointly maximizing the user utilities (e.g., data rate) and minimizing the total

number of data streams in the fronthaul [6].

• Distributed encoding/decoding:Distributed decoding allows the BSs to decode user messageslocally

without forwarding quantized signals to the CU. For instance, [4] considers a rate-splitting approach
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Fig. 3. Throughput performance comparison of three networkstructures (from left to right): BS-centric, cloud-centric, and hybrid processing
networks. The common-throughput (C-Thr) achieved by the three networks from (a) to (c) are210, 230, and301 Mbps, respectively.

to divide an MT’s message into two parts, where one part is decoded locally by the serving BS

and the remainder is compressed and jointly decoded by the CU. In another case, [7] proposes an

opportunistic hybrid decoding method, where a user’s message is either decoded locally at a BS

when its SNR is sufficiently high, or jointly decoded by the CUbased on signals forwarded from

a subset of cooperating BSs when the SNR at each individual BSis too low. Note that the locally

decoded user messages can be used to cancel their interferences to the received RF signals at the

BSs, which can effectively reduce the amount of data transmitted to the CU over the fronthaul links.

In the downlink case, BSs couldencode and modulatethe baseband symbols to RF signals before

transmitting them to the MTs. Therefore, instead of transmitting complete signal waveforms (or

waveform samples) to the BSs, CU could save fronthaul bandwidth by transmitting separately the

information symbols and the beamforming vectors, while leaving RF modulation to the BSs.

To show the performance advantage of the hybrid signal processing model, we present a numerical

example in Fig. 3 to compare the throughput performance among the BS-centric, the cloud-centric, and

the hybrid processing networks. Let us consider a cellular uplink, where3 MTs transmit over orthogonal

sub-channels, each with100 MHz bandwidth. Besides, each fronthaul link has1.2 Gbps capacity. The

decoding methods of the three networks are described as follows.

• BS-centric network: BS1 decodes the messages from MT1 and MT2, and BS2 decodes the message
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from MT3. Then both the BSs send the decoded messages to the CU;

• Cloud-centric network: both BSs compress the received signals using the scalar quantization method

considered in [5]. They then forward the compressed signalsto the CU for joint decoding. In

particular, each user is equally allocated400 Mbps fronthaul bandwidth at a BS to transmit its

compressed signal;

• Hybrid processing network: BS1 and BS2 first decode the messages from MT1 and MT3, respectively,

before transmitting the decoded messages to the CU. Meanwhile, each BS uses the remaining

fronthaul bandwidth to compress and transmit the signal from MT2 to the CU for the joint decoding

of MT2’s message.

From the aforementioned network setups, we calculate in Fig. 3 the achievable user data rates under a

random channel realization, and compare the common-throughput performance (the minimum data rate

among the three users) in different cases. We can see that theBS-centric network achieves the lowest

common-throughput, owing to the low data rate of the cell-edge user MT2, which is only210 Mbps. The

cloud-centric network slightly improves the data rate of MT2 and hence the common-throughput to230

Mbps, thanks to its joint processing gain. However, the datarates of MT1 and MT3 are severely degraded,

since the limited fronthaul capacity introduces high compression noises to the useful signals. The hybrid

processing network achieves the highest common-throughput (301 Mbps) among the three schemes that

we considered, which is43% and31% higher than those of the BS-centric and cloud-centric networks,

respectively. Compared to the cloud-centric networks, by decoding the messages from MT1 and MT3 at

the BS-level, the hybrid processing network has a larger fronthaul bandwidth to spare for transmitting

MT2’s signals to the CU with more refined compression, thus achieving a higher joint processing gain.

3) Cache-assisted processing:In downlink transmission, caching at the BSs is cost-effective to reduce

real-time traffic on fronthaul, thereby enabling significant improvement on the overall C-RAN perfor-

mance. Cache-assisted wireless resource allocation is a cross-layer approach that incorporates the status

of application-layer data flow in wireless physical-layer design. As an illustrative example in Fig. 4, BS2

serves two requests from the two MTs, whereas caches of the other two BSs are empty. Although MT1

is closer to BS1 with a better wireless channel condition, the maximum downlink data rate is only1 unit

per second if BS1 is selected to transmit directly, due to the constraint of link congestion between BS1

and the CU. Instead, the CU could select BS2 to send the cached contents to MT1 at a rate of2 units per

second, whose end-to-end data rate is not constrained by thecongestion level of the CU-to-BS2 link. On

the other hand, MT2 could be served by two cooperating BSs (BS2 and BS3) with an improved wireless
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Fig. 4. Downlink cache-assisted wireless signal processing.

channel gain from coordinated beamforming. In particular,the CU only needs to transmit the content

requested by MT2 to BS3 before the cooperative transmissions of the two BSs. Thanksto such wireless

cooperation, MT2 could achieve a higher data rate at3 units per second.

