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Gesture detection of passive RFID tags
to enable people-centric IoT applications

Raúl Parada, Università degli Studi di Padova, Joan Melià-Seguí, Universitat Oberta de Catalunya,

Abstract—Our society may enhance and create new services in
a people-centric IoT context through the exchange of information
with sensor devices. Unfortunately, attackers might compromise
the communication and current intelligent objects with sensor
capabilities, are expensive (i.e. smartphone). Within the tech-
nologies involved in the IoT paradigm, passive Radio Frequency
Identification (RFID) allows the inventorying of simple objects
towards a wireless communication with a low-cost investment. We
present a solution to increase the security in quotidian tasks (e.g.
accessing a restricted area with a contact-less card) by identifying
people-object gestures with a passive RFID tag. We demonstrated
the feasibility of our proposal by detecting the 95.3% of people-
object gestures. As a future task, we aim to implement it in a
real scenario.

Index Terms—RFID, Security, Movement recognition

I. INTRODUCTION

OUR society has been living connected from centuries. At
first, among them as individuals (i.e. face to face conver-

sations) and later through computers like on the Internet. Cur-
rently, the object entity has become part of the connection with
people, the well-known Internet of Things (IoT) paradigm.
The IoT enhances and increases the interaction with entities
obtaining rich information for future services where humans
become the center of the interactions. From smartphones to
wearables, people carry sensors that can enable people-centric
services and applications within the IoT context.

Within the different commercially available IoT technolo-
gies, Radio Frequency Identification (RFID) enables identifica-
tion and personalized services by means of a simple electronic
label and a reader system. RFID automatizes services such as
accessing to restricted areas or identifying an individual in a
purchase transaction, by means of simply interacting with the
RFID system. The benefits of such systems may, nonetheless,
come together with drawbacks. These interactions may be
compromised due to a number of factors like unreliable com-
munication, the IoT inherent complexity, or security threats
like impersonation or spoofing. For instance, if an attacker
obtains the IoT-enabled object identity (i.e. an RFID card
identification), the security will be compromised since the
attacker will be able to impersonate the legitimate user.

The fact that IoT provides not only connectivity or identi-
fication, but a large range of features, may provide a solution
to the above problem. For instance, the RFID technology not
only provides the unique identification of a given object. It also
generates other relevant information such as timestamps, local-
ization and low-level radio frequency indicators. For instance,
Received Signal Strength Indicator (RSSI), or phase (PHASE),
may reveal further information such as distance, movement, or

interaction with people. Moreover, RFID-tags can also include
sensors like temperature, pressure or accelerometers. Thus,
besides the identification code, other RFID-related features can
be used to personalize IoT interactions.

In this paper, we present a method for gesture detection
using passive RFID tags to enable people-centric IoT applica-
tions and services. The goal is to enhance security by means of
classifying specific gestures using a passive RFID tag with a
battery-less accelerometer sensor embedded to it. Specifically,
we achieve the following contributions:
• A method to characterize the people-object gestures based

on acceleration time-series information
• The implementation of an unsupervised machine learning

techniques to classify people-object gestures
• An evaluation of the classification of people-object ges-

tures with off-the-shelf devices and equipment
The remainder of this paper is organized as follows: Section

II details the problem motivation and the related state of the
art. The RFID-based people-object gesture detection principle
is described in Section III, and Section IV presents the
methodology and experimentation procedure to collect and
classify the people-object gestures. We empirically evaluate
the people-object gestures in Section V. Finally, the paper
is concluded in Section VI, also pointing out future work
directions.

II. RELATED WORK

Daniels et al. [1] recognize hands movements by using
two cameras and a middleware to extract the information
of the frames. Although they obtained a high performance
solution, this approach is expensive both economically and
computationally. Ali et al. [2] extract biometric data thanks to
a video surveillance system, and by using the Distance Based
Nearest Neighbor Algorithm a given hand movement can be
verified. However, it also requires expensive video surveillance
systems. By using sensor equipment, Mare et al. [3] present
a solution correctly identifying 85% of the users. They use a
bracelet with an accelerometer and gyroscope to compare the
motion information with the groundtruth. In case of security
and safety for people with motion diseases, Gonçalves et al. [4]
propose two approaches to detect undesired body motions. The
first approach uses the Microsoft sensor Kinect and gesture
recognition algorithms, and the second approach uses a trade-
mark device of Texas Instruments with built in accelerometers
and statistical methods to recognize stereotyped movements.
A movement recognition device attached to the arm with an
accelerometer and EMG sensors is implemented by Shin et.
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al [5]. Flores et al. [6] introduce a low-cost wireless glove
controller detecting finger gestures, developed using makeshift
flex sensors and a digital accelerometer. A signaling approach
is presented in Björklund et al. work [7]. They can classify
human targets by comparing micro-Doppler signatures using
a 77 GHz radar.

