
ar
X

iv
:1

60
9.

07
71

2v
1

 [c
s.

N
I]

 2
5

S
ep

 2
01

6
1

Internet of Things Cloud: Architecture and
Implementation

Lu Hou∗, Shaohang Zhao∗, Xiong Xiong∗, Kan Zheng∗, Senior Member, IEEE, Periklis
Chatzimisios†, Senior Member, IEEE, M. Shamim Hossain§, Wei Xiang‡, Senior

Member, IEEE

Abstract

The Internet of Things (IoT), which enables common objects to be intelligent and interactive, is considered
the next evolution of the Internet. Its pervasiveness and abilities to collect and analyze data which can be converted
into information have motivated a plethora of IoT applications. For the successful deployment and management of
these applications, cloud computing techniques are indispensable since they provide high computational capabilities
as well as large storage capacity. This paper aims at providing insights about the architecture, implementation and
performance of the IoT cloud. Several potential application scenarios of IoT cloud are studied, and an architecture
is discussed regarding the functionality of each component. Moreover, the implementation details of the IoT cloud
are presented along with the services that it offers. The main contributions of this paper lie in the combination
of the Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) servers to offer
IoT services in the architecture of the IoT cloud with various techniques to guarantee high performance. Finally,
experimental results are given in order to demonstrate the service capabilities of the IoT cloud under certain
conditions.

Index Terms– Internet of Things (IoT), Cloud Computing, IoT applications, IoT architecture

I. INTRODUCTION

With the development of wireless communication technologies, pervasive objects can be interactive and

are connected to the Internet. These inter-connected objects with in-built computing, communications and

sensing capabilities constitute the Internet of Things (IoT). In particular, it is estimated that by 2020 the

number of IoT devices will be close to 50 billion while the population will reach 7.6 billion [1]. These de-

vices can generate huge amounts of data, which usually come in different format and meaning [2], [3], [4].

However, IoT devices usually have very limited capabilities due to their small physical size and energy

∗Lu Hou, Shaohang Zhao, Xiong Xiong and Kan Zheng are with the Intelligent Computing and Communication (IC2) Lab, Wireless
Signal Processing and Networks Lab (WSPN), Key Lab of Universal Wireless Communications, Ministry of Education, Beijing University
of Posts and Telecommunications, Beijing, China, 100088. (e-mail: zkan@bupt.edu.cn).

†Periklis Chatzimisios is with the CCSN Research Lab, Alexander Technological Educational Institute of Thessaloniki (ATEITHE), 57400
Sindos, Thessaloniki, Greece.

§M. Shamim Hossain is with the Software Engineering Department, College of Computer and Information Sciences, King SaudUniversity,
Riyadh 11543, KSA.

‡Wei Xiang is with the College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia.

http://arxiv.org/abs/1609.07712v1

2

consumption. Therefore, an IoT cloud is imperative to support the requirements of millions of IoT devices

and provide various new and exciting IoT applications for the end-users.

Recently, a plethora of novel ideas has been proposed for theIoT cloud. Machine-to-Machine (M2M)

communications or Machine Type Communications (MTC), which enable direct communication among

IoT devices, have attracted significant attentions. A standard M2M service layer platform, which is called

oneM2M, has been established and developed for the standardization of deployment of IoT services [5]. A

detailed discussion over MTC can be found in [6]. Subscription control, congestion and overload control

are described in detail, as well as a new solution to the latter issue. As for the IoT itself, the authors in [7]

and [8] provide a comprehensive survey and discuss the feasibility as well as enabling technologies for

the IoT cloud. Meanwhile, inspired by the IoT cloud, certainresearch on related applications is conducted

in [9], [10], [11]. Moreover, in order to efficiently manage IoT workloads, several IoT cloud platforms

have been proposed. For example, the authors in [12] proposea platform dubbed servIoTicy with data

stream processing capabilities for the IoT cloud and carry out a performance evaluation of the proposed

platform. However, the relevant literature on the architectural design and implementation details for the

IoT cloud are scarce to date. An architecture that can support millions of concurrent IoT devices as well

as diverse IoT applications is highly desirable.

Against the above background, this paper aims at proposing an IoT cloud architecture based on both

the Hypertext Transfer Protocol (HTTP) and Message QueuingTelemetry Transport (MQTT) protocols,

and other relevant techniques to guarantee high performance. Firstly, certain application scenarios and

requirements of the IoT cloud are presented. A generic IoT system is then proposed and we discuss the

supporting IoT infrastructure. Moreover, the implementation details of the proposed IoT cloud architecture

are discussed, followed by a presentation of the way that theIoT system is build and how a message broker

for MQTT server is built by employing the Redis cluster database. Finally, a number of experiments is

conducted to evaluate the performance of the IoT cloud, in terms of the average response time/average

transmission latency, throughput and CPU utilization.

