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Graph-based Cyber Security Analysis of State

Estimation in Smart Power Grid
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ABSTRACT

Smart power grid enables intelligent automation at all lew¢ power system operation, from electricity
generation at power plants to power usage at householdskdhenabling factor of an efficient smart
grid is its built-in information and communication techagy (ICT) that monitors the real-time system
operating state and makes control decisions accordinglgrimportant building block of the ICT system,
power system state estimation is of critical importance @ntain normal operation of the smart grid,
which, however, is under mounting threat from potentialerydittacks. In this article, we introduce a graph-
based framework for performing cyber-security analysipawer system state estimation. Compared to
conventional arithmetic-based security analysis, theljcal characterization of state estimation security
provides intuitive visualization of some complex problemnustures and enables efficient graphical
solution algorithms, which are useful for both defendingl attacking the ICT system of smart grid.
We also highlight several promising future research dioest on graph-based security analysis and its

applications in smart power grid.

I. INTRODUCTION

Smart power grid is committed to providing stable, highdguand inexpensive electricity supply to
meet the surging power demand of modern society througmigdligent energy management in power
generation, transportation and distribution, and itsidticed competitive market mechanisms. Essentially,
the intelligence of smart grid is driven by its embedded I@frastructure, especially the EMS/SCADA
(Energy Management System and Supervisory Control and Peqaisition) system[[1]. As shown in
Fig. [1, the SCADA system is responsible for collecting theasueement data reported by distributed

meters/sensors, which is then fed to the state estimatatddcat the control center for deriving the
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Fig. 1. Anillustration of the operation of the SCADA/EMS sy for a four-bus network.

estimation of system state variables, e.g., bus voltagditmu@s and phases. Based on the estimation,
the EMS, as well as other power system applications, theremadntrol decisions, e.g., optimal power
flow, load curtailment, and electricity pricing, to adjusetphysical aspects of the power grid. Evidently,
a secure and efficient power system requires accurate steagon that truthfully reflects the system
operating state.

The dependence of smart grid on its ICT infrastructure makbsr-attacks on state estimation a viable
approach to impact the normal system operation. In the ctioreal power network, power devices are
isolated from the public network and under close controlh®y industrial system operator. In smart grid,
however, many distributed smart meters are installed irhtheseholds, which often connect to the public
internet and run IP-based communication protocols toifatgl two-way information exchange between
the users and system operator. This computer-network-HIK structure achieves low management cost,
but also exposes the smart grid to potential cyber attaakaudiin the public information access points.
One common cyber attack in smart grids is false-data ilgactvhich distorts the measurements collected
by the system operator through either physical device comjge or remote cyber-data injectidn [2].
Being able to compromise the state estimation, an adveisgrgble of false-data injection can have
large impact on the power system and beyond, such as eamngtiVe profit from electricity price

manipulation in the power market![3],/[4], or causing regibblackout to induce chaos and financial

loss [5].
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State estimator commonly uses bad data detection (BDD) amésiin to filter faulty data, either caused
by random network error or malicious injectidn [1]. HowevBDD is unable to detect some structured
collaborating injection attacks that are disguised as abmmeasurements |[2]. One countermeasure is
data-driven detection, which uses the statistical featofehe previously collected measurement data to
identify anomalous measuremerits [4]. Nonetheless, itatsfiaily eliminate the threat of injection attacks
and its performance highly depends on the accuracy of thaagt statistical features. To fundamentally
mitigate false-data injection attack, it is necessary tocuse meter measurements themselves to evade
malicious injections by, for example, guards, video manmiig, or tamper-proof communication systems
[6]. In a large power network with hundreds of meter measems) it is tempting to devise strategic
protection that achieves system security requirement thcost, e.g., small number of secured devices.

Arithmetic and graphical methods are two popular approaches for security analygmwer system
state estimation. Specifically, arithmetic approach a&gpklgebra and matrix theory to analyze the
solution space of the state estimation, and thus the patethtieats and countermeasures of injection
attacks (e.g.,[17],[18]). Despite its effectiveness in esfee applications, arithmetic approach is found
inefficient in handling some complex problems especially tfttose with combinatorial features, e.g.,
involving selectingk out of K buses. Alternatively, graph-based approach, which usgshgmodels to
characterize the security problems, can provide intuitigealization of complex problem structures (e.g.,
[9]-[12]). Its useful insight can lead to efficient optimal sub-optimal graphical solution algorithms that
are otherwise not achievable by arithmetic approaches.eMexy classic graph algorithms often need
significant modifications to solve power system securityofgms of unique graphical structures.

