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Abstract 
Leveraging 6LoWPAN, the IETF 6Lo working group has targeted adaptation of IPv6 
over a new generation of communication technologies for the IoT. These comprise 
Bluetooth LE, ITU-T G.9959, DECT ULE, MS/TP, NFC, IEEE 1901.2, and              
IEEE 802.11ah. This paper comprehensively analyzes the 6Lo technologies and 
adaptation layers, giving the motivation for critical design decisions, highlighting 
crucial aspects for performance, and presenting main challenges. 
 
1. Introduction 

The Internet of Things (IoT) is an emerging networking paradigm whereby daily life 
objects, some of them equipped with sensors or actuators, are connected to the Internet. 
The IoT vision promises a revolution, leading to substantial improvement in global 
sustainability, efficient resource management, enhanced productivity and increased 
human life quality, by enabling innovative applications in a wide variety of trending 
domains. Examples of the latter include smart cities, home and building automation, 
smart factories, smart grid, remote health, intelligent transportation systems, etc. 

Making the IoT become a reality is a multiagent effort comprising advances in various 
technical fields and the involvement of academia, industry, public administration and 
standards development organizations. To enable the aforementioned IoT applications, a 
plethora of inexpensive, network-capable IoT devices are being deployed worldwide. In 
order to provide Internet connectivity to the vast number of IoT devices, estimated as a 
few tens of billions by year 2020 [1], IPv6 is the optimal protocol given its large set of 
available addresses, tools for unattended operation, and intrinsic interoperability. 
However, IPv6 was designed for resource-rich networking scenarios (e.g. Ethernets), 
whereas common IoT network environments are significantly more limited. The latter 
comprehend devices with severe energy, memory, processing, and communication 
constraints. Such devices use wireless (or wired) links characterized by low data rate, 
short data unit length, high bit error rate and variable link quality. Therefore, adaptation 
functionality is required to support and optimize IPv6 over constrained-node networks. 
Such functionality is usually abstracted as an adaptation layer, that is, a protocol stack 
layer inserted between IPv6 and a target technology, designed to efficiently enable IPv6 
over that technology (Figure 1.a). An adaptation layer may provide lightweight 
encoding formats (e.g. IPv6 header compression), support for data transport (e.g. 

Author’s pre-print, accepted for publication in the IEEE Communications Magazine (2017-7-13). 
copyright 2017 IEEE. Please refer to the final version once published. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including 
reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for 
resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. 
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fragmentation and reassembly over technologies with short frame payload, multihop 
data delivery for mesh topologies, etc.), and energy-frugal network parameter 
configuration. 

 

Figure 1.a) An example of adaptation layer functionality; b) IPv6 datagram 
encapsulation over 6Lo technologies, fragmentation needed; c) IPv6 datagram 

encapsulation over 6Lo technologies, fragmentation not needed.  

 

In late 2004, the IETF IPv6 over Low power Wireless Personal Area Networks 
(6LoWPAN) Working Group (WG) started to produce the adaptation layer to support 
IPv6 over IEEE 802.15.4, the de-facto low-rate, low-power wireless radio interface. The 
6LoWPAN adaptation layer [2] was completed by the end of 2012, and thus the 
6LoWPAN WG was subsequently closed. However, the panoply of communication 
technologies for constrained devices had been (and still is) growing steadily. Therefore, 
the need to extend IPv6 support to a new generation of wireless and wired 
communication technologies for the IoT was identified. The IETF IPv6 over Networks 
of Resource-constrained Nodes (6Lo) WG was created in 2013 with the main goal of 
carrying out this crucial work, leveraging 6LoWPAN. As of the writing, the 6Lo WG 
has targeted IPv6 adaptation for a wide and diverse set of communication technologies 
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features of each technology, highlighting those especially relevant for IPv6 adaptation, 
are shown in Table I. 
 
2.1. IEEE 802.15.4 

IEEE 802.15.4 is the seminal standard defining physical layer (PHY) and Medium 
Access Control layer (MAC) functionality for low-power wireless applications. The 
original version of this standard was published in 2003, constituting a milestone in its 
application space. Shortly after, the IETF established the 6LoWPAN WG with the aim 
of enabling IPv6 support over IEEE 802.15.4 networks. Since then, several IEEE 
802.15.4 amendments have been released, and a plethora of on-going amendment 
efforts for specialized environments are currently in progress. Remarkably, a specific 
IETF WG called 6TiSCH was established in 2013 to define the mechanisms and 
architecture to enable IPv6 over Time Slotted Channel Hopping (TSCH), a salient mode 
of IEEE 802.15.4e [3]. This intense activity is a sign of IEEE 802.15.4 technology’s 
good health.  
 