The rest of paper is organized as follows. Section II provides some typical application scenarios for

the IoT cloud and the corresponding performance requirements. The proposed IoT cloud architecture is

then described in Section III. Section IV discusses in detail the overall implementation of the proposed

3

IoT cloud, while Section V reports on our experimental results. Finally, Section VI concludes this paper

and provides a future outlook.

II. TYPICAL APPLICATIONS OF THEIOT CLOUD

The use of an IoT cloud has a significant impact on the performance of the supported IoT applications.

Thus, several typical application scenarios of the IoT cloud are discussed in this Section, including:

1) Smart Buildings:Smart buildings can adapt to internal and external environmental changes without

human intervention in order to provide comfort to the occupants, while taking into consideration financial

and energy requirements. Ubiquitous devices can monitor the entire building at all times, generating large

amounts of data, which can then offer notification services in case of emergency incidents or critical

situations after a proper analysis on the gathered data [13].

2) Smart Home/Office:A smart home establishes a future home environment, where embedded sensors

and intelligent appliances are self-configured and can be controlled remotely through the Internet. It

enables a variety of monitoring and intelligent control applications that are responsible for the control and

management of home resources. More intelligently, an IoT device can be controlled by the IoT cloud to

adjust its operation. As a result, a comfortable living environment can be created for everybody. On the

other hand, smart offices aim mainly at easing the workload and improving the productivity of employees

at work. With a proper IoT cloud, workers in different organizations or areas can all access to office-related

services in a convenient and efficient manner.

3) Intelligent Transportation:Intelligent transportation brings comfort to people in travel within cities

or rural areas. Vehicles can be smart if they are equipped with a large number of sensors that monitor

the status of the surrounding environment. All sensed data can be collected and uploaded to the IoT

cloud. With real-time data processing, the IoT cloud can provide useful assistance to the driver such as

the provision of emergency warnings or optimal path planning, as well as the knowledge of road/traffic

conditions or traffic accident notifications. The IoT cloud also offers warnings for pedestrians when there

are under potential life or injury threats by analyzing the data gathered from vehicles, infrastructure or

even pedestrians.

4

4) Smart Healthcare:Smart healthcare applications decrease patients dependence on carers and reduce

their healthcare costs through efficient use of medical equipment and sensors. The measurement of various

biological information such as the pulse and blood pressurecan be taken by the patients themselves via

their smartphones that contain special on-body and near-body sensors. All the measured data are then

transmitted to the IoT cloud, where the early detection of life-threatening emergency situations can be

made possible through continuous monitoring and analyzingthe received data from the patient under

monitoring.

For the purpose of better illustration, we summarize the features of several typical application scenarios

using the IoT cloud in Table I.

III. A RCHITECTURE OF THEIOT SYSTEMS

In order to support millions of IoT devices, we propose an IoTcloud architecture based on the

hardware support of the IoT infrastructure. By using virtualization, hardware resources can be well utilized.

Consequently, both HTTP and MQTT servers are introduced as the application servers of the IoT cloud.

The HTTP servers can provide services for end-users and devices, while the MQTT servers ensure a large

number of device connections and real-time communication among devices. Furthermore, some other key

components such as the supporting databases are also presented for the sake of functionality, availability

and performance.

A. IoT infrastructure

IoT infrastructure is a fundamental component of the entireIoT system since it can sense and perform

actions from/to the environment as well as sending information to the IoT cloud. The IoT infrastructure

consists of all IoT devices and the supporting access networks. The former is deployed in the application

environment, whereas the latter provides communications between IoT devices and the cloud. IoT devices

mainly include sensors, actuators, intelligent appliances, etc. and may generate huge amounts of data

that are transmitted to the IoT cloud through reliable and efficient access networks. Additionally, control

messages may be transferred to IoT devices from the IoT cloudvia the same access networks.

