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Green Heterogeneous Cloud Radio Access

Networks: Potential Techniques, Performance

Tradeoffs, and Challenges
Yuzhou Li, Tao Jiang, Kai Luo, and Shiwen Mao

Abstract—As a flexible and scalable architecture, heteroge-
neous cloud radio access networks (H-CRANs) inject strong vigor
into the green evolution of current wireless networks. But the
brutal truth is that energy efficiency (EE) improves at the cost
of other indexes such as spectral efficiency (SE), fairness, and
delay. It is thus important to investigate performance tradeoffs for
striking flexible balances between energy-efficient transmission
and excellent quality-of-service (QoS) guarantees under this new
architecture. In this article, we first propose some potential
techniques to energy-efficiently operate H-CRANs by exploiting
their features. We then elaborate the initial ideas of modeling
three fundamental tradeoffs, namely EE-SE, EE-fairness, and
EE-delay tradeoffs, when applying these green techniques, and
present open issues and challenges for future investigations. These
related results are expected to shed light on green operation of
H-CRANs from adaptive resource allocation, intelligent network
control, and scalable network planning.

I. INTRODUCTION

A. Background and Motivation

The dramatic increase in the number of smart phones and

tablets with ubiquitous broadband connectivity has triggered

an explosive growth in mobile data traffic [1]. Cisco forecasts

that, the amount of global mobile data traffic will increase

7-fold from 2016 to 2021 and its majority is generated by

energy-hungry applications such as mobile video [1]. This

is also referred to as the well-known 1000× data challenge

in cellular networks. Meanwhile, the number of devices con-

nected to the global mobile communication networks will

reach 100 billion in the future and that of mobile terminals

will surpass 10 billion by 2020 [2].

Although unprecedented opportunities for the development

of wireless networks brought by the massive traffic amount

and connected devices, a concomitant crux is that this growth

skyrockets the energy consumption (EC) and greenhouse

gas emissions in the meantime. From statistical data, the

information and communication technology (ICT) industry is

responsible for 2% of world-wide CO2 emissions and 2%-10%
of global EC, of which more than 60% is directly attributed to

radio access networks (RANs) [3]. For this regard, 5G wireless

communication networks are anticipated to provide spectral

and energy efficiency growth by a factor of at least 10 and 10

times longer battery life of connected devices [2].
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B. Concept of H-CRANs

To meet the 1000× data challenge, heterogeneous networks

(HetNets), composed of a diverse set of small cells (e.g., mi-

crocells, picocells, and femtocells) overlaying the conventional

macrocells, have been introduced as one of the most promising

solutions [2]. However, the ubiquitous deployment of HetNets

is accompanied by the following shackles:

• Severe interference. The spectrum re-use among cells in-

curs severe mutual interference, which may significantly

reduce the expected system spectral efficiency (SE) and

also decrease the network energy efficiency (EE).

• Unsatisfactory EE. The densely-deployed small cells

lead to an escalated EC and thus a reduced EE, and also

increases capital expenditures (CAPEX) and operational

expenditures (OPEX).

• No computing-enhanced coordination centers. There

are no centralized units with strong computing abilities

to globally coordinate multi-tier interference and execute

cross-RAN optimization, which dramatically limits coop-

erative gains among cells.

• Inflexibility and unscalability. Fragmented base stations

(BSs) result in inflexible and unscalable network control

and operations, thus leading to redundant network plan-

ning and inconvenient network upgrade.

To overcome these challenges faced by HetNets, cloud

RANs (C-RANs), new centralized cellular architectures armed

with powerful cloud computing and virtualization techniques,

have been parallelly put forward to coordinate interference and

manage resources across cells and RANs [4]. In C-RANs,

a large number of low-cost low-pwer remote radio heads

(RRHs), connecting to the baseband unit (BBU) pool through

the fronthaul links, are randomly deployed to enhance the

wireless capacity in the hot spots. Consequently, the com-

bination of HetNets and C-RANs, known as heterogeneous

C-RANs (H-CRANs), becomes a potential solution to support

both spectral- and energy-efficient transmission.

