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Abstract—The evolution of communication technology and world, the severe consequences caused by digital epidemics
the proliferation of electronic devices have rendered adwsaries have been foreseen by researchérs [3]-[5]. In the past two
powerful means for targeted attacks via all sorts of accesle  yacades various advanced communication technologies such
resources. In particular, owing to the intrinsic interdependency . .
and ubiquitous connectivity of modern communication systms, as cellular systems and wired and ereless rjetworks, gnd
adversaries can devise malware that propagates through ietme-  tremendous user activities such as online social netwgrkin
diate hosts to approach the target, which we refer to as tranmis- and mobile applications have constituted a heterogenesius y
sive attacks. Inspired by biology, the transmission pattem of such  ybiquitous network among users and devices around the globe
an attack in the digital space much resembles the spread of an which is known as a complex communication netwark [6]

epidemic in real life. This paper elaborates transmissive tacks, lized ial tworkl[5]. Malici d
summarizes the utility of epidemic models in communication or a generalized social networkl[5]. Malicious codes are

systems, and draws connections between transmissive atkacand ?b|? to exploit these heterog_e!’leous commun.ication paths an
epidemic models. Simulations, experiments, and ongoingsearch intrinsic system interconnectivity for propagation andretby

challenges on transmissive attacks are also addressed. compromise more devices.
Index Terms—cyber security, epidemic model, malware prop- By investigating recently discovered attack cases an@syst
agation, mobile social network, targeted attack vulnerabilities, we present an emerging attack patternetam
transmissive attackwhere an adversary can leverage diverse
l. INTRODUCTION communication paths and common communication protocols

In recent years, researchers have successfully borrowedy., Internet of Things) to indirectly compromise a targe
several biological mechanisms from the nature for devisir{gr a set of targets) that cannot be directly accessed by the
efficient protocols and understanding their performanediv@ adversary. Furthermore, in order to increase the podsibili
associated mathematical models, especially for cyberiggcuof reaching the target, transmissive attacks may camouflage
in communication system5l1[1],1[2]. Inspired by epidemiglog their activities to elude detections rather than indisarately
this paper investigates an emerging attack patteansmissive infesting as many hosts as possible. The specificity to tar-
attack featuring heterogeneous propagation paths and speaifeted attacks and heterogeneity in propagation pathscisti
targets. Analogous to the spread of epidemics in the natutgnsmissive attacks from well-known Internet worms sugh a
malicious codes act as viruses that are capable of infecti@gde Red that only exploits single propagation resource (th
hosts (i.e., electronic devices) via various communicat® Internet) and features indiscriminate attacks.
sources, and they can be stealthily transported by intdateed Fig. [ illustrates several possible means for the adversary
hosts to reach the primary hosts (i.e., targets), whichislai  to access the tar&tConsider the target to be a personal
to the biological mechanism known &sst specificity computer in an enterprise that is granted access to private

Inevitably, the proliferation of electronic devices equépl employee/customer databases or confidential corporate file
with communication capabilities, and the penetration ¢t and all external networking connections to the target are
net of Things have created ever-increasing security thtéat prohibited. If the target is connected to other internal niaes
we call asdigital epidemics which may be even more vital that connect to the outside world, the adversary can evintua
than actual transmissive diseases like Dengue Fever, Bibolaeach the target by successive propagation. Pessimigtical
SARS due to their cyber transmission and dormant operatigven if all connections from other internal machines to #re t
nature, and their induced loss in properties and privacis Itget are prohibited, the adversary can still manage to approa
worth mentioning that although the fragility of modern com-
munication systems may seem to be a shocking news to th& detailed attack scenario is provided in the supplemerifitey
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Fig. 1: lllustration of transmissive attacks and their @gation paths. Transmissive attacks exploit various comication resources for
propagation in order to reach the target. This diagram stsmmse examples of propagation paths that lead to the target.