Different authors tried to address the challenge of classify-
ing human gestures using RFID technology. A glove equipped
with accelerometer sensors and an RFID reader is presented
in Hong et al. work [8]. Although these solutions show good
results in detecting hand movements, they require sensors fed
with a battery, besides being obstructive. Wartha and Londhe
[9] introduce the topic of people verification through a basic
movements with an RFID labeled-object. Parada et al. [10]
presents a method for classifying an object between being
static and interacted, in context-aware smart shelf scenario, by
uniquely using RFID data. Asadzadeh et al. [11] proposes the
recognition of gestures using three RFID antennas distributed
within a limited matrix and classifying the movements using
a hypothesis tree method. Although these approaches of
gesture recognition by using RFID returned promising
results, they detect simple gestures or require of multiple
antennas. We propose the recognition of spatial gestures
using a single antenna and a battery-less passive RFID tag
with accelerometer sensor capabilities.

III. RFID-BASED PEOPLE-OBJECT MOVEMENT
DETECTION

Within the different RFID technologies and standards, the
UHF EPC Gen2 [12] RFID is a de facto standard in retail. In
EPC Gen2, RFID antennas interrogate in a time-multiplexed
manner to RFID passive tags, and these RFID passive tags
within the read range backscatter the signal back to the RFID
reader. The RFID reader not only can inventory those RFID
tags within its read range, but high and low-level indicators
are included in the backscattered signal. High-level indicators
such as the identification code, timestamp, antenna port and
reader identifier can also be obtained.

The high-level indicators uniquely identify an object within
the object population, besides providing an implicit timestamp
for each sample. The low-level indicators provide an approx-
imated measure of the radio frequency signal in the tags as
measured by the RFID antenna. The RSSI is modeled by the
two-way radar equation for a monostatic transmitter, while the
PHASE is approximated by the combination of the round trip
distance between the reader’s antenna and the tag, plus the
phase rotation introduced in the transmission, reception and at
the tag itself.

• High-level indicators
– Identification code (96-bit typically)
– Timestamp
– Antenna port
– Reader identifier

• Low-level indicators
– Received signal strength indicator (RSSI)
– Radio frequency phase (PHASE)
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Fig. 1: RFID low-level indicators like RSSI and PHASE may
describe object movement, which can be inferred as interaction
with persons.

The intuition behind a people-object movement is given by
a variation on the low-level RFID indicators. Detecting weaker
RSSI and unstable PHASE samples imply a longer coarse
grained distance between tag and antenna. Opposite, a tag
returning stronger RSSI and stable PHASE samples imply a
static tag [10]. Figure 1 shows the variation of RFID features in
a dynamic movement (i.e. interaction) represented with black
dots. Opposite, if the object remains static the values remain
constant as indicated with white circles.

Nevertheless, RFID low-level signals only allow to detect
coarse movements like people-object interactions, but not
fine grained movements like user’s gestures. Thus, detecting
specific gestures require further context-aware information. A
solution improving movement detection accuracy, within the
same passive RFID technology is integrating sensors in the
RFID labels. For instance, accelerometers have been demon-
strated as reliable sensors to detect fine-grained movements
[6], [8]. An accelerometer detects movement through the spa-
tial coordinates x, y and z with respect to the gravity (measured
in m/s2 or g), generating a time-series of movement-related
data.

Next, we detail the proposed methodology to detect specific
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users’ gestures by using passive RFID tags with an integrated
accelerometer sensor.

IV. GESTURE-DETECTION METHODOLOGY AND
EXPERIMENTATION

This paper aims to classify people-object gestures with a
battery-less accelerometer sensor embedded in a passive RFID
tag enabling people-centric services and applications while
improving security in the IoT context. For instance, authenti-
cation in a restricted area access, or authorizing payments in
a commercial transaction. The goal is to combine the implicit
RFID authentication with a specific gesture, providing two
levels of authentication and reducing security threats from
third entities like spoofing.