2.2. Bluetooth LE / Bluetooth Smart 

Bluetooth LE, also marketed as Bluetooth Smart, is the hallmark feature in the 
Bluetooth 4.0 specification, published in 2010. Bluetooth LE is a protocol stack that 
was designed in order to enable multi-year operation for battery-powered devices such 
as sensor nodes. Most smartphones are currently being manufactured with Bluetooth LE 
support, therefore the potential space for Bluetooth LE is counted in billions of units. 
With Bluetooth LE, the smartphone may act as a gateway able to collect data from 
sensors, wearables, and other consumer electronics devices, and to send those data to 
the Internet (e.g. via 4G or Wi-Fi). Bluetooth LE extensions have been recently 
provided in subsequent Bluetooth specifications. The functionality required to enable 
IPv6 over Bluetooth LE comprises the IPv6 over Bluetooth LE specification, recently 
published as RFC 7668, and the Bluetooth SIG Internet Protocol Support Profile (IPSP) 
[4]. RFC 7668 has served as a model for 6Lo specifications over technologies that 
define simple network topologies such as star or point-to-point. 
 
2.3. ITU-T G.9959 

Z-Wave is a protocol stack developed more than a decade ago by ZenSys (now, Sigma 
Designs) for wireless home automation. Z-Wave has gained significant market presence 
in this domain, in fact having been available in products earlier than competing 
technologies such as ZigBee [5]. Born as a proprietary solution, Z-Wave PHY and 
MAC layers were first standardized by the ITU-T in 2012 as the G.9959 specification. 
The first adaptation layer specification produced by the 6Lo WG, published as RFC 
7428, defines the adaptation of IPv6 over ITU-T G.9959 networks. These 
standardization efforts extend the Internet connectivity possibilities of this technology 
beyond existing Z-Wave-to-IP (Z/IP) protocol translation gateways. 
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2.4. DECT ULE 

The Digital Enhanced Cordless Telecommunications (DECT) radio interface has been 
used for more than two decades for wireless telephony and data applications in indoor 
scenarios. Recently, a new variant of this technology called DECT ULE has been 
standardized by the ETSI to enable low-power wireless applications. DECT ULE 
introduces MAC layer changes to the original DECT standard, while it retains PHY 
compatibility. Therefore, DECT ULE has significant potential given the strong DECT 
deployment base, especially in the home area. The 6Lo WG has created RFC 8105, a 
specification to support IPv6 over DECT ULE. 
 
2.5. MS/TP 

MS/TP is a MAC layer mechanism defined for the RS-485 PHY. These MAC and PHY 
layers are a subset of the options defined in BACnet, an ANSI/ASHRAE standard 
extensively used in the building automation domain. Remarkably, RS-485 defines a 
Shielded Twisted Pair (STP) wired, low-error rate multidrop bus. Furthermore, devices 
in MS/TP networks have a continuous power source. On the other hand, such networks 
offer limited data rates, and MS/TP devices are often constrained in processing power 
and memory; to benefit from IPv6, the IETF 6Lo WG has produced a specification 
(RFC 8163) to adapt IPv6 over MS/TP networks, even if the latter are relatively 
different environments compared with those of other communication technologies for 
constrained devices.  
 
2.6. NFC 

Near Field Communication (NFC) comprises a set of standard technologies for short-
range (i.e. below 20 cm) wireless communication. NFC is available in a variety of 
devices, including tags and the main smartphone platforms. Since sales of the latter are 
currently being counted in hundreds of millions per year, the potential of NFC is 
enormous. Its short range provides intrinsic security properties, as in fact, electronic 
payment has become a popular application for this technology. When two NFC 
endpoints are powered, a peer-to-peer NFC mode can be used. A specification to 
support IPv6 over the peer-to-peer mode of NFC is being developed by the 6Lo WG. 
 