In this article, we provide an overview of graphical methdds performing cyber-security analysis
in power system state estimation. Specifically, we first deedhe method to model power network in
a graph. Then, we establish a graph-based characterizatistate estimation security, and introduce
some representative graphical algorithms to solve sgcprdblems in state estimation. We also suggest
several future research directions on graph-based sgandlysis and its applications in smart power

grid. Finally, we conclude this article.

[I. GRAPH MODELING OF POWER NETWORK AND MEASUREMENTS

As shown in Fig[R(a), a power network consists of a numberuseb, loads, power generators, and

power transmission lines that interconnect tflila@ne important parameter representing the operating state

1The topology of the power network in Fid] 2 is adapted from tHEEE 14-bus test case system (available online at
https://www.ee.washington.edu/research/pstca/, SE6.)
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Fig. 2. (a) An example 14-bus power network and measuremants (b) its graph modeling, where the red vertices (edgespte
the buses (transmission lines) that have injection (flow)enseinstalled; (c) an example measured subnetwork; andnddge-measured
Steiner three embedded in the subnetwork.

of the power system is the phasor of each bus, including ite.ye phase angle and voltage magnitude.
In practice, the voltage magnitudes can often be directhasueed, while the values of phase angles
need to be obtained from state estimation [1]. Conventignial the linearized DC measurement model,
the estimate of the phase angles is obtained from the actwermpmeasurements, i.e., the active power
flows along the power lines (e.g., meterand the active power injections at the buses (e.g., myter
In recent years, phasor measurement unit (PMU) has emegyad advanced metering technology that
can provide direct real-time voltage phasor measuremettt vgh accuracy and reliability in addition
to the conventional meters. In practice, due to high PMUaltetion cost and the legacy power system
in operation, state estimation is often obtained from a mniof PMU and power flow measurements.
For a power network witm + 1 buses, we regard one of them as the reference bus, denot&d by
and estimate the phase angles of the rebuises (state variables) from meter measurements, denoted

by 8 = (61,0,,..,0,) andz = (zy, 2, .., z) , respectively. Besides, we denote the sethafinknown
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buses asS, the set of all the buse® = R U S, the set of transmission lines & and the set ofn
measurements as1.

As shown in Fig[R(b), a power network can also be describeghinndirected graph, where vertices
and edges represent buses and transmission lines, respedtVithout loss of generality, we regard bus
1 as the reference throughout this article. Loosely speakirftpw meter reflects the difference between
two state variables; an injection meter reflects the sum féérénces of a state variable with respect to
the subset of state variables in one-hop distance; a PMUrmedtects the difference of a state variable
with respect to the reference bus. For the convenience absétkpn, we consider in this article only
conventional power flow measurements. In fact, a PMU measeméecan be equivalently converted to a
flow measurement in security analysis, which is discussd@]in

Given a subset of meter measuremeMs C M, we can find correspondingly a subnetwork (and
thus a subgraph) measured By, denoted byG (M) = (V,€). That is, a flow meter measures the
transmission line where it is installed and the two busesaith lends; an injection meter measures the
bus it is installed, the transmission lines connected tolihg and all the buses on the other end of
the transmission lines. In Fi§l 2(c), for instance, the saply measured by = {ry, 7y, 73,74, 75} iS
V = {v1,v9,04,05,06 and & = {ei, €15, €as, €45, €56}, Wherer, and r, are injection meters and;;
denotes the edge connecting verteandj. For a normal power network, the measured full gréphm1)
includes all the vertice¥ to estimate all the state variables, but not necessarithaltransmission lines.
For instance, we can see that the transmission line betwe®e? &nd4 is not measured by any meter,

and thus is not present in the graph model in Elg. 2(b).