In a more general setting, caches could be located at not onlythe BSs, but also the routers and the CU.

Furthermore, distributed caching could also be adopted at MTs to allow mobile users to serve popular

contents requested by nearby peer users in a device-to-device (D2D) manner. We could foresee that

cache-assisted resource allocation method becomes a key enabling factor of significant bandwidth saving,

since frequent overlapping of requested objects will occuras the volume of mobile traffic increases.

However, it also becomes a more challenging problem to optimize system-wide resource allocation due

to the interleaving among cache placement, wireless interference, routing, and the combinatorial nature

of node selections in the wireless network. A more comprehensive understanding on the design tradeoff

remains open for future study.

Another interesting topic on cache-assisted resource allocation is oncache provisioningfor popular

contents to reduce the real-time backhaul traffic. In particular, cache provisioning addresses the questions

of what, where and when to cache in the wireless infrastructure. In this case, accurate knowledge of

the mobile user demand profiles is a key to efficient cache provisioning. The extraction of user demand
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profiles from mobile data traffic is performed by wireless bigdata analytics, which will be discussed in

the next section.

III. D EVELOPING A BIGDATA AWARE WIRELESS NETWORK

Instead of viewing mobile bigdata as a pure burden, we investigate in this section the potential

performance gain from developing a bigdata-aware intelligent wireless network. However, its efficient

operation relies on the in-depth knowledge of the wireless bigdata traffic characteristics. As most of such

characteristics are implicit, we first introduce data-analytical methods necessary to extract these bigdata

features. We then discuss how to leverage these bigdata characteristics in designing wireless networks to

capitalize from the mobile bigdata traffic.

A. Useful mobile bigdata features and applications

There is clearly a strong connection between wireless service usage and human behavioral patterns in

the physical world. For this reason, wireless data traffic contains strong correlative and statistical features

in various dimensions, such as time, location and the underlying social relationship, etc. On one hand,

mobile traffic has strongaggregate features. For instance, there exist severe load imbalances spatially and

temporally, such that, presently,10% of “popular” BSs carry about50% ∼ 60% traffic load. The peak

traffic volume at a given location is much higher than the regular average. These aggregate features could

be exploited to reduce real-time fronthaul/backhaul traffic and to improve wireless network efficiency.

Example applications include: cell planning according to geographical data usage distribution, peak load

shifting via load-dependent pricing, and cache provisioning based on aggregate demand profile, among

others.

On the other hand, each mobile user’s data usage profile also exhibits a unique set ofindividual features,

such as mobility pattern, preference of various data applications, and service quality requirements. For

instance, a mobile user’s trajectories often consist of a very limited number of frequent positions and quasi-

repetitive patterns. Besides, the recent popularity of mobile social networking interconnects seemingly

uncorrelated individual data usages into a unified social profile, thereby presenting a novel perspective to

analyze the mobile traffic pattern. These individual and social features are useful for system operators to

personalize and improve wireless service quality. Many intelligent data-aware services could be provided

according to user profiles. Examples include resource reservation in handoff using location prediction,

context-aware personal wireless service adaptation, and mobility-based routing and paging control.
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B. Bigdata analytical tools

The ability to acquire, analyze, and exploit mobile traffic characteristics can be accomplished by

specially designed learning units (LUs) installed at both the BSs and CUs (see Fig. 2). Their core enabling

factors are the embedded data-analytical algorithms. Somecommonly used algorithms for wireless traffic

analysis and their main applications to wireless communications are classified as follows and summarized

in Table I.

1) Stochastic modeling:Stochastic modeling methods use probabilistic models to capture theexplicit

features and dynamics of the data traffic. Commonly used stochastic models include: order-K Markov

model, hidden Markov model, geometric model, time series, linear/nonlinear random dynamic systems,

etc. For example, Markov models and Kalman filters are widelyused to predict user mobility and service

requirements [8]. The collected user data are often used forparameter estimation of stochastic models,

such as estimating the transition probability matrix of a Markov chain.