2.7. IEEE 1901.2 

Power Line Communication (PLC) has been used for decades for home automation, 
telemetry and broadband Internet access. IEEE 1901.2 is a PLC standard approved in 
2013 (amended in 2015), intended for smart grid applications, that defines PHY and 
MAC functionality for narrowband communications. IEEE 1901.2 is designed to 
overcome harsh conditions such as adverse Signal-to-Noise-Ratio (SNR) and variable 
characteristics (e.g. line impedance) in space, time and frequency. In fact, IEEE 1901.2 
links share a significant degree of commonality with low-power wireless links, such as 
high bit error rate. A specification to support IPv6 over IEEE 1901.2 has been proposed 
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in the 6Lo WG, although the IEEE 1901.2 specification also describes how to configure 
an IPv6-based IEEE 1901.2 multihop network. 
 
2.8. IEEE 802.11ah 

IEEE 802.11ah is an IEEE 802.11 amendment whose standardization process is 
expected to be completed in the near future. It addresses the lack of low-power support 
for sensor networks in the IEEE 802.11 standard. Target applications of IEEE 802.11ah 
comprise metering, and backhaul links for data collected by sensors. IEEE 802.11ah is 
favored by the massive popularity of Wi-Fi, but it cannot make use of currently 
deployed access points, since IEEE 802.11ah is not backwards compatible with 
previous versions of IEEE 802.11. As of the writing, IEEE 802.11ah has been the most 
recent one to join the set of technologies for which IPv6 support is being developed by 
the 6Lo WG. 
 
2.9. Discussion 

Most of the introduced technologies are wireless, which provides flexibility and low 
deployment cost. Nevertheless, wireless technologies are subject to interference and 
radio propagation issues. Even if IEEE 1901.2 is wired, it also has low installation cost, 
since it reuses existing power grid lines, and naturally suffers interference due to 
coexistence with the electricity signal. In contrast, MS/TP uses a high-quality field bus. 
 
Supported network topologies range from simple point-to-point (NFC) or star 
topologies (BLE, DECT ULE, IEEE 802.11ah) to mesh networks (IEEE 802.15.4, ITU-
T G.9959, IEEE 1901.2). The latter involve greater complexity to enable end-to-end 
communication, however they better overcome coverage limitations and offer path 
diversity. For example, nowadays home automation deployments are mainly based on 
mesh network technologies. On the other hand, MS/TP, IEEE 1901.2 and IEEE 
802.11ah offer greater link range than the rest of technologies. MS/TP has been 
designed to reach devices throughout large buildings via a shared bus, while the latter 
two technologies support smart grid and metering use cases, which involve 
communication between distant devices such as meters and concentrators that aggregate 
data from several households. Finally, NFC and BLE exploit their widespread presence 
in smartphones, which transform the smartphone into both an Internet connectivity 
gateway and a remote control for direct interaction with sensors or actuators. 
 
3. 6LoWPAN and 6Lo: IPv6 over IoT technologies 

In order to enable IPv6 over IEEE 802.15.4 networks, the adaptation layer called 
6LoWPAN was developed. Subsequently, 6Lo made use of 6LoWPAN as a basis to 
support IPv6 over Bluetooth LE, ITU-T G.9959, DECT ULE, MS/TP, NFC, IEEE 
1901.2, and IEEE 802.11ah. This section analyses the following fundamental technical 
elements and mechanisms of 6LoWPAN and 6Lo: locus of the adaptation layer in the 
protocol stack, routing, addressing, header compression, fragmentation, encapsulation, 
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  6LoWPAN 6Lo 
  IEEE 

802.15.4 
Bluetooth LE ITU-T 

G.9959 
DECT ULE MS/TP NFC IEEE 

1901.2 
IEEE 

802.11ah 
 
 
 
 
 
 
 
 
 
 

Technology 

Medium Wireless Wireless Wireless Wireless Wired Wireless Wired Wireless 
Frequency band (MHz) 868/915/2400 2400 868/915 1900 Base-band 13.56 < 0.5  < 1000 

Range (m) 10-100 10-100 100 < 300 1000 < 0.2 > 1000 < 1000 
Bit rate (kbit/s) 20/40/250 1000 9.6/40/100 1152 115.2 106/212/424 ≤ 500 150-7800 

Max. single-frame L2 
payload (bytes) 

105 23 158 
 

38 
 

2032 125 
 

215 
(worst case) 

7951 
 

ACKs and retries Optional Yes Optional Yes No ACK/NACK ACK/NACK 
(optional) 