C. Green H-CRANs

As mentioned above, one of the main missions for H-

CRANs from their birth is to construct eco-friendly and cost-

efficient wireless communication systems. Benefiting from H-

CRANs’ global coordination ability, many promising tech-

niques, such as joint processing/allocation, traffic load of-

floading, energy balance, self-organization, and adaptive net-

work deployment, can be applied in these scenarios for
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energy-efficient transmissions. Unfortunately, the network EE

improves usually at the cost of the performance of other

technique metrics, such as SE, fairness, and delay, all of

which however are equally important as EE to guarantee

users’ quality-of-service (QoS). That is, there are EE-SE,

EE-fairness, and EE-delay tradeoffs. It is thus interesting

to investigate these performance tradeoffs in H-CRANs for

establishing rules to flexibly balance the network EE and

users’ QoS demands when greening H-CRANs.

Compared with existing works (e.g. [5]) on the system

architecture or radio resource management (RRM) mainly

in terms of EE and SE, this article focuses on the green

evolution of H-CRANs, and particularly investigates it from

the perspective of EE-SE, EE-fairness, and EE-delay tradeoffs

instead of the indexes themselves. To reach our targets, we

organize the remainder of this article as follows. In Section II,

we first simply review the architecture of H-CRANs and then

exploit their features to propose three potential techniques for

green H-CRANs. Section III introduces the possible methods

to depict these tradeoffs and also provides corresponding

challenges and open problems when applying these proposed

techniques. We conclude the article in Section IV.

II. ARCHITECTURE OF H-CRANS AND POTENTIAL

GREEN TECHNIQUES

In C-RANs, the idea of dividing conventional cellular BSs

into two parts of BBUs and RRHs is introduced. BBUs

are then integrated into centralized BBU pools, where cloud

computing and virtualization techniques are implemented to

enhance computational ability and to virtualize network func-

tion. BBUs are responsible for resource control and signal pro-

cessing, while RRHs for information radiation and reception,

with their interconnection via dedicated transport networks.

Thus, the cloud-computing-enhanced centralized BBU pools

facilitate cross-cell and cross-RAN information sharing, which

paves the path for global resource optimization adapting

to network conditions (e.g., channel conditions, interference

strength, traffic loads, and so on). H-CRANs absorb this

architecture in C-RANs and maintain macro BSs (MBSs)

and small-cell BSs (SBSs) in HetNets to support both global

control and seamless communications.

A. Architecture of H-CRANs

As shown in Fig. 1, H-CRANs are composed of three

functional modules.

1) Real-time virtualization and cloud-enhanced BBU

pool. Equipped with powerful virtualization techniques

and strong real-time cloud computing ability, BBU pools

integrate independent BBUs scattered in cells.

2) High-reliability transport networks. RRHs are con-

nected to BBUs in the BBU pool via high-bandwidth

low-latency fronthaul links such as optical transport

networks. The data and control interfaces between the

BBU pool and MBSs are S1 and X2, respectively [6].

3) MBSs, SBSs, and RRHs. In H-CRANs, multiple access

points (APs), e.g., MBSs, SBSs, and RRHs, coexist.

BBU1 BBU2 BBU3 BBU4 BBU5

Transport

networks

...

...

...

...

BBU pool

MBSs and 

RRHs

Fig. 1. The architecture of H-CRANs.

MBSs are deployed mainly for network control and mo-

bility performance improvement, e.g., decreasing han-

dover times to avoid Ping-Pong effects for high-mobility

users. SBSs and RRHs are geographically distributed

within cells close to users to increase capacity and

decrease transmit power in the meantime.

In H-CRANs, the function separation between BBUs and

RRHs, the decoupling between control and data planes, and the

cloud-computing-enhanced centralized integration of BBUs

facilitate efficient management of densely-deployed mobile

networks. For example, the operators only need to install

new RRHs and connect them to the BBU pool to expand

network coverage and improve network capacity. Moreover,

flexible software solutions can be easily implemented under

this architecture. For instance, the operators can upgrade

RANs and support multi-standard operations only through

software update by deploying software defined radio (SDR).