[1l. GRAPHICAL CHARACTERIZATION OF STATE ESTIMATION PROTECTION
A. State Estimation Problem

The state estimation problem is to derive the unique esiimaitf & from the measuremenis which
are related by
z = HO + e. Q)

Here, H denotes the measurement Jacobian matrixeadénotes independent measurement noise with
zero mean. The exact value Hf is related to the physical aspects of the power network, #ng.network
topology, the placement of meters, and the transmissianitimpedancel [1]. In particular, we consider
in this article a well-functioning power network that a umégestimated of the unknown variables can

be obtained from the received measurements. This requifésient number of meters to be placed in
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proper locations such thdf is full column rank, i.e.;rank (H) = n. At leastn meters are needed to
derive a unique state estimation. Meanwhile, the other n measurements provide the redundancy to
improve the resistance against random errors. Detailedrmp&tcement methods can be found.in/ [13]. Let
6 denote the maximum likelihood estimation ®f[1]. The current power systems use BDD mechanism
to remove the bad data assuming that the errors are randorarestidictured. It calculates the residual
r = z — HO and compares its-norm with a prescribed threshold A measurement is identified as a

bad data measurementiif= ||z — HO)||, > 7, or otherwise a normal measurement,

B. Data Injection Attack

A data injection attack compromises the normal measuresrieraugh either physical access or remote
cyber control, resulting in fabricated measurements z + a, wherea denotes the injected data. It can
be easily shown that an injection attack structuredaas: Hc, wherec is an arbitrary vector, will
produce the same BDD residual as the normal measuremehtis can introduce a biasto the state
estimate without being recognized as a malicious attacKi2 kind of attack is commonly referred to as
undetectable attackn general, such an attack requires high level of coorthnab compromise multiple
measurements simultaneously. In some cases, howeveri¥kesary can exploit the special structure of
H to achieve the attacking objective by compromising only alsmumber of measurements. In fact,
we will show later how to use graphical methods to exploit dip@ortunity of undetectable attack with

the minimum number of meter measurements to compromise.

C. Power Network Observability

State estimation protection is closely related to the cphad power network observability The
conventional power network observability analysis stadiehether a unique estimate of all unknown
state variables can be determined from the measurenentddtite that the observability of a network
is related to the network topology and the placement of meteasurements, rather than the value of
received measurements in real-time. Out of théotal meters, a set of meter measurements is referred
to as abasic measurement s#étthe estimation ofn unknown state variables can be uniquely derived
from them. It is proved that the presence of any data injaditack can be detected if we can make sure
that the measurements taken from at least one basic measrsat are trustworthy, i.e., the meters are
well-protected|[7]. Intuitively, this is because the estion obtained from a basic measurement set can

be used to validate the result derived from all the meter oreasents.
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In a large-size power network with several hundred of stateables, it could be infeasible to perform
security upgrade to proteatbasic measurements under limited budget. Even if suffidiadget is given,
protecting then basic measurements in a random sequence may still openattkexts the possibility
to compromise a large number of state variables during thetly security installation period. In both
cases, it is valuable to devise a method that gives priootgdfending a subset of state variables that
serve our best interests at the current stage, and opens po4sibility of expanding the set of protected
state variables in the future.

In light of this, [9] generalizes the concept of power netkvobservability tosubnetwork observability
Specifically, a subnetwork’ (M) = (V,€) is referred to as observable if a unique estimation’afan
be derived fromM. Then, protecting the measurementsAih can ensure that any data injection attack
can be detected as long as it attempts to compromise any meémbe The observability ofG (M)
can be easily determined with simple matrix calculationcédingly, to defend a set of state variables,
denoted byD, the problem becomes finding an optimal observable submet@qAM) = (V, &), either
with the minimum number of vertices or the minimum cost tousecthe meters inM, that satisfies
D C V. An intuitive solution is to enumerate all possible versida S \ D to check if an observable
subnetwork can be constructed together vithThis enumeration method, however, is combinatorial in

nature, and indeed the problem to find the optimal subnetigoptoved to be NP-Hard [9].

D. Graphical Characterization of Observability

Alternatively, the network observability has an intuitigharacterization using graphs. Specifically, a
subnetworkG (M) = (V,€) is observable if and only if aedge-measured Steiner tréEMST) [9],
denoted byl" = (9,5), can be constructed from the subnetwork and satisfies th@iog conditions:

1) the reference vertek is contained in the tree, i.eR € V;

2) each edge € & is mapped to a flow meter or an injection mepeg M that measures it;

3) different edges are mapped to different metersin
Intuitively, this requires to find a tree that connects ak thertices in the subgraph to the reference
vertex, where each edge is mapped to a meter that takes itsureezent. For instance, an EMST and
the measurement-to-edge mappings are shown in[Fig. 2(dhéobservable subnetwork in Fig. 2(c).
Such a tree is named a Steiner tree because in general onlysataf vertices is included in the tree.
A special case i¥ = V, where the Steiner tree becomesanning treethat includes all the vertices

in the network [[18]. Thanks to the graphical structure of Bsesvable subnetwork, we introduce in the
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measurements edges buses

Fig. 3. lllustration of maximum flow method for constructing EMST from an observable subnetwork. The solid lines aeraturating
edges while the dashed lines denote unused edges.

following section some efficient graphical algorithms fecsrity analysis in power system.