Yes 

MAC mechanism CSMA/CA, 
TDMA 

TDMA CSMA/CA TDMA Token 
passing 

TDMA link 
initialization 

CSMA/CA CSMA/CA 

Address size (bits) 16/64 48 40 20/40/48 8 6 16/64 48 
L2 fragmentation No Yes Yes Yes No Yes Yes Yes 
Network topology Star and mesh Star  

 
Mesh Star Multi-drop 

bus 
Point-to-

point 
Star and 

mesh 
Star 

Protocol stack PHY/Link PHY to App. PHY/Link PHY to App. PHY/Link PHY to App.  PHY/Link PHY/Link 
Application Generic 

purpose 
Smartphone-

centric 
Home 

automation 
Home  

automation 
Building 

automation 
Contactless 
exchange 

Smart grid, 
home autom. 

Sensors,  
backhaul 

Standardization 
organization 

IEEE Bluetooth SIG ITU-T ETSI ANSI/ 
ASHRAE 

NFC Forum IEEE IEEE 

 
 
 
 

Adaptation  
Layer 

Routing required Yes No Yes No No No Yes No 
Mesh under support Yes No Yes No No No No  No 

Fragmentation Yes No No No No No No No 
6LoWPAN 

Header  
Compression 

Yes Yes  
(star topol.) 

Yes 
 (address 

adaptation) 

Yes 
(star topology) 

Yes 
 (address 

adaptation)  

Yes  
(address 

adaptation)  

Yes Yes 
(address 

adaptation) 
6LoWPAN 

Neighbor Discovery 
Yes Yes  

(no multihop) 
Yes 

 
Yes 

 (no multihop) 
Partially 

 
With 

DHCPv6 
DHCPv6 

only 
Yes  

(no multihop) 
Multicast L2 broadcast L2 unicast  L2 broadcast L2 unicast  L2 broadcast L2 broadcast No L2 multicast 

Privacy addresses Not specified Random IID DHCPv6 Random IID Random IID Random IID DCHPv6  Random IID  
L2 security used Yes Yes Yes  Yes No No Yes Yes 

 
Table 1. Main features of IPv6-supported IoT technologies and their adaptation layers. L2 stands for Layer 2. 
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3.2. Routing 
 
IEEE 802.15.4 networks may follow a multihop topology. To support network 
connectivity in such a topology, 6LoWPAN offers two routing approaches: mesh-under, 
whereby routing is performed below IP (thus a multihop path appears as a single link to 
IP), and route-over, which relies on IP routing (thus each physical hop is an IP hop).      
In the latter, intermediate forwarders are IP routers called 6LoWPAN Routers (6LRs). 
In both approaches, the router that connects a 6LoWPAN network to another IP 
network is a 6LoWPAN Border Router (6LBR). 
 
Most 6Lo technologies define network topologies whereby there is a single physical 
link between a host and the 6LBR. In these, a routing protocol is not needed. However,    
ITU-T G.9959 and IEEE 1901.2 support mesh networks. The 6Lo adaptation layers for 
these two technologies reuse 6LoWPAN route-over functionality (in both cases) or 
mesh-under (only in the former). 
 
3.3. Addressing 

In 6LoWPAN, as in more classic networking scenarios such as Ethernet, IPv6 address 
generation typically relies on embedding the link layer address in the Interface Identifier 
(IID) for stateless address autoconfiguration. In 6LoWPAN, this approach is also 
leveraged for total or partial address compression for IPv6 header compression. For the 
same reasons, all 6Lo adaptation layers initially assumed the same mechanism for IID 
generation. However, recent activity in the IETF, published in RFC 8065, has provided 
advice on privacy issues due to link-layer-address-based IIDs, including correlation of 
activities over time, location tracking or vendor-specific vulnerability exploitation. To 
mitigate such threats, IPv6 addresses should be frequently changed and should avoid the 
use of globally unique characteristics. To this end, different approaches to derive 
privacy IIDs or addresses have also been adopted for the 6Lo adaptation layers. 
 