B. Potential Techniques for Green H-CRANs

The four revolutionary changes, i.e., function separation,

control-data decoupling, centralized architecture, and cloud-

computing-enhanced processing, make H-CRANs significantly

different from existing 2G, 3G, and 4G wireless networks.

By exploiting these features, it is possible to construct H-

CRANs flexible in network management, adaptive in network

control, and scalable in network planning. As a result, energy-

efficient operation of H-CRANs without a significant loss in

other indexes such as SE, fairness, and delay can be achieved.

1) Joint Resource Optimization across RRHs and RANs

In H-CRANs, each BBU first collects its individual network

conditions and then shares this information within the BBU

pool. As a result, this distributed-collection centralized-control

architecture, further enhanced by virtualization techniques

and cloud computing, enables efficient transmission/reception

cooperation across RRHs and convenient global control across

RANs. Consequently, the existing cooperative techniques, such

as coordinated multi-point (CoMP) transmission, enhanced

inter-cell interference coordination (eICIC), and interference

alignment (IA), can be readily implemented in H-CRANs. All

these techniques are self-contained in theory but have rarely

been applied to conventional cellular networks because of dif-

ficulties in sharing and handling global network information.
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N = 6, Power
N = 6, RRH + power
N = 8, Power
N = 8, RRH + power
N = 10, Power
N = 10, RRH + power

84%

Fig. 2. An example: EE variation with the circuit power of each RRH, denoted
by P c

n, in downlink H-CRANs, where a MBS, N RRHs, and 16 users are
included. In this example, we maximize the network EE by optimizing RRH
operation and power allocation subject to constraints of users’ minimum rate
requirements of Rreq = 2 bits/Hz.

As introduced above, multi-RANs and multi-APs with dif-

ferent coverage and functions are deployed in H-CRANs. As a

result, unlike traditional single-mode terminals communicating

only through a RAN’s AP, multi-mode terminals could send

and receive data concurrently through multiple of them. This

indicates H-CRANs with a new characteristic of network

diversity, which can be exploited to design user association

strategies. By this, traffic load distributions among RANs and

APs can be well balanced, which in turn affects the working

states of RANs and resource optimization, and thus affects

network interference and EE.

Moreover, under this new centralized architecture, the net-

work EE can be further improved by incorporating more

resource allocation dimensions (e.g., power allocation, sub-

carrier assignment, user association, and RRH operation) into

the formulations. Fig. 2 shows that joint optimization of

RRH operation and power allocation improves EE by up

to 84% compared with the power-allocation-only algorithm

in downlink H-CRANs. Thus, through the aforementioned

joint resource optimization and network-diversity-aware user

association, significant improvement in EE and reduction in

EC can be achieved.

2) Large-scale MBS and SBS Deployment

Compared to the transmit power, the overall static power

consumption by MBSs and SBSs, composed of cooling and

circuit power, are usually much larger [7]. For example, a

typical UMTS base station consumes 800–1500W with RF

output power of 20–40W. As a result, under the constraints

of basic coverage requirements, the deployment of MBSs and

SBSs, characterized by the distance between two MBS sites

and the number of SBSs per site, affects the area power

consumption (APC) and the area SE (ASE) significantly in

H-CRANs. The general purpose of large-scale MBS and SBS

deployment is to macroscopically plan an appropriate number

of BSs to support users’ demands for energy saving by

avoiding the static power consumption.
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Fig. 3. An example: The APC and ASE versus the inter site distance subject
to a 95% coverage constraint. In the figure, we adopt the practical models for
the BS power consumption given by P tot = aptx + b, where aMBS = 22.6,
bMBS = 412.4 W, aSBS = 5.5, and bSBS = 32 W (note that SBSs refer to
micro BSs in the figure) [8].