Figure 2 summarizes the methodology used to enable ges-
ture classification. Specific gestures are performed using a
passive RFID tag with accelerometer sensor capabilities, and
a state-of-the-art smartphone with an integrated accelerome-
ter for comparison purposes. The gestures data is sampled
by commercial RFID equipment (RFID antenna and reader,
connected to a computer) for the RFID label, and using a
specific application for the smartphone. The data is stored
as a collection of time-series information. To enable further
analysis, a preprocessing stage is applied dividing the time
series into individual gestures, also filtering static periods
before and after the actual gesture. Feature extraction is
enabled by using the Dynamic Time Warping (DTW) algorithm
[13], which measures the similarity between two time-series
resulting in a numeric distance. The lower the numeric distance
the higher the similarity between the two time-series is. Thus,
DTW is used to extract the distance between each performed
gesture by either the passive RFID tag and the smartphone.
Finally, an unsupervised machine learning algorithm is used
to classify the time-series blocks and predict the input gesture.
Because its simple implementation and robustness with respect
to the spatial distribution of the samples, k-nearest neighbor
(kNN) [14] is used in our experiments. In the kNN algorithm,
the parameter k indicates the number of nearest neighbors a
test sample is compared to, classifying based on the majority
of votes. For instance, if a test sample is compared with the
4 nearest neighbors and three of them are class A, this test
sample will be considered also as A class.

The procedure of people-object gesture classification is
based on performing a given gesture action with both the
passive RFID tag and the smartphone. In the experimentation
stage, we used commercial RFID equipment including a pas-
sive tags with an integrated accelerometer from the company
Farsens [15], and a commercial smartphone equipped with
Arduino. We defined three different gestures which we denote
as: R, W and C. Figure 3 shows three images corresponding
with the procedure of people-object gestures. The image 3a
represents the initial position before complying a given move-
ment. Images 3b and 3c correspond with the movements W and
R, respectively. The intuition behind the people-object gestures
is given by the variation of the three time-series accelerometer
data associated with each of the spatial coordinates x, y and z.
Figure 4 shows the spatial coordinates x, y and z with respect

to the time, while the passive RFID tag with accelerometer
sensor capabilities is performing a C gesture on the space.
We can observe how the spatial coordinates varies during the
dynamic action.

Specifically, a total of 30 samples were performed, half with
the passive RFID tag and the other half with the smartphone.
With each device, we executed the three predetermined ges-
tures R, W and C. Since each gesture is composed of three
time-series (one for each spatial coordinate), a total of 90 time-
series were generated in the experimentation stage. Therefore,
a matrix of 2700 distances is generated by comparing each
time-sequence representation to the rest.

V. EVALUATION AND RESULTS

IoT-based gesture detection in the context of people-centric
applications and services must offer a proper performance in
order to improve authentication and security. Hence, gestures
classification performed on either passive tags and smart-
phones must be accurate and reliable. Next, we present the
evaluation of the experimental work introduced in the previous
section. As described in the Section IV a total of 2700 time-
series are generated from the 30 executed tests. 10-fold cross
validation is used to evaluate the kNN clustering based on
DTW features. kNN is in turn evaluated using 10, 8, and 5
samples for parameter k.

The table I tabulates the ratio of the people-object gesture’s
classification from both the passive RFID tag and the mobile
device. The total number of 30 samples of movements, are
divided in each of the three movements C, R and W and for
each device. In addition, the ratio is calculated based on the
number of neighbors (k). For each value of k the classified
gesture with highest ratio, together with its ratio are shown.

From the results, it is possible to see how the movement C
is predicted correctly from both passive RFID tag and mobile
device for all k values. Similar occurs with the movement W
where only predicts the wrong movement with the passive
RFID tag setting the k value to 8. Opposite, the R movement
seems more difficult to predict with the passive RFID tag
where only with the k values 5 and 2 the right prediction is
obtained. As a general comment, the mobile device provides
the highest rate of predictness right. And, the k values 5 and
2 returns higher ratio of rightness being that last the best.
Since the mobile device returns almost a 100% of rightness
prediction on recognizing the performed gestures, we aim to
evaluate deeper the battery-less passive RFID tag.