the target by compromising the authorized user’s eleatrorthereby enabling security anaI)E;is

devices such as portable storage devices, wearable devices

or health dgvices em_pgdded in hu_man body equipped with Il. TRANSMISSIVE ATTACKS IN PRACTICE
communication capabilities. In practice all the adversagds

to launch a transmissive attack is simply release a maticiou AS illustrated in Fig[lL, one typical scenario of transnviesi
code (e.g., a Trojan virus) and then sits back and waRéfack is that an adversary aims to approach a target by
for the code to propagate among hosts (potential victim@fopagating through intermediate hosts via all possibla-co
either via cyber connection (e.g., phishing from the Iné¢rn munication resources in a complex communication system.
or human carrier (e.g., Bluetooth or WiFi direct receptiohhe purpose of such an indirect propagation can be that
from proximity), to create an indirect (i.e., multiple-Hop direct access from the adversary to the target is unavailabl
communication path for accessing the target. Moreovegy afff the adversary attempts to hide his/her true identity by
successful intrusion the adversary can erase its traces frfy@nipulating compromised machines to launch an attack,
the communication path (e.g., implementing a global timé&Hch as the exploitation of mobile devices as botriets [11].

for self-deactivation) to reduce the risk of being uncodere It is worth noting that a transmissive aftack can be more
insidious due to inherent configurability of electronic oes

Inspired by biology, we use epidemic models to evaluatgrried by a user, e.g., programmable in-body health device
the consequences of a transmissive attack from a macrascqfarable mobile devices, which enables malware propagatio
system-level perspective. Analogous to disease tranEmisseven when typical communication devices such as cell phones
assessment, epidemic models categorize the hosts in ansysi@d laptops are prohibited.
into a few states to analyze the collective behavior of a |n addition to hidden identity' another appea“ng advaetag
system with parametric mathematical models (e.g., couplgfithe transmissive attack is that the adversary need not to
state difference equations or Markov chains) for the puposnow the complete network topology to accomplish the attack
of status tracking, outbreak prediction, and further atio A|l the adversary needs to do is release a transmissive mali-
As a first step toward analyzing transmissive attacks, we UgBus code and then waits for the malicious code propagating
epidemic models to investigate the probability of sucagdisf
compromising the target and quantify the risk of exposuté wi 2Aithough in recent years epidemic-like information progtign has been

respect to time. We show that the tradeoffs in time betwe®g!l studied in communications society in the contexts gfidemic routing”,
where packets are transmitted in a store-and-forward daghi intermittently

the pr_obabili?y of successful intruslion to the 'Fargej[ and th:onnected networks, little is known on how to apply thesel-deleloped
associated risk can be characterized by epidemic modelslysis tools[[7]£10] to model transmissive attacks aeyohd.



TABLE I: Statistics of Vulnerabilities Identified on PopulApplica-

tions and Platforms. would also like to increase heterogeneity in community path

e.g., by exploiting diverse vulnerabilities. The statistiof

Number of Vulnerabilities,  recently reported vulnerabilities (Taldle 1) shows the nensb
Applications & Platforms 2013 2014 2015 are consistently increasing for most platforms and apfidiog,
Adobe Acrobat Reader 66 24 129 even for modern mobile and wearable devices. Consequently,
Apple iPhone OS 90 120 375 various activities and mediums including web downloads,
Apple Mac OS X 65 135 384 document reading, e-mail reading, short messages delivery
Apple WatchOS - - 53 Wi-Fi access, Bluetooth access, and NFC contacts can be
Google Android 7 11 130 used together to deliver malicious payloads and approaeh th
Microsoft Internet Explorer 129 243 231 targets. By leveraging these existing vulnerabilitiesatiacker
Microsoft Office 17 10 40 can even launch transmissive attacks in the background and
Microsoft Windows 7 100 36 147 be invisible to a user.
Linux Kernel 189 133 77 For example, in July 2015, an unprecedented vulnerability
in Android system called Stagefright was revealed by the
Source! http://www.cvedetails.com/ cyber security firmzimperiutfl. Stagefright leverages the

vulnerability of the media library to access users’ Android

devices through a simple multimedia message service (MMS)

to the target due to its transmissive nature. In practice dnout users’ awarend®d. As approximately 80% of mobile
transmissive attack can be simply accomplished by devingjeyices use Android systems, nearly 1 billion devices are