3.4. Header compression 

When communicating an IPv6 packet over IEEE 802.15.4 or a 6Lo technology, a 
typical 40-byte IPv6 header would consume a significant fraction of frame payload, as 
well as precious energy and bandwidth resources. 6LoWPAN header compression 
(6LoWPAN HC) was defined to produce a lightweight encoding for the IPv6 header 
over IEEE 802.15.4. 6LoWPAN HC leverages stateless and stateful techniques. The 
former exploits the fact that some IPv6 header fields (e.g., IIDs, and datagram length) 
are derivable from the link layer header, and an optimistic expectation that several IPv6 
header fields will be set to typical values. The latter requires 6LoWPAN nodes to share 
context that allows to substitute address prefixes or complete addresses by a short 
identifier. 
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Subsequently, 6LoWPAN HC has served as the basis for header compression over the 
6Lo technologies. 6LoWPAN HC has needed some tailoring to the specific 
characteristics of each technology, with the exception of IEEE 1901.2, which does not 
need any changes, since it endorses the IEEE 802.15.4 MAC frame and address formats. 
 
The 6Lo specifications of IPv6 over ITU-T G.9959, MS/TP, NFC, and IEEE 802.11ah 
only introduce a minimal change to 6LoWPAN HC: the adaptation of the link layer 
address/identifier sizes in these technologies to the ones assumed in 6LoWPAN HC.  
For Bluetooth LE and DECT ULE, 6LoWPAN HC is more deeply modified. The star 
topology of these networks (see Figure 3) is exploited to optimize header compression. 
In such a topology, when the central device (a 6LBR) receives a packet from one of its 
neighboring hosts, it can infer that the host that sent the packet is its source. Likewise, 
when a host receives a packet from the central device, the host can derive that the host 
itself is the destination of the packet. Therefore, in the two described situations, the 
source or the destination IPv6 addresses can be fully omitted from the IPv6 header, 
respectively.  
 
Another header compression mechanism suitable for 6LoWPAN- or 6Lo-based 
networks, which can be used as an addition to 6LoWPAN HC, is the 6LoWPAN 
Generic Header Compression (GHC). In contrast with 6LoWPAN HC, which is limited 
to IPv6 (and UDP) headers, GHC compresses headers of any kind, at the expense of a 
slight compression efficiency decrease.  
 
3.5. Fragmentation 

Most of the 6Lo/6LoWPAN target technologies exhibit a short maximum PHY/MAC 
data unit size, typically in the range between a few tens and a few hundreds of bytes     
(i.e. two to one orders of magnitude below the characteristic 1500-byte Maximum 
Transmission Unit (MTU) of Ethernet, respectively). This feature simplifies error 
control mechanisms, decreases processing and memory requirements, allows lower 
energy consumption and is suitable for the typically short-sized application-layer 
payloads in this space. However, IPv6 requires every Internet link to have a 1280-byte 
MTU. If the link layer technology supports fragmentation (and reassembly), such 
functionality can be exploited to overcome the problem. Otherwise, fragmentation must 
be performed at the 6LoWPAN/6Lo adaptation layer. 
 
Among the set of 6LoWPAN/6Lo technologies, only IEEE 802.15.4 requires the use of  
adaptation layer fragmentation (which was defined by 6LoWPAN). As shown in Table 
1, the rest of technologies provide their own fragmentation, with the exception of 
MS/TP, which supports an MTU of 2032 bytes and thus allows transmitting 
unfragmented 1280-byte IPv6 packets. IEEE 802.11ah also supports long frames. 
Typical header/footer sizes and encapsulation of a large IPv6 datagram over each 
6Lo/6LoWPAN technology are shown in Figure 1.b-1.c.  
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3.7. Neighbor discovery 

The IPv6 Neighbor Discovery (ND) protocol offers router and subnet prefix discovery, 
address resolution and duplicate address detection. ND was designed for transitive, high 
energy and bandwidth networking scenarios, where nodes’ network interfaces are 
always on, and where the ND aggressive use of multicast is a good fit. While ND is 
useful to minimize human operational tasks (a good property for IoT environments), it 
is not well suited to constrained-node networks, which are often duty-cycled, offer non-
transitive links, and map IPv6 multicast to network-wide broadcast. The optimized ND 
for 6LoWPAN (6LoWPAN ND), supports sleeping hosts by providing host-initiated 
interaction with routers, and minimizes the use of multicast. In addition, 6LoWPAN ND 
provides optional context dissemination for 6LoWPAN HC. 
 