V. GRAPH ALGORITHMS FORPOWER SYSTEM SECURITY ANALYSIS
A. Maximum-flow Matching Algorithm

The graphical characterization establishes the equivaléetween the subnetwork observability and
the existence of an embedded EMST. A natural question is leowonhstruct such an EMST from an
observable subnetwoik (M) = (T}, 5), which is very useful in visualizing the network observipito
enable efficient tree-based algorithms. As finding a set derae\ C M to derive a unique estimation
of V is easily achievable through Gauss-Jordan matrix elintinathe question lies in how to find
the mappings betweeM and the edges to satisfy the EMST definitions. Interestingly, the EMST
construction problem can be solved in polynomial time usinrgaximum-flonmethod [14].

We use an observable subnetwork in Hig. 2(c) as an exampléustrate the method to obtain an
EMST. As shown in Figl12(d), we havwe = {v, vy, vy, vs, Vg }, M= {ry,m, 74,75} and the set of edges
measured b)M is & = {e1n, 15, €25, €45, €56 }. Then, a directed graph is constructed in Fgwherev,
is chosen as the root to construct the Steiner tree. We seladivance an edge connected to the root, say
e12, In the final tree solution. This is achieved by setting baih tower and upper capacity bounds of the
edge to bel. The other edges’ lower and upper capacity bounds are setiahd1, respectively. Then,

a maximum flow is calculated from the soureg (0 the terminal ), which is achievable in polynomial
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Fig. 4. lllustration of commodity flow maximization methoorfsolving the optimal EMST problem. a) the Steiner arbagase constructed
from the graph model in Fid] 2(b); and the maximum commodityfsolution when the arc weight is the same for all the arcs.

time using, e.g., Ford-Fulkerson Algorithm_[14]. If the ptem is feasible, i.e., the flow solution is

in edgee;,, we obtain a measurement-to-edge mapping by observingatineasing flows in the graph.
Otherwise, the actual EMST solution does not inclagde(i.e., the initial guess is wrong), thus we select
another edge connected to the root and recalculate the maxiitow problem. Since the subnetwork is
observable, the existence of a solution is guaranteedelallove example, the final measurement-to-edge
mapping is{ry,re, 74,75} <> {e12, €15, €45, €56}, While edgeesys is not used. Then, the edges obtained by

the maximum flow calculation will form a tree that spans alitiees in1’ as shown in Figl12(d).

B. Commodity Flow Maximization Algorithm

Although finding a minimum EMST that includes a set of vesi@ is NP-Hard, acommodity flow
formulation that exploits the tree structure of EMST can largely reduw ¢complexity compared to
some enumeration based methods, e.g., from several manthgouple of minutes in a medium-size
network. Intuitively, this is because the graph-based tdation can significantly reduce the search space
of candidate solutions and enable effective off-the-sgedph/optimization algorithms.

Consider a digraplts = (V, A) constructed by replacing each edge in the measured fulhgigp\t) =
(V, &) with two arcs in opposite directions. We set the reference dmithe root and allocate one unit
of demand to each vertex iR. As shown in Fig[#4, commodities are sent from the root to teeices

in D through some arcs. Notice that the choice of the vertiees Fig.d is only for the simplicity of
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illustration, where an arbitrary subset of verticBsC S can be selected. Then, the verticesTinare
connected toR via the used arcs if and only if all the demands are satisfiedeWve require using
the minimum number of arcs to deliver the commodity, the um@d will form a directed tree, referred
to as aSteiner arborescencdevidently, the solution to the minimum EMST problem can leamed

if we neglect the orientations of the arcs in the obtainednStearborescence. To satisfy the conditions
of a feasible EMST, we need to make sure that any selecteds anapped to a meter that measures it.
In particular, if an arc is mapped to an injection meter, lal vertices measured by the injection meter
must also be included in the arborescence, as if a pseudondei®allocated at these vertices. Then,
the problem is to satisfy both the actual and pseudo demand usnimum number of arcs.