2) Data mining: Data mining focuses on exploiting theimplicit structures in the mobile data sets. Also

taking the mobility prediction problem as an example, individual user’s mobility pattern could be extracted

and discovered by finding the most frequent trajectory segments in the mobility log. Prediction could be

made accordingly by matching the current trajectory to the mobility profile. Clustering is another useful

technique to identify the different patterns in the data sets. It is widely used in context-aware mobile

computing, where a mobile user’s context and behavioral information, such as sleeping and working, are

identified from wireless sensing data for providing context-related services [9].

3) Machine learning:The main objective of machine learning is to establish functional relationship

between input data and output actions, thus achievingauto-processingcapability for unseen patterns of

data inputs. Among the many useful techniques in machine learning applied to wireless communications,

classification (determining the type of input data) and regression analysis (data fitting) are two common

methods, whose applications include context identification of mobile usage and prediction of traffic

levels (classification), or fitting the distributions of trajectory length, mobile user location, and channel

holding times (regression). Besides, reinforcement learning, such as Q-learning [10], is useful for taking

proper real-time actions to maximize certain long-term rewards. A typical example is making the handoff

and admission control decision (action), given the currenttraffic load (state) and incoming new requests

(event), in which the reward could be evaluated against the reduction of dropped calls or failed connections.

4) Large-scale data analytics:Wireless bigdata poses many challenges to the aforementioned conven-

tional data-analytical methods due to its high volume, large dimensionality, uneven data qualities, and
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TABLE I
SUMMARY OF COMMON WIRELESS BIGDATA ANALYTIC TOOLS AND EXAMPLE APPLICATIONS

Subjects Models/algorithms Example wireless applications

Statistical modeling
Markov models, time series, mobility prediction, resource provision,

geometric models, Kalman filters device association/handoff prediction

Data mining pattern matching, text compression,
mobility prediction, social group clustering,

context-aware processing, cache
clustering, dimension reduction management, user profile management

Machine learning

classification algorithms, context identification, traffic prediction,
neural network, fitting trajectory length, user location

regression analysis, and the channel holding time
dimension reduction algorithms: user data compression/storage, traffic

PCA, PARAFAC, Tucker3 feature extraction, blind multiuser detection
Q-learning handoff and admission controls

primal/dual decomposition, ADMM
distributed routing/rate control

and wireless resource allocation
online convex optimization, on-line mobility predictions, handoffs,

stochastic learning and resource provisioning
active learning, deep learning incomplete/complex mobile data processing

the complex features therein. To improve signal processingefficiency, one can combine the following

complexity reduction techniques with the conventional data analytical tools for large-scale data processing.

• Distributed optimization algorithms, such as primal/dual decomposition and alternating direction

method of multipliers (ADMM), are very useful to decouple large-scale statistical learning problems

into small subproblems for parallel computations so as to relieve both the computational burden at

the CU and the bandwidth pressures to the fronthaul/backhaul links.

• Dimension reductionmethods are useful to reduce the data volume to be processed while capturing

the key features of bigdata. Among various methods, principle component analysis (PCA), along

its many variants, is the mostly used method today. In addition, tensor decomposition methods are

also popular in mobile data processing, which seek to approximately represent a high-order multi-

way array (tensor) as a linear combination of outer productsof low-order tensors. By doing so, the

hardware requirement and cost for storing the high-order arrays of mobile data could be reduced.

• Other advanced learning methodscould be used to handle incomplete or complex data sets. Inter-

esting examples include active learning, which deals with partially labeled data set; online learning

for responding in real-time to sequentially received data;stochastic learning that makes a decision

periodically in each time interval; and deep learning for modeling complex behaviors contained in

a data set.
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Fig. 5. An illustrative structure of bigdata aware wirelessnetwork.

C. Bigdata aware wireless network

Once identified and extracted, data characteristics could be used to improve wireless service quality and

generate new mobile applications. For simplicity of illustration, we have postulated in Fig.5 a structure

of bigdata aware wireless network, consisting of several mutually complementary components that enable

data-driven mobile services, whose functionalities are described below.