In 6Lo, the adaptation layer for each specific technology selects the most appropriate 
components of 6LoWPAN (or even classic) ND in each case, with the exception of 
IEEE 1901.2, which solely appears to rely on DHCPv6 for address autoconfiguration. 
Among the rest of 6Lo technologies, only ITU-T G.9959 supports mesh networks, and 
thus its 6Lo adaptation layer requires the use of 6LoWPAN ND multihop functionality. 
The 6Lo adaptation layer for MS/TP follows a different scheme, as for prefix discovery 
and address resolution it uses the classic IPv6 ND. The continuous power source of the 
devices, and the multidrop bus topology of MS/TP are a natural fit for this approach.  
 
3.8. Multicast 

An important consideration is how IPv6 multicast traffic is transported over a lower 
layer technology. Most 6Lo/6LoWPAN technologies support broadcast at the link layer, 
but not multicast. This is intrinsically inefficient since then the transmission of a 
multicast IPv6 packet may eventually lead to flooding a whole subnet. Among the 
considered technologies, only IEEE 802.11ah supports multicast in addition to 
broadcast at the link layer. The problem with IPv6 multicast aggravates over Bluetooth 
LE and DECT ULE. Bluetooth LE data channels only support unicast, while in DECT 
ULE the available MAC layer broadcast service is considered inadequate for IP 
multicast. Therefore, in these technologies, an IPv6 multicast packet may have to be 
unicast several times by the same node, e.g. when the 6LBR sends an IPv6 multicast 
packet to a subset of its neighbors. To mitigate the impact of this behavior on energy 
consumption and bandwidth, the 6LBR must only forward IPv6 multicast packets to 
nodes that have registered for the intended multicast group. 
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4. Challenges in 6Lo 

This section discusses two main challenge areas for 6Lo: applicability and security. 
 
4.1. Applicability 

6LoWPAN was originally designed to enable IPv6 over IEEE 802.15.4 networks. 
Subsequently, 6Lo has adapted 6LoWPAN for other IoT technologies. Such adaptation 
can be successfully done when an intended IoT technology is relatively similar to, or 
less constrained than, IEEE 802.15.4. This is a very recent finding, as only the emerging 
category of IoT technologies called Low-Power Wide Area Networks (LPWAN) has 
evidenced the existence of 6Lo applicability limits. 
 
LPWAN technologies offer long-range links (and thus low infrastructure cost) at the 
expense of extreme constraints that challenge IPv6 support. These comprise: i) MTU 
and bit rate up to several orders of magnitude below those in 6LoWPAN/6Lo 
technologies, ii) lack of layer-two fragmentation, iii) severe message rate limitations 
due to regulatory constraints, and iv) uplink/downlink asymmetry. Overall, transmission 
resources are drastically limited in relevant LPWAN technologies (Figure 5). For 
example, a flagship LPWAN technology called Sigfox typically offers uplink and 
downlink sustained capacities of 155 mbit/s (i.e., millibit per second!) and 3.7 mbit/s, 
respectively. Other LPWAN technologies with similar constraints in some of their 
PHY/MAC options comprise LoRaWAN and IEEE 802.15.4k. 
 
In order to enable IPv6 over such extraordinarily challenging scenarios, the level of 
adaptation provided by 6Lo is insufficient. Over LPWAN, 6LoWPAN/6Lo mechanisms 
for header compression, ND and fragmentation would all incur a too high overhead, 
even rendering deployments impractical in some cases. Therefore, a new IETF working 
group has been recently created to enable IPv6 over LPWAN technologies. While initial 
solution proposals are currently at an early development stage, there exists already a 
consensus to go significantly beyond 6Lo-style IPv6 adaptation for LPWAN.  
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4.2.2. Fragmentation/Reassembly 

A malicious node may periodically send a first fragment to reserve receiver reassembly 
buffer space for a relatively long time, causing other incoming fragments (from 
legitimate nodes) to be discarded by the receiver. An attacker may also transmit spoofed 
fragment duplicates, which lead to incorrect IPv6 packet reassembly. Countermeasures 
have been proposed [7], but have not been standardized. 
 
4.2.3. Routing 

A routing protocol, which is needed by some 6Lo technologies, may suffer brute-force 
attacks to disclosure and integrity of routing information. AES-CCM with a 128-bit key 
is considered a secure block cipher against such attacks. Further security measures 
comprise routing message rate limitation to avoid flooding DoS attacks, and path 
diversity to mitigate traffic analysis or traffic-discarding nodes. The main related open 
issue is key provisioning. 
 