Intuitively, the APC will sharply decrease if we reduce

the number of MBSs, i.e., increase the inter site distance.

Meanwhile, the ASE will also decrease, because the increased

inter site distance reduces the spectrum re-use. Similarly, the

number of SBSs deployed in each site will also affect the

APC and the ASE. As an example, Fig. 3 clearly shows the

significant impacts of the configuration of MBSs and SBSs

on the APC and ASE under practical parameter settings.

Therefore, we need careful network planning from a large-

scale perspective to flexibly balance these two metrics and to

conveniently upgrade the system.

3) Load-Aware RRH Operations

The so-called worst-case network planning philosophy has

been widely adopted to guarantee users’ QoS even during peak

traffic periods in conventional cellular networks. However,

mobile traffic loads usually vary in both spatial and temporal

domains, which is referred to as the tidal phenomenon. Specif-

ically, the fraction of time when the traffic is below 10% of

the peak during a day is about 30% on weekdays and 45%

on weekends [9]. As a result, a large number of RRHs are

extremely under-utilized in the cases of dense deployment in

H-CRANs during off-peak periods. But RRHs still consume

circuit power even with little or no activity. Consequently, a

significant waste of EC and a sharp decrease in EE will be

resulted if RRHs are underutilized but still activated. Thus,

apart from the aforementioned spatial deployment, energy

conservation can also be achieved by exploiting temporal

traffic variations. For the fixed deployment, we can adopt

load-aware network control in H-CRANs to perform on/off

operations of RRHs adapting to spatial and temporal traffic

amounts to improve EE.

As an example, we consider a downlink H-CRAN to show

the impacts of load-aware RRH on/off operations on energy

expenditure. Specifically, we jointly optimize RRH operation

and power allocation to maximize the network EE with
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λ = 3.5 bits/slot/Hz, ePower

λ = 3.5 bits/slot/Hz, suboptimal

λ = 3.5 bits/slot/Hz, optimal

λ = 2.5 bits/slot/Hz, ePower

λ = 2.5 bits/slot/Hz, suboptimal

λ = 2.5 bits/slot/Hz, optimal
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λ = 1.5 bits/slot/Hz, optimal

33.11%

6.97%

57.94%

λ = 1.5 bits/slot/Hz

λ = 2.5 bits/slot/Hz

λ = 3.5 bits/slot/Hz

Fig. 4. An example: Average power consumption with the circuit power of
each RRH, denoted by P c

n, under different traffic arrival rates λ in downlink
H-CRANs, where a MBS, 8 RRHs, and 12 users are included. In this example,
we jointly optimize RRH operation and power allocation to maximize the
network EE considering stochastic and time-varying traffic arrivals.

stochastic and time-varying traffic arrivals taken into account.

Two algorithms, denoted by the optimal and suboptimal, are

developed to solve the problem. Fig. 4 shows that the proposed

algorithms can dramatically reduce the energy consumption

compared to the algorithm without RRH operation (i.e., only

optimizing power allocation), denoted by ePower, especially

in light and middle traffic states (up to a 58% gain in light

traffic states when the traffic arrival rate λ = 1.5 bits/slot/Hz).

III. PERFORMANCE TRADEOFFS AND CHALLENGES FOR

GREEN H-CRANS

Leveraging the proposed potential green techniques in H-

CRANs, it is then of importance to explore the key theo-

ries that support ubiquitous energy-efficient transmission and

meanwhile provision satisfactory QoS for users. Among them,

performance tradeoffs deserve significant consideration [10].

Apart from the widely studied deployment efficiency-EE,

EE-SE, bandwidth-power, and delay-power tradeoffs [10],

there are two additional fundamental tradeoffs, EE-fairness

and EE-delay tradeoffs. This section elaborates the ideas of

modeling these two tradeoffs, analyzes challenges and open

problems, and provides some possible solutions. Since H-

CRANs originally are designed to enhance the network SE

and thus the wireless capacity as well, we thus also review

the key concepts and present challenges associated with the

EE-SE tradeoff under this new architecture.