Trojan virus designed to be operated in the stealthy tra8ismjstantial victimé?s. By viewing mobile users using different
sive mode during propagation and activated when reachig {herating systems as hosts with different levels of imnyunit
target. Advanced transmissive attacks can camouflage horga, virus, the Stagefright vulnerability behaves like thesth

user/network activities to elude intrusion detection osteyn specificity in epidemiology, as it can compromise usersgisin
monitoring, thereby incurring severe threats to security a pndroid systems.

privacy.

One of the most notable targeted attacks is the Stuxnet
attack discovered in 2010. Stuxnet is designed to target a
specific version of industrial control systems in a surtepts ~ Here we provide an overview of classical epidemic models
manner, whereas traditional worms often aim to infest asymathat have been applied to communication systems, partigula
hosts as possible in a short time period. Stuxnet thus eshifPr modeling information dissemination, malware propawyat
several distinguishing characteristics compared witthitianal and developing the associated control metfods
worms: each Stuxnet worm only replicates itself for at most Following terminologies from biology and epidemiology,
three times; it is programmed to self-destruct on a day irg201each device in a communication system can be categorized
it can stealthy propagate via carriers (i.e., vulnerabladbivs into a few states representing its status. The main utility o
computers) without showing any symptoms and only unpaék'Ch an abstraction is that one can leverage epidemic mimdels
its malicious payload when reaching a target; multiple zer§implify complicated interactions among each individuatia
day vulnerabilities are used. Although performing a tazget €xtract collective information for large-scale analysisl gre-
attack may be expensive, and indeed Stuxnet is believeddigtion, e.g., tracking pandemic spread patterns and giiadi
be state-sponsored malware due to its unprecedented tevellgir outbreaks in terms of the infected population. A papul
sophistication, more and more Stuxnet successors (e.dy danalogy is that each device is either in tBasceptiblg(S),
and Flame) demonstrate how far an adversary is willing to dafected(l), or RecoveredR) state, known as the SIR model.
for high-value targets. For epidemic modeling of normal information dissemination

Stuxnet is one kind of Advanced Persistent Threat (APTJynamics, such as routing in communication networks, rumor
which can be seen as one specific case of transmissive Qit-News spread in social networks and so on, an infected
tacks. An APT possesses the feature of specificity in targefdividual means he/she carries certain message (e.gtaa da
Although the feature of heterogeneity in community paths Racket) to be delivered, a susceptible individual meanshiee/
not mandatory for an APT, it would shorten the process to _ ,
approach the targets if heterogeneous community paths ar%hnps;ﬁwww'z'mpe"um'Com/ . . .

. . i . ttp://fortune.com/2015/07/27/stagefright-androidnerability-text/
considered. In 2013, Mandi@hsummarized the attack life Shttp://www.forbes.com/sites/thomasbrewster/20150/&ndroid-text-
cycle of APT: 1) Initial compromise, 2) Establish footholdattacks/

3) Escalate privileges, 4) Internal reconnaissance, 5)éioy 'AS quoted from Zimperium chief technology officer Zuk Avraia
lat v 6) Maintain presence. and 7) Complete missiom These vulnerabilities are extremely dangerous becausg do not require
aterally, 6) Maintain p . p ISSIOM. Anat the victim take any action to be exploited. Unlike speishing,

APT attack often loops through steps 3 to 6 until it reaches tlvhere the victim needs to open a PDF file or a link sent by thecket,

specific target. These steps are also applicable to tragismis this vulnerability can be triggered while you sleep. Befojeu wake

up, the attacker will remove any signs of the device being promised

attacks. and you will continue your day as usual - with a trojaned ploBeurce:
To launch a successful transmissive attack, an attackep:/venturebeat.com/2015/07/27/researchers-fiidevability-that-affects-95-of-android

8Due to reference count limitations only a subset of relatestkss are

SAPT1: Exposing One of China’s Cyber Espionage Unitsintroduced in this section. Interested readers can refdfjtI0] and the

http://intelreport.mandiant.com/ references therein for more details.