5. Conclusion 

6Lo leverages 6LoWPAN to significantly increase the spectrum of IPv6-supported 
technologies. In comparison with 6LoWPAN, 6Lo adaptation layers tend to be more 
lightweight. Fragmentation at the 6Lo layer so far is not needed, while routing is 
required only for two 6Lo technologies. Another common feature of 6Lo adaptation 
layers is a customized use of 6LoWPAN neighbor discovery and header compression. 
The latter is crucial to reduce IPv6 datagram encapsulation overhead.  
 
6Lo is only applicable for technologies relatively similar to IEEE 802.15.4 in terms of 
transmission capacity and MTU constraints. On the other hand, 6Lo introduces security 
challenges. Nevertheless, with a wide set of adaptation layers for a new generation of 
diverse technologies, 6Lo provides a fundamental cornerstone towards the 100-billion 
node Internet (of Things). 
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Figure 1.a) An example of adaptation layer functionality; b) IPv6 datagram 
encapsulation over 6Lo technologies, fragmentation needed; c) IPv6 datagram 

encapsulation over 6Lo technologies, fragmentation not needed.  
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  6LoWPAN 6Lo 
  IEEE 

802.15.4 
Bluetooth LE ITU-T 

G.9959 
DECT ULE MS/TP NFC IEEE 

1901.2 
IEEE 

802.11ah 
 
 
 
 
 
 
 
 
 
 

Technology 

Medium Wireless Wireless Wireless Wireless Wired Wireless Wired Wireless 
Frequency band (MHz) 868/915/2400 2400 868/915 1900 Base-band 13.56 < 0.5  < 1000 

Range (m) 10-100 10-100 100 < 300 1000 < 0.2 > 1000 < 1000 
Bit rate (kbit/s) 20/40/250 1000 9.6/40/100 1152 115.2 106/212/424 ≤ 500 150-7800 

Max. single-frame L2 
payload (bytes) 

105 23 158 
 

38 
 

2032 125 
 

215 
(worst case) 

7951 
 

ACKs and retries Optional Yes Optional Yes No ACK/NACK ACK/NACK 
(optional) 

Yes 

MAC mechanism CSMA/CA, 
TDMA 

TDMA CSMA/CA TDMA Token 
passing 

TDMA link 
initialization 

CSMA/CA CSMA/CA 

Address size (bits) 16/64 48 40 20/40/48 8 6 16/64 48 
L2 fragmentation No Yes Yes Yes No Yes Yes Yes 
Network topology Star and mesh Star  

 
Mesh Star Multi-drop 

bus 
Point-to-

point 
Star and 

mesh 
Star 

Protocol stack PHY/Link PHY to App. PHY/Link PHY to App. PHY/Link PHY to App.  PHY/Link PHY/Link 
Application Generic 

purpose 
Smartphone-

centric 
Home 

automation 
Home  

automation 
Building 

automation 
Contactless 
exchange 

Smart grid, 
home autom. 

Sensors,  
backhaul 

Standardization 
organization 

IEEE Bluetooth SIG ITU-T ETSI ANSI/ 
ASHRAE 

NFC Forum IEEE IEEE 

 
 
 
 

Adaptation  
Layer 

Routing required Yes No Yes No No No Yes No 
Mesh under support Yes No Yes No No No No  No 

Fragmentation Yes No No No No No No No 
6LoWPAN 

Header  
Compression 

Yes Yes  
(star topol.) 

Yes 
 (address 

adaptation) 

Yes 
(star topology) 

Yes 
 (address 

adaptation)  

Yes  
(address 

adaptation)  

Yes Yes 
(address 

adaptation) 
6LoWPAN 

Neighbor Discovery 
Yes Yes  

(no multihop) 
Yes 

 
Yes 

 (no multihop) 
Partially 

 
With 

DHCPv6 
DHCPv6 

only 
Yes  

(no multihop) 
Multicast L2 broadcast L2 unicast  L2 broadcast L2 unicast  L2 broadcast L2 broadcast No L2 multicast 

Privacy addresses Not specified Random IID DHCPv6 Random IID Random IID Random IID DCHPv6  Random IID  
L2 security used Yes Yes Yes  Yes No No Yes Yes 

 
Table 1. Main features of IPv6-supported IoT technologies and their adaptation layers. L2 stands for Layer 2. 
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