A. EE-SE Tradeoff

Vast existing research falls into this direction due to the

following reasons. The traditional indexes EC and SE measure

how small the amount of energy is needed to satisfy users’

QoS and how efficiently a limited spectrum is utilized, respec-

tively. However, both of them fail to quantify how efficiently

the energy is consumed, i.e., EE. Moreover, the optimality of

EE and EC and that of EE and SE are not always achieved

simultaneously and may even conflict with each other [10]. As

a consequence, the existing results from the EC minimization

or the SE maximization usually can hardly provide insights

into EE-SE tradeoff problems.

The general idea of modeling the EE-SE tradeoff is that

the system maximizes the network EE [11] or a weighted

EE-SE tradeoff index [12] under the constraints of users’

QoS and resource allocation (e.g., power allocation and RRH

operation). As a common feature, these works usually assume

infinite backlog, i.e., there is always data for transmission

in the buffer. Under this view, formulations are presented

and algorithms are developed only based on the observation

time, where the network EE is defined as the ratio of the

instantaneous achievable sum rate Rtot to the corresponding

total power consumption Ptot (cf. Eq. (5) or (6a) in [11]).

Note that Ptot is usually modeled to include both transmit and

circuit energy consumption, which is affected by the power

amplifier inefficiency, transmit power, and circuit power. In the

article, we call these formulations short-term (i.e., snapshot-

based) models, since only short-term system performance is

considered. Accordingly, we denote the network EE of this

kind of definition by EEshort-term for simplicity.

Although there have been a large number of works to

address the EE-SE tradeoff based on the short-term models,

lots of problems remain open in complex H-CRANs. First,

jointly considering multi-dimensional resource optimization

and multi-available signal processing techniques, it is chal-

lenging to formulate EE-SE tradeoff problems with network

conditions and users’ requirements both taken into account in

H-CRANs. Furthermore, due to the nonconvexity of EEshort-term

(cf. Eq. (5) or (6a) in [11] or Eq. (26) in [12]), EE-SE tradeoff

problems are usually difficult to solve even if we only optimize

power allocation in spectrum-sharing H-CRANs. As a result,

these problems become much more complicated once we

extend from one-dimensional to multi-dimensional resource

optimization. Thus, how to develop joint resource allocation

algorithms that reach the theoretical limits of the network

EE and thus serve as benchmarks to evaluate performance of

other heuristic algorithms is another challenge. Moreover, it is

also necessary to develop cost-efficient and easy-to-implement

algorithms with acceptable performance levels to solve these

problems for practical applications.

B. EE-Fairness Tradeoff

The widely studied EE-optimal problems (NEPs) in H-

CRANs emphasize the network EE maximization without con-

sidering EE fairness, i.e., ignoring the EE of individual links.

By purely benefiting the links in good network conditions (e.g.,

excellent wireless channel, little interference, low traffic loads,

or all), the NEPs improve the network EE at the cost of the EE

of the links in poor conditions. As a result, the NEPs would

inevitably lead to severe unfairness among links in terms of

EE. However, as traditional concerns on individual links’ SE or

EC, it is also important to guarantee the EE of each link from

users’ perception. It is therefore of interesting to investigate

the EE-fairness tradeoff in H-CRANs, but to the best of our

knowledge, studies on this issue have so far been very scarce.

To intuitively show the EE-fairness tradeoff, we take the

max-min EE fairness in an uplink OFDMA-based cellular
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Fig. 5. Illustration of the EE-fairness tradeoff. In this example, we consider
an uplink OFDMA-based cellular network and formulate an optimization
problem that maximizes the EE of its worst-case link subject to subcarrier
assignment and power allocation constraints. In the figure, the number of
users K = 16, number of subcarriers N = 128, power amplifier inefficiency
factor ξk = 18, terminal’s circuit power PC

k
= 0.4 W, user’s rate requirement

R
req

k
= 15 bits/s/Hz, and maximum transmit power Pmax

k
= 0.2 W for all

k. Note that the EE of the best/worst link is obtained by saving the EE of
the link who has the highest/lowest EE in each sample and then taking an
average on 5000 of them.