• Data-aware cache management:For quick access under high traffic volumes, cached contentsneed

to be carefully categorized, compactly organized and timely updated. Many types of content objects,

such as music and video files, are embedded withmetadata labelsthat describe the properties of

the contents, from which the data contents could be well classified. By classifying data into a

number of sub-classes based on contents, such as sports videos and news pictures, the LUs could

achieve more accurate evaluation of the content popularityby jointly considering its own access

count and the total access count of its type, which reflects the average frequency of potential

future accesses. Accordingly, popular contents are continuously cached while unpopular contents

are removed regularly to maximize the effective system bandwidth given limited cache size.

• Crowd computing: Mobile users of similar interests could share their resources with peers in

their vicinity, either with or without taking advantage of the wireless infrastructure. For instance,

a complete 3D street view could be generated by a BS from relevant photos contributed by users
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from different angles. Meanwhile, when MT-to-BS connection is unavailable, an MT could ask for

assistance from its neighboring MTs to share available contents and applications, or to even act as

relays to the cellular network, etc. Such an idea is exploredin [11], where a crowd-enabled data

transmission mechanism is proposed to let mobile users assist the data dissemination of other users.

In particular, it makes use of personal social information and market incentives to enhance the “will-

ingness” of mobile users for acting as a data broker of otherssuch that higher chance of successful

data delivery could be achieved. Essentially, this peer-to-peer nature of crowd computing exploits

user mobility and spatial correlation of data traffics, which also helps us reduce the conventional

cellular traffic to and from the wireless infrastructure.

• Mobile cloud processing:Multiple interconnected C-RANs constitute a mobile cloud,which could

optimize the wireless services based on knowledge with respect to mobile traffic patterns, especially

when user mobility spans across different C-RAN clusters. For instance, based on the mobility

pattern of an MT, a CU could reserve channel resource in advance and pre-feed the contents to the

BSs along the anticipated MT’s route. As such, chunks of contents could be sent from different BSs

to achieve seamless handoffs. Similarly, aggregate characteristic behavior of data traffic could also

be used to allocate resources such as bandwidth and cache space to some popular locations ahead

of some real-time events. This approach could evidently reduce connection time, delay jitter, and

burden of real-time traffic bursts on both cellular fronthaul and backhaul.

• Wireless cloudlet: The concept of cloudlets introduced in [12] defines a self-organized light cloud

with limited storage and computing power installed at the BSs to enhance their local data processing

capability. The deployment of cloudlets could effectivelyreduce the packet round-time delay by an

order of magnitude. A cloudlet may be owned by the network operator but leased to commercial

clients for improving performance of delay-sensitive applications, such as online gaming. Besides, a

cloudlet could also allow commercial clients to access local cache to provide better location-based

services. For instance, an advertising company could send to its subscribers in the vicinity the latest

deals based on the information posted by local stores and queries made by prospective customers.

With cloudlet, real-time traffic in the backhaul network could also be largely reduced, since many

services could be provided locally instead of burdening thecore network.

• Context/social-aware processing:Context/social-aware computing is an emerging paradigm for

exploiting complex data characteristics besides conventional user profiles such as mobility pattern and

demand distribution [13]. The idea of context-aware computing is to provide personalized services
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adaptive to the MT’s real-time “context”, such as traveling, working, and recreation, either directly

reported by the MT or inferred from various available data. Social computing, on the other hand,

calls for wireless resource allocation to follow closely the interaction within and among social groups

[13]. Conceptually, a social group is a subset of users that share some similar interests, professions,

hobbies, and life experiences, etc. In general, a social group has unique “eigenbehaviors”, such

that the group members require and generate similar data contents. The knowledge of a social

community’s composition, activities and interests could be used to improve the wireless services for

the targeted social group members.

• Software-defined-network (SDN):SDN replaces the conventional hardware-configured routingand

forwarding devices by software programmable units. In particular, it decouples the user’s data plane

(U-plane) from the control and management plane (C-plane),such that the network is managed

by a central controller while the underlying devices are only responsible for simple functions

such as packet forwarding. Such decoupling provides unprecedented flexibility to network traffic

management, where packet forwarding decisions may now be programmed based on many new

considerations such as QoS (quality of service) requirement, application types, and payload length,

in addition to the conventional destination oriented and distance-based metrics. For SDN-enabled

wireless networks, [14] proposes a flow-based resource management framework in C-RAN, where the

packet routing in the backhaul network and beamforming design in the wireless access network are

jointly optimized based on individual data flow’s source-destination pair, wireless channel condition,

backhaul link capacity, and user QoS requirements, etc. In the case of WLAN networks, [15]

introduces a SDN-based enterprise WLANs framework named Odin, which is built with programable

functions, global knowledge of network status, and direct control of network devices. The SDN-based

system makes many difficult or costly tasks in conventional WLANs easier and less inexpensive,

including seamless user handoffs, global load balancing, and hidden terminal problem mitigation.