Ill. OVERVIEW OF EPIDEMIC MODELS
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does not carry that message but can be potentially infectedhen certain events occur, e.g., a sensor stops to forwardin
and an recovered individual means he/she is immune gackets due to battery drain. A susceptible node can transit
the message and hence ignores the message upon receptotine recovered state when certain mechanisms are adtivate
e.g., in a cooperative relay-assisted network a device én tb.g., a computer is no longer vulnerable to a malicious code
recovered state will refuse to receive or forward the packetafter installing the corresponding security patch or uggrg
For epidemic modeling of malicious codes propagatidts operating system. In_[14], SIR model is used to study
dynamics, such as privilege escalation or system vulnisabi the vulnerability of broadcast protocols in wireless senso
leakage, an infected individual means he/she is compramiseetworks. In [7], [8], SIR model is used to analyze the
by a malicious code and is being leveraged as a warm bgerformance of several protocols for epidemic routing.
for further propagation or attack, e.g., a botnet. A susbept
individual means he/she is not comprised yet still vulniEraby  control Techniques

to the malicious code. A recovered individual means he/sheO . dvant f usi idemi dels f del
is free of the threats incurred from the malicious code,, e. Ne major advantage or using epiaemic models for model-

securing one’s devices via frequent security patch update ng dynamics of information delivery or malware propagatio

S. 2 . ) )
The following paragraphs introduces three basic epiden“(?:S in the fact that the_lr analytical expressions much eriie .
models and relevant control techniques. coupled state equations appeared in control theory, which

allows one to quantify a cost function of interest and evi&ua
the performance of a control strategy. A commonly used cost
A. Sl Model function rooted in various applications is the accumulated

SI model assumes each individual is either in the susceptifyifected population within a time interval. For instance, i
or the infected state. It can be used to estimate the receptiore-and-forward based routing schemes such as epidemic
performance of a broadcasting protocol or the dynamics ksfuting, the accumulated infected population from the time
a malicious code. In[]4], the authors show that informatiogpoch when a source releases a packet to the time epoch when
dissemination in a fully mixed network of dynamic topologythe packet is no longer carried by any individuals is congide
and opportunistic links, e.g., a mobile contact-based agtw as a cost function for data transmission. It can be inteedras
that possesses time-varying traces due to mobility, angpsemthe system-wise buffer occupancy for data transmissioresin
ral connections due to opportunistic contacts, can be ceghtuall infected devices need to keep the packet in their owrebuff
by an Sl model. In[[12], the authors show that the trendsitil the destination successfully receives the packet.
of self-propagating Internet worms such as Code Red andNotably, although epidemic routing enables communica-
Slammer can be successfully predicted by SI models_Jin [Sipns in intermittently connected networks, its spreadiature
the authors use the SI model to formulate malware propagatioevitably induces additional system burden, especially f
in a hybrid network composed a social network and a proxim@uiffer occupancy. In[[7], the authors propose two stragegie
network, where a malware can leverage delocalized links,(e for controlling buffer occupancy, which we call by tigéobal
through MMS) and localized links (e.g., through Bluetootijmeout schemand theantipacket dissemination schenia
for propagation. the global timeout scheme, each infected individual drbjes t
packet in its buffer when the global timer expires. In the
B SIS M antipacket dissemination scheme, as motivated by vaccina-
. odel . . . L