network (it can be seen as a special case of single-cell H-

CRANs) as an example. Specifically, we maximize the EE

of the worst-case link subject to subcarrier assignment and

power allocation constraints to ensure the max-min EE fairness

among links, which is referred to as the max-min EE-optimal

problem (MEP). In Fig. 5, we compare the statistical perfor-

mance between the NEP and the MEP from three aspects: the

EE of the network, the best link, and the worst link. Observe

that, the EE of the best and worst links in the NEP differs

significantly, while the EE whether of the network, the best

link, or the worst link in the MEP is well-balanced. This is

because the NEP maximizes the network EE at the cost of the

EE fairness among links, but reversely, the MEP sacrifices the

network EE to guarantee the max-min EE fairness.

Fig. 5 exhibits the phenomenon of the EE-fairness tradeoff,

but we are still at a very primary stage of revealing and tuning

this tradeoff, limited by the following two challenges.

• Unified frameworks to quantify and formulate the EE-

fairness tradeoff are currently not available.

• General techniques or analytical methods to tackle the

EE-fairness tradeoff problems are still open.

It should be pointed out that the utility theory, originally

used to investigate the rate-fairness tradeoff [13], is a possible

method to demystify the quantitative EE-fairness tradeoff.

C. EE-Delay Tradeoff

As far as we know, the concept of the EE-delay tradeoff

was first proposed by H. V. Poor et al. in 2009 [14], where

the authors showed that the delay constraints would lead to

a loss in EE at equilibrium by a game-theoretical approach.

However, to date, how to quantify and control the EE-delay

tradeoff is still unresolved.

In our view, one possible reason that prevents the existing

works including [14] from obtaining a quantitative tradeoff

is the choice of adopting short-term models with the full

buffer assumption, where EEshort-term is used to characterize

the network EE. However, different from the full buffer

assumption, practical H-CRANs operate in the presence of

time-varying wireless channels and stochastic traffic arrivals,

both of which significantly affect the EE and delay and thus the

EE-delay tradeoff. Hence, short-term formulations in general

cannot reflect the delay due to their independence of time and

without considering traffic arrivals. As a result, it is unlikely

for such models to show the explicit EE-delay relationships.

We further illustrate the principles behind the EE-delay

tradeoff with two extreme cases. Regarding stochastic traf-

fic arrivals, in the case of aggressive emphasis on the EE,

transmission decisions should be triggered only when network

conditions are good enough, by which the delay performance

degrades inevitably. Alternatively, to ensure a small delay, the

network has to transmit data at the cost of energy expenditure

even when network conditions are very poor, which undoubt-

edly decreases the EE. Thus, to model the EE-delay tradeoff,

the following two issues need to be considered.

• How to decide whether to transmit data or defer a

transmission in each slot in terms of the EE and delay

and how to optimize resource allocation such as power

allocation, subcarrier assignment, and RRH operation if

transmission is chosen?

• How to ensure that deferring transmissions to anticipate

more advantageous network conditions becoming avail-

able in the future would not result in an uncontrollable

delay because of time-variant, stochastic, and unpredicted

network conditions?

In what follows, we present a possible method to model and

reveal the quantitative EE-delay tradeoff.

To formulate EE and delay in a framework, we first need to

shift from previously short-term to long-term models. In long-

term formulations, random traffic arrivals can be enfolded to

obtain a dynamic arrival-departure queue for each user, given

as Qi (t+ 1) = max[Qi (t)−Ri (t) , 0]+Ai (t) , ∀i [15]. Here,

Ai (t) and Qi (t) denote the amount of newly arrived data and

queue length of user i at slot t, respectively. Note that the

average delay can be characterized by queue length, as it is

proportional to the queue length for a given traffic arrival rate

from the Little’s Theorem.