5

B. IoT Cloud

As illustrated in Fig. 1, the IoT cloud consists of several key components, each of which is composed

of multiple servers that perform different tasks. The servers are established as Virtual Machines (VMs)

utilizing virtualization technology. They are independent from each other even if they run on the same

physical machine. With these VMs, load balancers/reverse proxy servers, databases and application servers

can be configured. The functionalities of each component aredescribed as follows, i.e.,

1) Virtual resource pool:As the hardware resources of the physical machine (such as the CPU, memory

and network connectivity) cannot be fully utilized, there is a significant waste of resources, as well as

the problem of low scalability of servers. To tackle these problems, the virtualization technique is used

to provide feasible solutions that aim at improving resource utilization for the IoT cloud. By means

of virtualization, hypervisor software runs on the physical machine as an abstract layer to manage all

resources and also to provide an operating environment for various independent guest Operating Systems

(OSs) (known as VMs) that enable dynamic resource allocation. Furthermore, the IoT cloud services can

be deployed on VMs instead of directly on physical machines,which helps reduce the usage of physical

machines and, thus, can deliver high performance at low cost.

In particular, through employing the virtualization technique, a virtual resource pool can be established

on several physical machines that contain all the hardware resources and can assign them to different

VMs on demand. In this way, all other servers can obtain a proper amount of resources, in accordance

with their demands.

2) Application servers:Application servers are often considered as the most important component

of the IoT cloud since they are responsible for offering business services to customers. They need to

provide facilities and an appropriate environment to run multiple applications based on certain application

protocols [14]. The application servers in the traditionalcloud are usually based on the HTTP. HTTP

servers work in a request-response manner through the Transmission Control Protocol (TCP) connections

with clients. When connections are established, an HTTP server can listen to certain ports for requests

from clients and send appropriate responses to the receivedrequests.

However, HTTP is not well suited for the IoT cloud since IoT devices are constrained by their

6

computing, communication, and energy resources. Consequently, another type of application protocol

is more appealing for the IoT cloud, i.e., the MQTT protocol [14]. MQTT is designed for resource-

constrained IoT devices as a lightweight messaging transportation protocol that operates via a topic-based

publish-subscribe mode. This means that when a client publishes a message on a particular topic, all the

clients that have subscribed to the same topic can receive this message. A key component that completes

the transfer process is regarded as the broker [15], by whichone-to-many connections are enabled.

3) Database: According to various application requirements for data storage, relational and non-

relational databases, also known as Structured Query Language (SQL) and NoSQL databases, are optional

in the IoT cloud. SQL is designed as a type of programming language for relational databases that can

store data in the form of two-dimensional tables. However, the performance of the SQL databases is the

main bottleneck for the deployment of real-time IoT applications. Consequently, NoSQL databases are

used to provide real-time and high-efficiency services for data storage. These databases allow data to be

stored directly in memory or hard disks and, thus, the Input/Output (I/O) speed is significantly improved.

4) Reverse Proxy and Load balancing:Due to the large number of IoT devices and users, application

servers are required to handle millions of concurrent requests or transfer massive number of messages.

These requests or messages are processed without scheduling if load balancing is not enforced. As a result,

some servers may be heavily congested due to excessive burdens, and it is possible that new requests or

messages sent to the congested servers are rejected or discarded. Meanwhile, other servers may be idle,

although spare resources may actually be enough to process these requests, resulting in a significant waste

of resources. Therefore, load balancing is imperative for the even distribution of workload across multiple

backend servers and achieve full utilization of all available resources.

IV. I MPLEMENTATION AND SERVICES OF THEIOT CLOUD

Aiming at connecting millions of devices and end-users, theproposed IoT cloud is developed with

details that are elaborated in this Section. The services that the IoT cloud can provide are also discussed.

7

A. Implementation

A virtualization OS such as VMWare vSphere1 can be used to establish a resource pool with a number

of VMs and can directly handle the CPU and memory resources ofthe physical machines. A server in the

IoT cloud can be implemented as one VM. The implementation ofdifferent kind of servers are described

in detail as follows, i.e.,

1) Application servers:The IoT cloud includes the HTTP and MQTT servers that both canbe developed

using Node.js, which is typically used for developing server applications due to its capability in high

concurrency. It runs in the form of an asynchronous event loop which performs all I/O operations with a

single thread asynchronously. As a result, application servers are capable of handling a large number of

concurrent connections.

a) HTTP servers:They apply a flexible web application framework, i.e., Express, in order to work.

In such a way, the web and mobile applications are easily deployed on an HTTP server, which interacts

with clients through a Request-Response cycle. The HTTP servers offer three different methods, i.e., GET,

POST and DELETE for clients to make requests. Clients can obtain resources from the HTTP servers

through a GET request. Clients can also send information to the HTTP servers through a POST request.