o tion from immunology, upon packet reception the destimatio

~ Similar to the SI model, SIS model also assumes eaghleases an antipacket as an indicator of acknowledgement
individual being either in the susceptible or the infectegack) and asks every encountered individual to forward the
state. The difference is an SIS model allows an individual ghtipacket so that infected nodes can erase the obsoldtetpac
transition from the infected state to the susceptible s®I8 from its buffer, and susceptible nodes can be prevented from
models can be well mapped to the formulation of a typicaceiving the already delivered packet, and hence achjevin
twq-state Mark_ov chain where thg steady-s_tgte behavidref tyffer occupancy reduction.
entire system_ls used fqr analysis. The utility of SIS models | [9], the authors consider time-dependent control cdpabi
can be found in formulating recurrent network behaviorshsuity of SIR models in hybrid networks, where the control agili
as the trends of receiving spam mails, or information dissems proportional to the elapsed time, e.g., the ability tdress
nation in an evolving environment with system reconfiguti awvare propagation increases with the time spent in revers
factors. In [13], the authors integrate the SIS model Withngineering its operations. An optimal control strateggenha
queueing theory to study malware propagation dynamics ¢ gynamic programming is proposed for solving the optimal

a dynamic network. time epoch to implement the control strategy (analogously
releasing the antidotes) in order to balance the tradeoffs
C. SIR Model between effectiveness and consequences.

SIR model is a widely used model in energy-constrained
systems (e.g., a wireless sensor network) or communicatidh CONNECTING THEDOTS: EVALUATING TRANSMISSIVE
systems with control capabilities over information defive ATTACKS VIA EPIDEMIC MODELS
(e.g., a configurable routing protocol). An infected indival Although transmissive attacks can be a serious threat to
can transition from the infected state to the recovereck stayber security, they are often accompanied with an addition



price compared with traditional attack schemes. Notablirt exponential growth rate suggests that the risk of exposame c
spreading nature and self-propagating patterns enhaaciskh be significantly amplified if an adversary desires higheacktt
of exposure, and hence the attacks may be more likely to sigccessfulness.
detected. Generally speaking, while an attacker can aatele It is also proven in[[15] that when adopting the optimal
the processes of reaching the target by compromising adgliebal timer the per-user buffer occupancy does not depend
tional hosts, such an increased level of malicious aatisition the total population for epidemic routing. This suggests
becomes easily identified, thereby jeopardizing the pwpahat for transmissive attacks the risk of exposure for alsing
of the attack. To this end, there is a tradeoff between thest can be controlled to a certain extent such that its local
probability of a successful attack and the risk of being cte® risk does not increase with the total host number.
due to excessive exposure.

To quantify this tradeoff between attack successfulneds an V. EXPERIMENTS AND SIMULATIONS

risk of exposure for transmissive attacks, we propose to US€n this section we conduct several simulations and experi-

epldem|:: tm(;)d_e][s ftO:j analys||st: The_ risk of exploiu(;e IS tr}ﬁents as a first step toward the analysis of transmissivekatta

a;:cumu ated mder? € p]?pu a 'r?n '(rl‘r.(?e.' ﬁccurrr:u ade nmmt{fsing epidemic models. In particular, we investigate theedr

ot compromise c.)St.S) rom the timewnen the adversary s panyeen the attack successfulness and risk of expbsure

!aunches_a transmissive attack to the tiiiavhen the target simulating global-timeout-value enabled transmissivackis

is comprised, or the time when the adyersary dec'des_iﬁ)mobile networks with two widely adopted mobility models,

abort the attack, as the longer the duration of a host bei ely therandom waypoin{RWP) mobility model and the

E:r?]mpromlied rendefrsl an attack more prone tg ]E)e (cjzletecli% dom direction(RD) mobility model. We also evaluate the
e attac successiuiness at a time mstazhce EliN€d aS g fact of propagation path diversity of a mobile social nativ

the probability of successfully accessing the target betweon transmissive attacks based on mobile and social intenact

the time |nter\_/aI0 andt. . . rPatterns extracted from real-life datasets.
For further illustration, we consider the scenario wher t