Furthermore, it is also necessary to inject the concept of

time into the EE definition EEshort-term in order to bridge

the EE and delay. One possible way to achieve this is to

define the EE from a long-term average perspective, given

by the ratio of the long-term aggregate data delivered to

the corresponding long-term total power consumption (cf.

Eq. (10) in [15]). For simplicity, we denote this kind of the

network EE definition by EElong-term. From [11] and [15], we

know that, EElong-term can also be seen as an extension of

EEshort-term, because it degenerates to EEshort-term if there are

no time averages and expectations in EElong-term. Then, by

integrating the queue length control (i.e., delay control) and
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Fig. 6. Illustration of the EE-delay tradeoff. In this example, we consider
a downlink single-MBS H-CRAN and maximize its network EE EElong-term

subject to a queue length control constraint by jointly optimizing RRH
operation and power allocation. In the figure, the traffic arrival rate λ = 2.5
bits/slot/Hz, RRH’s circuit power P c

n = 0.4 W, number of RRHs N = 8,
and number of users M = 12. In particular, V ≥ 0 and α ∈ [0, 1] are two
control parameters introduced to adjust the EE-delay tradeoff.

EE maximization into a framework, we can depict the EE and

average delay simultaneously.

We utilize the above ideas to display the EE-delay tradeoff

in H-CRANs by formulating a stochastic optimization problem

that maximizes the network EE EElong-term subject to a queue

length control constraint through joint optimization of RRH

operation and power allocation. Two algorithms, referred to

as the optimal and suboptimal, are developed to solve this

problem. Fig. 6 intuitively shows the EE-delay tradeoff, where

V ≥ 0 and α ∈ [0, 1] are two control parameters introduced in

the model to adjust the EE-delay tradeoff. Specifically, from

Fig. 6, for the same V , the smaller α is, the better the EE,

and the larger the average delay. In addition, for the same

α, the bigger V is, the better the EE, and the larger the

average delay. These observations together exhibit the EE-

delay tradeoff, which can be explicitly balanced by V and α.

Hence, the long-term model can be used to tune the EE-delay

tradeoff via adjusting V and α. More clearly, α is used to

confine the tradeoff range between the EE and average delay

( a small α gives a large range and vice versa) and V to tune

the tradeoff point between the EE and average delay (a small

V yields a small delay but low EE and vice versa).

Although [14] found the EE-delay tradeoff and [15] ob-

tained an EE-delay tradeoff of [O (1/V ) , O (V )], the optimal

EE-delay tradeoff, i.e., the optimal order for the average delay

in V when the EE increases to the optimal by the law of

O (1/V ), is still unknown. Moreover, [14], [15] focused on

the average delay and thus the obtained results therein are

valid only for non-real-time traffic such as web browsing

and file transfers. However, there are some other real-time

applications, e.g., voice and mobile video, in H-CRANs, which

impose hard-deadline (or maximum delay) constraints. It is

thus deserved to study how to provision deterministic delay

guarantees and improve the EE in the meantime. Moreover,

in more realistic H-CRANs with both non-real-time and real-

time traffic, it is also well worth investigating how to flexibly

balance the EE-delay performance for each kind of traffic from

a perspective of systematic design and further devise control

algorithms. Potential techniques that can be used to settle

these unresolved issues are stochastic optimization, dynamic

programming, Markov decision process, queue theory, and

stochastic analysis.

IV. CONCLUSIONS

Under the triple drives of capacity enhancement, EE im-

provement, and communication ubiquity, H-CRANs have

emerged as a promising architecture for future wireless net-

work design. In this article, we have first exploited the features

of H-CRANs to propose three green techniques and then par-

ticularly focused on three fundamental tradeoffs, namely EE-

SE, EE-fairness, and EE-delay tradeoffs. We have introduced

the methods to model and analyze these tradeoffs, presented

open issues and challenges, and also provided some potential

solutions. However, we are still at a very primary stage in

these studies, and thus further investigations on exploitation

of the high-dimension, flexible, and scalable architecture of

H-CRANs are eagerly deserved for a green future.
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