Moreover, a DELETE request enables clients to delete certain resources in an HTTP server. After receiving

a request, the HTTP server tries to process the request and send a response back to the clients.

b) MQTT servers:They are deployed for instant communication between the IoTdevices and

end-users by utilizing the MQTT protocol that is a broker-based protocol for publishing/subscribing

message transportation. Its publication and subscriptionare organized based on the notion of “topic”

and all packets are published through the broker. As for publication, a topic should be uniquely defined,

while for subscription, an MQTT client can subscribe multiple topics at once. The MQTT servers are

implemented based on an open-source library in Node.js, i.e., MQTT-connection. In order to enhance

real-time performance of the MQTT servers, they have to maintain long-lived TCP connections with

clients or devices. Furthermore, the MQTT servers use threelevels of Quality of Service (QoS) to ensure

reliability. QoS level 0 means that recipients do not send any acknowledgment to publishers, and all

1http://www.vmware.com/products/vsphere/

8

messages are published only once. By contrast, QoS level 1 requires acknowledgments. As for QoS

level 2, a handshake mechanism is used to make sure that messages can be successfully delivered to all

subscribers. In accordance with the various business requirements, the corresponding QoS level can be

configured.

Multiple application servers can constitute a cluster, which allows for simultaneously scaling server

programs across multiple parallel processors. The Parallel Multithreaded Machine (PM2) helps form a

cluster of multiple HTTP servers. On the other hand, the MQTTserver has to act as a cluster through

operating in a master-slave mode. In this mode, the MQTT server operates at the master node, which can

initiate other servers as the slave nodes. Each MQTT server (master or slave) runs on an individual CPU

core.

2) Database cluster and broker:The IoT cloud uses Redis2 (a NoSQL database) to store data. By

storing all key-value data in the memory, Redis can significantly increase the I/O speed. In order to

improve the reliability of the database, a Redis cluster with more than one Redis nodes can be configured

in the IoT cloud. Thus, the users can enjoy continuous data services even when one or more Redis nodes

are out of order. The Redis cluster is fully connected such that each Redis node is connected with all

the others through TCP connections. After forming the Rediscluster, slot share should be configured

before the cluster can work properly. The data stored in the Redis cluster are firstly hashed, e.g., taking

the CRC16 of modulo 16384 of the data as the hash slot. By checking in which interval the hash slot is

located, the data are then stored in the corresponding Redisnode, as depicted in Fig. 2. Since the hash

slots of incoming data are uniformly distributed, the load of each Redis node is inherently balanced. From

the users’ viewpoint, there is no difference in accessing the database whether it is a single Redis node or

a cluster.

On the other hand, Redis works well with the MQTT servers, since it can work as a message broker.

The load of the MQTT server can then be largely moved to the Redis cluster so that higher concurrency

can be achieved. Clients can publish messages on some topicsto the MQTT servers at first, which then

transfers the payloads of the messages directly to the Rediscluster. These payloads can only be received

by one Redis node. However, this node may not be connected with the clients that subscribe to these

2http://redis.io/

9

topics. Therefore, this Redis node would have to share the payloads with all the other nodes. Other

nodes connected with the correct subscribers can send the payloads to those subscribers. In this manner,

a satisfactory performance of the message broker can be ensured.

To further guarantee database reliability, advanced techniques such as hot standby and transaction

logging are needed for the Redis cluster. Each Redis node hasits backup, which runs in a standby server

in the event of malfunction. Furthermore, the transaction logging can record the history of the database

including hostile attacks for the convenience of recovery.

3) Load balancers:In order to support a large numbers of requests and messages from massive IoT

devices and users, a load balancer is necessary for the IoT cloud. HAProxy3 is a proper option. As an

open-source light-weight load balancer, HAProxy can offerefficient TCP-based and HTTP-based load

balancing for the IoT cloud and runs in an event-driven, single-thread model supporting high concurrency.

Through proper configurations, two types of load balancing are deployed for the IoT cloud with HAProxy,

i.e.,

a) HTTP load balancers:The default load balancing method, i.e., Weighted Round Robin, is config-

ured in HAProxy to distribute requests for the HTTP servers.HAProxy can check the Uniform Resource

Locator (URL) of a request on a binding port, and then distributes the request to the object HTTP server

according to the URL or some predefined rules. In this way, theworkload of the HTTP servers can be

efficiently balanced.

b) MQTT load balancers:There are no functions of load balancing for the MQTT serverspresent

in HAProxy. As a result, TCP load balancing is deployed to distribute load for multiple MQTT servers.