Based on the commodity flow model, a mixed integer linear @ogning (MILP) formulation is
proposed in[[9], and extended to arcs of different weighiffef@nt costs are needed to secure the
meters) in[[12], which can be solved with many off-the-shetéger optimization tools, such as Gurobi
and CPLEX. Accordingly, we can use the mappings from the srd¢ke optimal EMST to the optimal

set of meter measurements that defends the state variables i

C. Tree Pruning Algorithm

Due to the NP-Hardness of finding an optimal EMST, the comigoffow based method can still
result in high computational complexity in a large-size powetwork consisting of hundreds of buses.
A polynomial-time suboptimal algorithm using the idea ofdrpruning is considered inl[9]. Starting
from the full measured graph, the key idea is to iterativelgstruct an EMST from the subnetwork and
prune away redundant vertices notZm while keeping the remaining subnetwork formed by the neslid
vertices observable until a shortest possible EMST is nbthi Specifically, théree traversalalgorithm
can be applied to determine both the sequence and the subsaatioes to be pruned in each iteration.

In Fig.[3, we present an example to illustrate the pruningatma, where a feasible tree containing
12 vertices is presented in Figl 5(a). Vert&xand8 are theterminal vertices to be included in the EMST
solution. As shown in Fid.15(b), starting from the ragt among the three child vertices of, only v,
can be pruned, since the descendent vertices of either v, contain terminal vertex. After pruning
vy, We proceed to checks to see if its child vertex; can be pruned, which, however, is not feasible
becauses; is a terminal. Then, we checak, where neither of its child verticeg andv; can be pruned
separately or together. On one hand, this is becagys®ntains terminal as its descendent vertices. On

the other hand, the removal of does not remove the edgg;, which is mapped to the injection meter
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__ Transmission line not  ____. . Injection-t'o-edge
included in the tree mapping

Fig. 5. lllustration of the tree pruning algorithm. The seddrertices are terminals to be included in the EMST.

at vg that measures;, thus resulting an unobservable residual subnetwork.uFohowever, all of its
descendent vertices can be pruned as in[Fig. 5(c). Up to nevinawe finished the first round of pruning
and obtained a residual tree in Fig. 5(d). Then, we use thaireng vertices{v, vs, vy, vs, vg, V7, Vg }

to generate new EMSTs using the maximum-flow matching alyoriand repeat the pruning operations
iteratively until no vertex can be further pruned.

It is shown in [9] that the tree pruning heuristic (TPH) camiage comparable performance with the
optimal solution obtained from the commodity flow MILP forfation especially in a large-size network.
Meanwhile, it induces much lower complexity. For instangging a regular computer with Intel Core2
Duo 3.00-GHz CPU and 4 GB of memory, the average computatine heeded to solve foD| = 4
buses out of al4-bus network is{0.04,0.2,0.02} seconds for the arithmetic-based enumeration, the
introduced MILP formulation and the TPH methods, respetyif9]. However, the computation time of
arithmetic-based enumeration grows dramatically to aldihyears to solve foiD| = 4 in a 57-bus
network, which is computationally infeasible in practidéis, however, takes the MILP and the TPH
methods only3.7 and 0.12 seconds, respectively. As we further increase the sizeltt8dus network,
the computation time of the TPH method increase almostiinéa 0.49 second, while the optimal MILP
formulation increases quickly to arousdminutes. In this sense, the TPH method can efficiently solve a

problem in very large networks of several hundred of busékimva couple of seconds, which may take
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t @ Virtual terminal vertex

/
o / 13\00

Fig. 6. lllustration of minimum S-T cut algorithm to explaiber vulnerability. The edge weight is for each edge unless otherwise
stated. Specifically, figure (a) shows the cut to attack alsibgs8; and (b) shows the cut to compromise two buseésand 12. In (b), a
virtual terminal is added to connect the target verticesilerme edge weights between them are set as infinity to avaidtan any of
them.

the MILP method many days or even months to complete.