adversary adopts the global timeout scheme for transmissiv. . o ) )
attacks as his/her control technique to reduce the risk ©f Simulation of Transmissive Attacks in Mobile Networks
exposure. A global timer is set since the attacker launchesWe simulate the traces of a mobile network &f mobile
a transmissive attack, and upon global timer expiration alsers moving around in a wrap-arouhck L square area. Any
malware residing in the compromised hosts will erase thegiair of users can exchange information for communication
traces via complete self-deletion, no matter the attack wghen they are within distance of each other. For RWP
successful or not, so as to allow the adversary to constramobility model each user selects a destination at random and
malware propagation and alleviate exposure. travels to the destination at a constant spee8imilarly, for
Under the global timeout scheme an interesting questi®&D mobility model each user selects a direction at random and
that naturally arises is: what is the optimal global timeoutavels at a constant speed For both models the speedis
value T such that the attack successfulness at tiftnes no randomly and uniformly drawn from the intervih,in, vmax|-
less than a certain value (e.g., 80%) while the risk of exposunitially (at time 0) one user is compromised to launch a
can be minimized? Partial answers to this question werengivigansmissive attack and the target is selected at random.
in the contexts of minimizing the system buffer occupancy Fig.[2 and Fig[B display the attack successfulness and the
while simultaneously guaranteeing end-to-end data dgliveisk of exposure with respect to the global timeout valig
reliability between a source-destination pair for epidemrespectively. Giverf s, the attack successfulness is defined as
routing [15], where the data delivery reliability and theffeu  the fraction of simulated transmissive attacks that sisfoég
occupancy are proven to be associated with the accumulaséggroach the target prior to timé&; among all trials, and
infected population under the SIR modél [8]. the risk of exposure is defined as the accumulated compro-
Particularly, if the mobility pattern follows a homogensoumised population divided by the total populatidh The SIR
mixing mobility assumption, such as the random waypoimfpidemic model proposed i _[15] is used for performance
model or the random direction model, a closed-form expresemparison. The successful rate is the probability of itifigc
sion of optimal global timeout value is provided in_[15] thaa particular host, and the risk of exposure is evaluatedgusin
given a data delivery reliability guarantee, the optimalbgll the accumulated infected population.
timeout value that minimizes the system buffer occupancylt can be observed that the global timeout valge indeed
depends on the initially infected population and the paewi governs the performance of both attack successfulnesssknd r
meeting rate. This suggests that if mobile botnets (i.@grs¢ of exposure. The simulation results also validate the ttige
initially compromised hosts) are utilized to launch a traiss between these two metrics as the enhancement in attack
sive attack, the global timer should be set smaller thandhatvulnerability often leads to the increase in risk of expesand
a single seed to minimize the risk of exposure. Similarlg thvice versa. For example, to enhance the attack success$ulne
global timer should decrease when the pairwise meeting réitem 30 % ([ = 10) to 90 % ([v = 20), the risk of exposure
is higher due to more frequent encounters facilitating raadwv needs to be amplified by 10 times. Notably, the predicted
propagation. Moreover, an interesting finding[inl[15] istttiee results from the epidemic model can successfully captuze th
optimal buffer occupancy grows exponentially with the datends of these two metrics. An immediate utility is that an
delivery reliability. Analogously, for transmissive atis the adversary can use the epidemic model to determine the dptima
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Fig. 3: Risk metric corresponding to Figl 2. Epidemic modate
capable of predicting both the attack successfulness asid af
exposure.

global timeout value that guarantees the attack successful Can propagate from one compromised user to another user
while simultaneously minimizing the risk of exposure, g.gWith probability of success, via the social propagation path
selectingT; = 25 such that the attack successfulness is no leésthese two users are social contacts, i.e., there is an edge
than 95 %. Moreover, a defender can also utilize the epidenfigfween these two users in the corresponding social graph.
model to evaluate a system’s vulnerability without condhget Similarly, the malware can propagate from one compromised
time-consuming simulations. user to another user with probability of successvia the
proximity propagation path if these two users are within a

, _ , , . hysical contact distance.
B. Experiment of Transmissive Attacks in Mobile Social Né%— y. . .
works Fig. [4 and Fig.[b display the attack successfulness and