TCP load balancing can transfer TCP packages to the matchingbackend server in accordance with a

set of predefined rules. This is realized by a protocol termedNetwork Address Translation (NAT) and

some load balancing methods. According to the NAT protocol,HAProxy provides a virtual IP and port

for outer networks to visit, and listen to a certain port for TCP packages. When it receives any TCP

package, HAProxy can change the destination IP address and the port number of the package before

forwarding the concerned package to the target backend MQTTserver. Different from the HTTP servers,

the MQTT servers need to keep long-lived connections with clients, and thus HAProxy needs to maintain

3https://www.haproxy.org/

10

these connections. Therefore, the Least Connections policy is chosen as the load balancing method for the

MQTT servers in HAProxy. It helps HAProxy select the MQTT server with the least number of active

connections as the target server.

B. Services of the IoT cloud

The IoT cloud should meet the requirements of different IoT applications. By using the services provided

by the IoT cloud, diverse applications can be offered to bothend-users, developers or managers. These

services can be accessed by web browsers or smartphones anytime and anywhere. The IoT cloud services

can be mainly divided into three categories, i.e.,

1) Web applications:The IoT cloud can provide services through web applicationsby deploying web

pages in HTTP servers. These HTML pages are developed using the Hyper Text Markup Language

(HTML) and Cascading Style Sheets (CSS) for static webpages, as well as JavaScript that defines the

actions a page should take towards different events. Web applications in the IoT cloud are mainly developed

for managers to supervise the devices they own. By managing the IoT cloud interface, managers can

monitor the detailed information of the devices, e.g., the on-off state, the Media Access Control (MAC)

address or the timing tasks. Besides, they can control devices directly with the permission of device

owners for convenient debug.

2) Mobile applications:Smartphone is becoming an indispensable communications tool for people’s

everyday life. With the pervasiveness of smartphones, people browse the Internet on their phone using a

large variety of smartphone application programs (APPs). Android and iOS are the two dominant OSs

for smartphones. For the convenience of end-users, mobile APPs based upon the IoT cloud are developed

to meet the requirements of both the Android and iOS platforms. On the other hand, there are some

APPs that are developed by third parties (such as Facebook orWeChat) that are very popular. In order

to provide IoT cloud services to end-users, several interfaces based on these APPs are defined to allow

users to access to the corresponding services. For instance, end-users can control their smart-home devices

using APPs that are designed by manufacturers or by WeChat directly.

3) Software Development Kits:In order to enhance its applications and services, the IoT cloud provides

two Software Development Kits (SDKs) to third party developers, i.e., Android and iOS SDKs. The SDKs

11

consist of several Application Programming Interfaces (APIs) by which the complex functions of the IoT

cloud can be easily used. Every API encapsulates a number of underlying operations, and provides easy

access for developers. The SDKs make it easier to develop APPs so as to unleash the full potential of the

IoT cloud.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this Section, our experiments are carried out under various conditions in order to evaluate the

performance of the proposed IoT cloud. We focus only on the performance of the MQTT and HTTP

servers because both of them have a significant impact on the perceived quality of the services of the IoT

cloud under consideration. Because of the different mechanisms of MQTT and HTTP servers, different

metrics are used to evaluate their respective performance.

A. Experimental Configuration

The MQTT and HTTP servers are deployed on two separate VMs. The number of CPU cores used

by either the MQTT or HTTP server can be configured from one to four. For testing purposes, we use

Node.js on another VM to simulate the interactions between the clients and servers. Furthermore, a Redis

cluster with eight nodes is implemented on four VMs, acting as both the database and broker.

B. Results

1) HTTP server: To measure the performance of the HTTP server, a certain number of clients is

generated, each of which establishes a connection with the HTTP server. The number of clients can be

between 1,000 to 20,000 as deemed appropriate. All the clients send only the GET requests to the servers

to fetch a web page, whose size is about 1K bytes. If the HTTP server handles the request successfully, it

sends the web page back to the client. Once the client receives the response, it continues to send a same

new request. Otherwise, if no response is received by the client within ten seconds, the request is regarded

as a failure. During a total of 180 seconds, the number of requests that are successfully handled by the

HTTP servers is counted so as to compute the throughput performance of the HTTP servers. Meanwhile,

the response time of each request is also collected and averaged.

12

Fig. 3(a) shows that the response time becomes largely linear with the number of clients. Since the

clients continuously send requests, the HTTP server runs atits full capacity all the time. Thus, throughput

and CPU utilization remain at high levels as can be seen from in Fig. 3(b) and Fig. 3(c). However, many

requests cannot be handled on time and are discarded when thenumber of clients is larger than 10,000

or 20,000 for the HTTP server with one or two CPU cores, respectively. Correspondingly, the throughput

performance of the HTTP server with one or two CPU cores rapidly deteriorate when the number of

clients is above 10,000 or 20,000, respectively. In addition, due to the asynchronism of HTTP server, it

can still handle more requests with full CPU utilization as shown in Fig. 3(c).