Besides the ratio of prediction, we calculated the metrics
measurements: Precision, Recall, F-score and Accuracy in
based on the statistical classification using the well-known
confusion matrix. Figure 5 shows the percentage (y-axis) for
each measurement metric with different k values (x-axis).
The input of samples correspond with the one extracted from
the passive RFID tag uniquely.

As we can observe in the Figure 5 with k values of 10 and 8,
we obtain the same metrics results. However, when this value
decreases the measurement metrics increases. With a k value
of 2, the accuracy of the system reaches the 93%.
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Fig. 2: People-Object movement classification scheme.
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Fig. 4: Each gesture generates three time-series, one for each
spatial coordinate. Here, the C gesture is shown.

Indeed, the results confirm our hypothesis demonstrating
the feasibility of our solution to detect people-object gestures
using a mobile device and a passive RFID tag in a People-
Centric IoT paradigm to increase security in quotidian tasks.

VI. CONCLUSION

In a People-Centric IoT paradigm, objects enhance the
communication in a Smart City context by improving
or creating new services. Nevertheless, this exchange of
information may be corrupted by third parties, compromising

TABLE I: Ratio of people-object gestures’ predictions

Sample [#] Movement Device Prediction / Ratio
k=10 k=8 k=5 k=2

1

C

Passive RFID
tag

C / 0.7 C / 0.75 C / 0.8 C / 1
2 C / 0.6 C / 0.75 C / 0.8 C / 1
3 C / 0.5 C / 0.5 C / 0.8 C / 1
4 C / 0.6 C / 0.75 C / 0.8 C / 1
5 C / 0.8 C / 0.75 C / 0.8 C / 1
6

Mobile

C / 0.6 C / 0.625 C / 1 C / 1
7 C / 0.8 C / 0.875 C / 0.8 C / 1
8 C / 0.8 C / 0.875 C / 1 C / 1
9 C / 0.9 C / 0.875 C / 1 C / 1
10 C / 0.8 C / 0.750 C / 1 C / 1
11

R

Passive RFID
tag

C / 0.7 C / 0.625 R / 0.6 R / 1
12 C / 0.7 C / 0.625 R / 0.6 R / 1
13 C / 0.7 C / 0.625 R / 0.6 R / 1
14 C / 0.6 C / 0.5 R / 0.8 R / 1
15 C / 0.6 C / 0.625 R / 0.6 R / 1
16

Mobile

R / 0.5 R / 0.625 R / 0.8 R / 1
17 C / 0.5 R / 0.625 R / 0.8 R / 1
18 R / 0.5 R / 0.625 R / 0.8 R / 1
19 R / 0.5 R / 0.625 R / 0.8 R / 1
20 R / 0.5 R / 0.625 R / 0.8 R / 1
21

W

Passive RFID
tag

W / 0.5 C / 0.5 W / 0.8 W / 1
22 W / 0.7 W / 0.75 W / 0.8 W / 1
23 W / 0.7 W / 0.625 W / 0.8 W / 1
24 W / 0.8 W / 0.750 W / 0.8 W / 1
25 W /0.9 W / 1 W / 0.8 W / 1
26

Mobile

W / 0.7 W / 0.875 W / 1 W / 1
27 W / 0.7 W / 0.875 W / 1 W / 1
28 W / 0.7 W / 0.875 W / 1 W / 1
29 W / 0.7 W / 0.875 W / 1 W / 1
30 W / 0.7 W / 0.875 W / 1 W / 1

the security between entities. The RFID EPC Gen2 allows a
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Fig. 5: The highest metrics is achieved with k=2.

non-line-of-sight communication with low-cost passive RFID
tags.

The results demonstrated the suitability of our proposal
by predicting the executed People-Object movement using
the smartphone and a passive RFID tag. The best value of
nearest neighbors is 2 (k) from both the mobile device and
the battery-less passive RFID tag. Thus, we obtain a double
security by only performing people-object gestures from
those elements.We envision a society in a People-Centric IoT
paradigm where the people are safer on performing quotidian
actions such as entering restricted areas or confirming bank
payments with the smartphone and battery-less devices
efficiently.

We plan to implement our solution in a real scenario. Our
future work includes, but is not limited to:

• Extract the RF information from the passive RFID tags
to extrapolate the experiments

• Perform more experiments with different movements
• Study other unsupervised machine learning techniques to

increase even more our output
• Evaluate our proposal in other People-Centric IoT context

situations like motor neuron disease.
• Implement a real time application to be used in a People-

Centric IoT context
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