_ ) ) ) ) ~risk of exposure for transmissive attacks in the mobile &oci
To investigate the impact of propagation path diversity QRework, respectively. It can be observed that the inchusib

transmissive attacks, we use the CRAWDAD mobile-socighcia| propagation paths can significantly enhance thekatta
interaction tra}c& to simulate a transmissive attack. Theyccessfulness. For example, after 30 hours since lauwnchin
purpose of this experiment is to study the consequences otransmissive attack, the attack successfulness of ingliz
transmissive attacks that are capable of propagating @hroy,o, social and mobile propagation paths can be doubled
social contacts (e.g., via MMS) or proximity contacts (e-Gcompared with the attack successfulness of only exploiting
via Bluetooth). In such a mobile social network the malwarg,gpile propagation paths. However, the induced risk méric

9CRAWDAD dataset thiablsigcomm2009 (v, 2012-07-15). Aaie at SO amplified as shown in Figl 5. .
http://crawdad.org/thlab/sigcomm2009/20120715 Additional experiments of different parameter configura-


http://crawdad.org/thlab/sigcomm2009/20120715

tions show similar trends in attack successfulness and risk
of exposure, which are discussed in the supplementary file.
These results suggest that propagation path diversity can
facilitate transmissive attacks at the price of potentialin-
plified exposure. In addition, how current epidemic models
can be improved to model transmissive attacks in such a
heterogeneous network is an active research area.

resilience Notably, biology models such as ecological
systems, predator-prey models, and evolutionary game
theory that target at evolutionary stability in time-varyi
coupled systems may be well mapped to analyze trans-
missive attacks in dynamic systems.

VII. CONCLUSION

This paper introduces an emerging attack pattern called

VI. SOME ONGOING CHALLENGES AND OPEN RESEARCH
QUESTIONS

Here we discuss several ongoing challenges and open
search questions related to transmissive attacks.

transmissive attack that leverages diverse communicpttrs

to approach the target and accomplish its task. Inspired by
k?'g)_logy, we provide an overview of commonly used epidemic
models for communication systems and connect the dots be-

tween transmissive attacks and epidemic models. We perform

o Lateral movement detection and prevention.
Unlike disruption attacks (e.g., denial of service) th
often cause distinguishable anomalous activities, late
movement attacks (e.g., privilege escalation that insig
iously acquires user credentials) are difficult to dete
Transmissive attacks fall into one category of Iater;:{a
movement attacks due to their stealthy transmissive na-
ture. If detecting lateral movement is implausible, one
may shift attention to designing a resilient cyber system
that can constrain the damage induced by such attackd1l

o Transmissive attacks in network of networks (NoNs). 2]
Network of networks (NoNs) is an intuitive explanation
of modern communication systems with intrinsic layered3l
structures and heterogeneous networks. The layers of
the Internet architecture can be operated by different]
protocols, and a device can have multiple communication
resources (e.g., cellular, WiFi and Bluetooth modules)[.5]
As horizontal malware propagations within a single
layer/system can be straightforward by leveraging simiIafG]
vulnerabilities, vertical malware propagations travegsi
different layers/systems can be more difficult due to
lack of common vulnerabilities or implementation of [7]
additional security rules. In terms of bio-inspired atsck
transmissive attacks that are self-evolving and adapoive {8]
the NoN environment can be a vital threat.

o Data-driven inference for attack and defense. 9
In a data-rich era, our cyber footage is everywhere and
easy to track. Both attackers and defenders should m Ifcﬁ
use of available data collected from different sources to
infer vulnerabilities in a system. Notably, modern tech-
nology enables an adversary to optimize his/her attaBi!
strategy based on the inference results from the collected
data prior to launching a transmissive attack, known2]
as the inference attacks. For instance, personal trace
information such as GPS signals or locations reveal
by online social networking activities can be directly
observed or indirectly inferred from user-centric data.

« Evolutionary resilience of dynamic systems.