2) MQTT server: We consider 2,000 to 40,000 publishers when evaluating the performance of the

MQTT servers. Each publisher subscribes an individual topic and publishes messages that contain only

the timestamp to that topic every 10 seconds. During the period of the experiment, i.e., 120 seconds,

we collect the information on the total number of messages that have been successfully delivered to the

publishers as well as the transmission latency of the messages.

As shown in Fig. 4, one MQTT server can provide services up to 40,000 clients with four CPU cores

in ten-second intervals of publishing at most. The average transmission latency becomes larger with the

increase of the number of users, and lower when the number of CPU cores increases. The throughput

of the MQTT server becomes floored when the number of clients becomes larger than some predefined

threshold, depending on the number of CPU cores, i.e., 10,000, 22,000, 34,000 and 40,000 for one, two,

three and four cores, respectively. It is evident that an excessive number of packages render the MQTT

server unable to transfer packages in time. A similar trend for CPU utilization can be observed in Fig. 4(c).

VI. CONCLUSION AND OUTLOOK

IoT is a new technological paradigm enabling ubiquitous things or objects to interact with each other

and to access to the Internet. By integrating cloud computing and IoT techniques, new valuable and reliable

services can be provided to many users. This article mainly proposed an IoT cloud architecture and its

corresponding implementation. The key point of the architecture is the combination of the HTTP and

MQTT servers, as well as the implementation of the message broker. Several experiments were conducted

with the objective of evaluating the performance of the application servers in the proposed IoT cloud.

13

The performance results demonstrated the significant impact of the number of clients and CPU cores on

the average transmission latency/response time, throughput and CPU utilization for the HTTP and MQTT

servers, respectively. They also study and discuss the performance of the IoT cloud that was implemented.

Much more research is still needed to address many other challenges of the IoT cloud in the near future.

First of all, there is a lack of well-defined standards to unify varying architectures and interfaces of the

IoT cloud. Moreover, advanced data analytics are necessaryto make full use of big data that IoT brings

about. Last but not least, security and privacy challenges should also be taken into account in designing

the IoT cloud.

REFERENCES

[1] E. Dave, “White paper: the Internet of Things, how the next evolution of the Internet is changing ev-
erything,” Cisco Internet Business Solutions Group (IBSG). Access on: Apr. 2011. [Online]. Available:
http://www.cisco.com/c/dam/enus/about/ac79/docs/innov/IoTIBSG 0411FINAL.pdf

[2] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, W. Xiang andK. Yang, “Big data driven optimization for mobile networks towards
5G,” IEEE Netw., vol. 30, no. 1, pp. 44-51, Jan. 2016.

[3] Y. Zhang, S. He and J. Chen, “Data gathering optimizationby dynamic sensing and routing in rechargeable sensor networks,” IEEE/ACM
Trans. Netw., vol. PP, no. 99, pp. 1-15, Jun. 2015.

[4] N. Kumar, S. Zeadally, N. Chilamkurti and A. Vinel, “Performance analysis of Bayesian coalition game-based energy-aware virtual
machine migration in vehicular mobile cloud,”IEEE Netw., vol. 29, no. 2, pp. 62-69, Apr. 2015.

[5] J. Swetina, G. Lu, P. Jacobs, F. Ennesser and J. Song, “Toward a standardized common M2M service layer platform: introduction to
oneM2M,” IEEE Wireless Commun., vol. 21, no. 3, pp. 20-26, Jun. 2016.

[6] T. Taleb and A. Kunz, “Machine type communications in 3GPP networks: potential, challenges, and solutions,”IEEE Commun. Mag.,
vol.50, no. 3, pp. 178-184, Mar. 2012.

[7] L. Atzori, A. Iera and G. Morabito, “The Internet of Things: A survey,”Comput. Netw., vol. 54, no. 15, pp. 2787-2805, Oct. 2010.
[8] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of things: A survey on enabling technologies,

protocols and applications,”IEEE Commun. Surveys Tut., vol. 17, no. 4, pp. 2347-2376, Nov. 2015.
[9] H. Zhang, P. Cheng, L. Shi and J. Chen, “Optimal DoS attackscheduling in wireless networked control system,”IEEE Trans. Control

Syst. Technol., vol. 24, no. 3, pp. 843-852, Aug. 2015.
[10] L. Lei, Y. Kuang, N. Cheng, X. Shen, Z. Zhong and C. Lin, “Delay-optimal dynamic mode selection and resource allocation in

device-to-device communications - part II: Practical algorithm,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3491-3505, Jun. 2015.
[11] K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu and L. Lei “Soft-defined heterogeneous vehicular network : architecture andchallenges,”

IEEE Netw., vol. 30, no. 4, pp. 72-80, Jul. 2016.
[12] J. L. Perez and D. Carrera, “Performance charaterization of the servIoTicy API: an IoT-as-a-Service data management platform,” Proc.