IV. FUTURE RESEARCH DIRECTIONS

In the mobile bigdata era, wireless system designs contain rich research problems of important ap-

plications and impact that are yet to be studied. Beyond the many research issues that arise among the

number of topics we have discussed so far, here in this section, we highlight several interesting research

topics that we particularly find exciting.
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A. Reduced-complexity fronthaul processing

In many data compression proposals, real-time calculationof the optimal compression noise covariance

matrix is often impeded by the large number of fronthaul capacity constraints and the non-convex nature

of many fronthaul-constrained problems. The problem is further exacerbated by the difficulty in generating

practical joint compression codebooks based on the obtained covariance matrix. Therefore, sub-optimal

but practical compression schemes, such as scalar quantization, should be given more consideration in

future study of fronthaul-constrained compression design. Similarly, CU-level encoding and decoding also

suffers from high computational complexity on large-scalemulti-user detection and the combinatorial

nature of many limited cooperation schemes, such as optimalantenna, relay, modulation and coding

combinations, as well as BS selections. It therefore calls for practical complexity-reduction algorithms

that are truly scalable to the number of mobile users and network entities.

B. Cache-assisted wireless resource allocation

BS-level caching is expected to play an important role in future wireless bigdata processing, due

to its simplicity, low cost, and natural integration with bigdata analytical tools. However, research on

cache-assisted wireless resource allocation is still in its infancy. For cache-assisted cellular networks with

BS-level caching, currently there is a shortage of both concrete theoretical analysis on the capacity gain of

cache-assisted processing and practical optimization frameworks for cache-assisted resource allocation.

Furthermore, effective and optimized integration of various identified bigdata characteristics in cache-

assisted network design is an interesting problem that awaits future investigations.

C. Distributed network traffic control

In large-scale wireless networks, distributed control/computing algorithms could be integrated to alle-

viate computational complexity of the CU, to reduce backhaul traffic volume and to mitigate the risk of

single point failures without compromising overall systemperformance. Owing to the programmability

of SDN-enabled system infrastructure, distributed control mechanisms could be implemented with much

better flexibility and lower cost. However, the feasibilityand complexity reduction of distributed algo-

rithms are often constrained by the underlying problem structure, such as the coupling constraints in the

backhaul and the partial knowledge of data traffic, etc. Distributed control, or a mixed centralized and

decentralized control framework, is a promising working direction towards a future wireless networking

design supporting mobile bigdata. Additionally, the SDN-based design may also incorporate distributed

caching (at BSs and routers) to enhance the efficiency of the routing decision.
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D. Mobile data security and privacy

Harvesting over large mobile data sets and data analytics naturally give rise to concerns with respect to

data security and privacy. In a cloud-based wireless network, large amount of data is stored in the

fronthaul/backhaul network either for customers’ personal use or as commercial database for future

analytical purposes. The system operators or commercial entities that collect the user data should be

responsible for data security and privacy. For example, personal data should be only available for legitimate

and authenticated users. Similarly, data integrity shouldbe guaranteed such that no data is lost or modified

by unauthorized entities. Furthermore, it is also important to maintain confidentiality of user data when

they are either in storage or during processing. It is therefore important to develop secure yet efficient

data processing and storage methods. Promising security measures may include privacy aware distributed

data storage and decentralized processing, which aim to maintain local data confidentiality.

V. CONCLUSIONS

This article addresses challenges and opportunities that we face in the era of wireless big data. We

first reviewed state-of-the-art signal processing methodsand networking structures that may allow us to

effectively manage and in fact take advantage of wireless bigdata traffic. We outlined the major obstacles

of bigdata signal processing and network design with respect to the scale of problem size and the complex

problem structures. Nevertheless, research on big data forwireless communications and networking is not

only promising but also inevitable in light of the continuing data volume explosion. We also suggested

several interesting research problems aimed at stimulating future wireless research innovations in the

bigdata era.
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