In many cases the underlying communication system
where a transmissive attack takes place is an evéfl
changing system due to variations in time, traffic flows,
evolution of communication technology, and so on.
Therefore, a general notion of resilience for such a
dynamic system is necessary to quantify network stability
that can vary with time, which we call asvolutionary

[14]

simulations via two widely used mobility models and conduct

aéxperiments in mobile social networks to demonstrate the
ility of epidemic models for assessing attack successfid

nd risk of exposure, and we also discuss some ongoing
search challenges and open research questions related to
ansmissive attacks.
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Fig. 6: The block diagram of common components in an Android (c) Te = 66 hours. (d) T = 88 hours.

system and how they are involved in the propagation of trisswe o )
attacks. An attacker can deploy malicious codes to appicanarket Fig. 7: Successful rate for transmissive attacks undeerifft con-
places and wait for unaware users to install the deployececodigurations. The results are averaged oved00 trials. For different
passively (paths 1-1 and 1-2), or compromise a device bygusiime instances, itis observed that the increage iar p, can facilitate
remote vulnerabilities and inject executables directlp ithe device transmissive attacks.

(path 2-1). Once malicious codes are in operation, they ¢suoder

nearby network links (paths 1-3 and 2-2) and social linkghgd-4 T

and 2-3), and then attempt to launch transmissive attaclesttzr
the network level (paths 1-3 and 2-2) or the application llépaths .
1-5 and 2-4). .
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This seciton is a supplement that illustrates horizontal
and vertical propagation involved in transmissive atta@kd (@) Te = 22 hours. (b) T = 44 hours.
includes additional experimental results of simulatingns-
missive attacks with the CRAWDAD mobile-social interaatio '
tracel. =

We first show how attackers compromise a mobile device
and propagate malicious codes to nearby devices ifFig. 6. An .
attacker usually has two choices to gain access to a device "~
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One is to deploy malicious codes to application market @ace ... | o
and wait for unaware users to install the deployed codes
passively (paths 1-1 and 1-2). The other is to compromise a  (¢) T¢ = 66 hours. (d) T = 88 hours.

device by using remote vulnerabilities and inject exedefb Fig. 8: Risk metric for transmissive attacks under différeonfigu-
directly into the device (path 2-1). Once malicious codes arations. The results are averaged ov@®00 trials. For different time

in operation, they can discover nearby network links (patﬁgstance.s, it is observed that the increasednor p, also leads to

1-3 and 2-2) and social links (paths 1-4 and 2-3), and th8Jgher risk.

attempt to launch transmissive attacks at either the n&twor

level (paths 1-3 and 2-2) or the application level (paths 1-5 ) )

and 2-4). Remote vulnerabilities are important for sudeess We investigate the attack successful rates and the corre-
transmissive attacks, since mobile and wearable devicgs n$Ronding risk metrics under different configurations, nigme
be not accessible via Internet. Therefore, attackers havett® social and proximal infection ratgs andp,, for perfor-
identify possible remote vulnerabilities in the system.r Fdnance comparison. Fifll 7 and Fig. 8 show the attack success-
example, the recent vulnerabilities identified in Staggfri fulness and the corresponding risk of exposure with varying
library, which is a part of Media Framework in Fig] 6,_(:onf|gurat|ons at four different time instances, respetyivit _
is one good option to launch transmissive attacks: it is '8 observed that both the attack successfulness and the risk

built-in component that is associated with many servicas aftetric increase with the configuration parametersand p,.

applications. These results indicate nontrivial tradeoffs between tlt@ckt
successfulness and the risk metric.
10CRAWDAD dataset thiab/sigcomm2009 (v. 2012-07-15). iz at  |f the attacker has the freedom of manipulating and

http://crawdad.org/thlab/sigcomm2009/20120715 pe, then assigning maximal values to these two parameters is
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usually not the best strategy, since doing so incurs huge ris
and thereby the attacks can be in vain due to high exposure.
Instead, the optimal strategy of an attacker is to first idient
the risk the attacker is willing to take, and then find a set
of configuration parameters that maximize the successfej ra
which can be casted as a configuration parameter optimizatio
problem with risk constraints.
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