IEEE Int. Conf. Big Data Comput. Service and Appl., Redwood City, Canada, pp. 62-71, Mar. 2015.
[13] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, “Internet of Things for Smart City,”IEEE Internet Things J., vol. 1, no.

1, pp. 22-32, Feb. 2014.
[14] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego and J. Alonso-Zarate, “A survey on application layer protocols for the Internet of

Things,” Trans. IoT and Cloud Comput., vol. 3, no. 1, pp. 11-17, Jan. 2015.
[15] M. Collina, G.E. Corazza and A. Vanelli-Coralli, “Introducing the QEST broker: Scaling the IoT by bridging MQTT andREST,” in

Proc. IEEE Int. Symp. Personal Indoor and Mobile Radio Commun., Sydney, Australia, pp. 36-41, Sept. 2012.

BIOGRAPHY

Lu Hou received his B.S. degree from the School of Information and Communication Engineering, Beijing University of Posts and
Telecommunications (BUPT), China, in 2014. He is now a candidate for Ph.D. in the Intelligent Computing and Communication (IC2)
Lab, Key Lab of Universal Wireless Communications, Ministry of Education, BUPT. Nowadays, he mainly focuses on resource allocation
and security in mobile cloud computing.

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

14

Shaohang Zhao received his BS degree from Beijing University of Posts and Telecommunications (BUPT), China, in 2014. He is now
studying for a Masters Degree in the Intelligent Computing and Communication (IC2) lab. His research mainly concentrates on the Internet
of Things networks.

Xiong Xiong received his B.S. degree from Beijing University of Posts and Telecommunications (BUPT), China, in 2013. Since then, he
has been working toward a Ph.D. degree at BUPT. His research interests include M2M networks and software defined radio.

Kan Zheng (S’02-M’06-SM’09) currently a Professor in Beijing University of Posts and Telecommunications (BUPT), China. His current
research interests lie in the field of wireless communications, with an emphasis on performance analysis and optimization of heterogeneous
networks and 5G networks. He has published more than 200 papers in IEEE conferences and transactions.

Periklis Chazimisios (S02-M05-SM12) is currently an Associate Professor with the Computing Systems, Security and Networks (CSSN)
Research Lab of the Department of Informatics at the Alexander Technological Educational Institute of Thessaloniki. He currently participates
in several European and National Research Projects (such asCOST Actions, Arximidis III).

M. Shamim Hossain (SM’09) serves as an Associate Professor and a Division Headfor the Department of Informatics at Alexander TEI
of Thessaloniki (ATEITHE), Greece. He is involved in several standardization activities and author/editor of 8 books and more than 100
peer-reviewed papers on performance evaluation and standardization of mobile/wireless communications, Internet ofThings and Big Data.
Dr. Chatzimisios received his Ph.D. from Bournemouth University,UK in 2005 and his B.Sc. from ATEITHE, Greece in 2000.

Wei Xiang (S’00-M’04-SM’10) received the B.Eng. and M.Eng. degrees,both in electronic engineering, from the University of Electronic
Science and Technology of China, Chengdu, China, in 1997 and2000, respectively, and the Ph.D. degree in telecommunications engineering
from the University of South Australia, Adelaide, Australia, in 2004. He is currently Foundation Professor and Head of Discipline Electronic
Systems and Internet of Things Engineering in the College ofScience and Engineering at James Cook University, Cairns, Australia.

15

TABLE I
FEATURES OF TYPICAL APPLICATIONS USINGIOT CLOUD.