D. Minimum S-T Cut Algorithm

An adversary can also apply graphical methods to exploipfiortunity to launch malicious attacks.
A widely used algorithm isminimum S-T cutnethod, which calculates the minimum sum weights of
edges, whose removal would separate a source vertex fromming vertex in a weighted graph_[10].
Intuitively, an adversary that intends to compromise astatiable will need to separate the corresponding
vertex (the terminal) from the reference vertex (the soumtehe graph by forming a cut on the edges.
Then, the adversary needs to compromise all the meters tasure the edges in the cut. For instance,
in Fig.[8(a), the cut ors to attack buss requires the adversary to compromise the flow meter on edge
ers and the injection meter on bus The weight of each edge in the calculation of the minimum S-T
cut problem can be set as the monetary cost to compromise d¢tersrthat measure it.

Similar minimum cut methods can also be applied to compremaisset of state variables| [9] (see
Fig.[8(b)); to find the smallest number of meters that the exhrg can control to perform an unobservable
attack [4]; to identify the most vulnerable measurementsnject false datal[10]; and to exploit the
opportunity of data injection attack when some meters aceirsd or the network topology is only
partially known [11], [12]. As minimum S-T cut can be effictgncalculated in polynomial time, an

adversary is able to quickly identify potential network ety vulnerability.
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V. FUTURE RESEARCHDIRECTIONS
A. Application Oriented Security Analysis

Essentially, the power system state estimation is used datralling specific applications, such as
generation/load power control and electricity price cdtian. It is therefore of practical value to perform
application-oriented security analysis in higher appiaa layer. Existing studies have shown that data
injection attacks that cause blackout and electricitygon@nipulation have apparent graphical patterhs [3],
[5]. It is therefore interesting to exploit the underlyingaghical structures in the attacks to compromise
power applications, such as load prediction, unit commtinand frequency control. On the other hand,
it is also useful to use graphical methods to strategicadlylaly security countermeasures, e.g., to prevent

collaborating attacks that compromise the electricity katr

B. Meter Measurement Placement Optimization

As we are now transforming the legacy power system to therdusuimart grid, a large amount of
electricity infrastructure are to be built within the neature, with a mixture of conventional and new
metering/communication facilities. Many existing setunulnerabilities often comes from the legacy
meter measurements placement, which hardly considershtieattof potential collaborating attacks.
Graphical methods can be useful to optimize the placemetiteofneter measurement. By leveraging the
graphical properties of network observability, we have pbéential to achieve both high state estimation

accuracy and high resistance to potential data attackdatively low meter placement cost.

C. Hybrid Graphical and Data-driven Approaches

Graph-based security analysis is an offline “hardware” aggn, where physical protections are per-
formed to ensure the measurements collected from a subssttefs are trustworthy (free from injection
attacks). Data-driven attack detection, on the other hsnaln online “software” approach that leverages
the statistical features of the measurements/state Vesiab identify potential abnormal measurements
collected from the rest unsecured meters. In particulaplbased method is independent of real-time
measurements and does not alter the state estimationthlgoimn EMS/SCADA. Therefore, it can be
potentially combined with data-driven detection to furthprove system security. For instance, the
trust-worthy measurements, and so the subset of trushiwastate estimates derived from them, can be
used as side information to improve the detection accurddgata-driven statistical detections. In general,

the graph-based protection and data-driven method shau|dibtly designed.
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D. Security Analysis in AC Model

Graph algorithms are commonly used to solve linear integegramming problems, their effectiveness
and efficiency to solve security problem in linear DC powesteyn is unsurprising. In many application
scenarios, however, AC power model, where both voltage itudel and phase are the state variables,
is more preferable than the DC model, e.g., security constlaoptimal power flow calculation. Some
studies have shown that data injection attack to comproA@sstate estimation is much more complicated
than that in DC model[ [15]. On the other hand, the obsentgimli AC state estimation can no longer be
characterized as a simple Steiner tree structure as in D@Imiddwever, the network observability may

still contain tree-like structures to be identified for dedeng potential attacks against AC state estimation.

VI. CONCLUSIONS

In this article, we have provided a graphical framework ferfprming security analysis in power
system state estimation. From both system operator’'s anersaty’s perspectives, we have introduced
several effective graph-based algorithms to solve sgcpritblems in state estimation. Compared to the
commonly used arithmetic-based security analysis, gleded analysis helps visualize some complex
problem structures, which can lead to efficient optimal atuced-complexity suboptimal graph-based
algorithms. As the future smart power grid will integrateaggke number of ICT facilities, cyber security
is of paramount importance to guarantee the system consisteperating in a secure and efficient
state. Graph-based methods are expected to be a set of pbteels in solving complex cyber security
problems in future smart grid.
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