Scenario Typical
use case

Device
type

User
population

Energy
consump-

tion

Main-
tenance

cost

Through-
put

Tolerable
latency

Mobi-
lity

Relia-
bility

Security
&

Privacy

Smart
Building

Water
metering

Sensors,
meters

Large Low Low Low High Fixed Medium Low

Residential
monitoring

Sensors Few Low Low Low Low Fixed High High

Smart
Home/
Office

Home
automation

Intelligent
appliances,

sensors
Few High Low Low High Low Medium High

Smart
meeting

Laptops,
videos

Medium High Low High Medium Fixed Low High

Intelligent
Transpor-

tation

Traffic
monitoring

Sensors,
cameras

Large High Low High High Fixed Low Low

Driving
Assistance

Sensors,
vehicles

Few Medium Medium Low Low High High High

Smart
Healthcare

Patient
monitoring

Sensors,
medical

equipment
Few Low Low Low Medium Fixed High High

Vital signal
alert

Sensors,
medical

equipment
Few Low Low Low Low Medium High High

16

Smart Grid

Intelligent Transportation

Industrial Manufacturing

Smart Healthcare

Patients

Smart Building

Smart Home/Office

Intelligent Appliances

Load Balancers

Application Servers

 IoT Cloud

Physical Machines

Virtualization

Resources of physical

machines can be assigned

to different virtual servers

on-demand.

Virtual Resource

Pool

Databases

Reverse Proxy

IoT Infrastructure

Fig. 1. Illustration of the architecture of IoT systems

17

Fig. 2. Illustration of the IoT cloud implementation

18

0 4,000 8,000 12,000 16,000 20,000

2.0x103

4.0x103

6.0x103

8.0x103

1.0x104

A
ve

ra
ge

 re
sp

on
se

 ti
m

e o
f t

he
 H

TT
P

se
rv

er
 (m

s)

Number of users

 1 CPU core
 2 CPU cores
 3 CPU cores
 4 CPU cores

(a) Average response time of the HTTP server

0 4,000 8,000 12,000 16,000 20,000
0.0

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

Th
ro

ug
hp

ut
 o

f t
he

 H
TT

P
se

rv
er

 (r
eq

/s)

Number of users

 1 CPU core
 2 CPU cores
 3 CPU cores
 4 CPU cores

(b) Throughput of the HTTP server

0 4,000 8,000 12,000 16,000 20,000

100

200

300

400

A
ve

ra
ge

 C
PU

 u
til

iz
at

io
n

of
 th

e H
TT

P
se

rv
er

 (%
)

Number of users

 1 CPU core 3 CPU cores
 2 CPU cores 4 CPU cores

(c) Average CPU utilization of the HTTP server

Fig. 3. Performance of the HTTP server

19

0 8,000 16,000 24,000 32,000 40,000
100

101

102

103

104
A

ve
ra

ge
 tr

an
sm

iss
io

n
la

te
nc

y
of

 th
e M

Q
TT

 se
rv

er
 (m

s)

Number of users

 4 CPU cores
 3 CPU cores
 2 CPU cores
 1 CPU core

(a) Average transmission latency of the MQTT server

0 8,000 16,000 24,000 32,000 40,000
102

103

104

Th
ro

ug
hp

ut
 o

f t
he

 M
Q

TT
 se

rv
er

 (p
ac

/s)

Number of users

 4 CPU cores
 3 CPU cores
 2 CPU cores
 1 CPU core

(b) Throughput of the MQTT server

0 8,000 16,000 24,000 32,000 40,000

100

200

300

400

A
ve

ra
ge

 C
PU

 u
til

iz
at

io
n

of
 th

e M
Q

TT
 se

rv
er

 (%
)

Number of users

 4 CPU cores
 3 CPU cores
 2 CPU cores
 1 CPU core

(c) Average CPU utilization of the MQTT server

Fig. 4. Performance of the MQTT server

	I Introduction
	II Typical Applications of the IoT Cloud
	II-1 Smart Buildings
	II-2 Smart Home/Office
	II-3 Intelligent Transportation
	II-4 Smart Healthcare

	III Architecture of the IoT systems
	III-A IoT infrastructure
	III-B IoT Cloud
	III-B1 Virtual resource pool
	III-B2 Application servers
	III-B3 Database
	III-B4 Reverse Proxy and Load balancing

	IV Implementation and Services of the IoT Cloud
	IV-A Implementation
	IV-A1 Application servers
	IV-A2 Database cluster and broker
	IV-A3 Load balancers

	IV-B Services of the IoT cloud
	IV-B1 Web applications
	IV-B2 Mobile applications
	IV-B3 Software Development Kits

	V Experimental Results and Analysis
	V-A Experimental Configuration
	V-B Results
	V-B1 HTTP server
	V-B2 MQTT server

	VI Conclusion and Outlook
	References
	Biographies
	Lu Hou
	Shaohang Zhao
	Xiong Xiong
	Kan Zheng
	Periklis Chazimisios
	M. Shamim Hossain
	Wei Xiang

