
1

On Understanding the Existence of a Deep Torrent
Rafael A. Rodrı́guez-Gómez1, Gabriel Maciá-Fernández1, and Alberto Casares-Andrés2

1Dpt. of Signal Theory, Telematics and Communications, CITIC-UGR, Spain
rodgom@ugr.es, gmacia@ugr.es

24IQ, Los Gatos, CA, USA
alberto.casares@4iq.com

Abstract—Nowadays, a great part of the Internet content is
not reachable from search engines. Studying the nature of these
contents from a cyber security perspective is of a high interest, as
they could be part of many malware distribution processes, child
pornography or copyrighted material exchange, botnet command
and control messages, etc. Although the research community has
put a big effort on this challenge, most of the existing works are
focused on contents that are hidden in Web sites. Yet, there exist
other relevant services that are used to keep and transmit hidden
resources, such as P2P protocols. In the present work, we suggest
the concept of Deep Torrent to refer to those torrents available
in BitTorrent that cannot be found by means of public Web sites
or search engines. We present an implementation of a complete
system to crawl the Deep Torrent and evaluate its existence and
size. We describe a basic experiment crawling the Deep Torrent
for 39 days, in which an initial estimation of its size is 67% of
the total number of resources shared in BitTorrent network.

I. INTRODUCTION

In the early days of the Internet, crawling the Web was a
relatively easy task. Search engines were able to index almost
all the contents in the Web. Yet, after a few years, Web contents
have considerably evolved to a more “dynamic” behaviour,
e.g., Web servers often use databases to build and serve
dynamic Web pages. As pointed out in 1994 by Jill Ellsworth,
this evolution leveraged the apparition of the invisible Web. In
2001, Bergman [1] divided the Web contents into a Surface
Web, i.e., the indexed content crawled by search engines, and
a Deep Web, containing all the dynamically generated content
as a response to query forms. Nowadays, the Deep Web is
more generally defined as the informational content on the
Internet that present any of the following characteristics: (a) it
is not accessible through direct queries made by conventional
search engines; (b) it is only accessed through specific and
targeted queries or keywords; (c) it is either not indexed or
cannot be indexed by conventional search engines; (d) it is
somehow protected by security mechanisms, like login IDs
and passwords, certificates, membership registrations, codes,
etc.

Crawling the Deep Web is a challenging task, not only due
to the hidden nature of its contents, but also because of its
large scale. In 2001, Bergman [1] estimated that the Deep
Web was 400-550 times greater than the Surface Web, and
other authors [2] gave some insights about its size, including
more than 307,000 sites, 450,000 databases, and 1,258,000
interfaces, describing an increase in size by 3-7 times during
the period 2000-2004. In 2007, some Deep Web directory

services started to index databases in the Web, although their
coverage were still small, ranging from 0.2% to 15.6% [2]. In
2015, the data stored on just the 60 largest Deep Web sites
was estimated to be 40 times larger than the size of the entire
Surface Web [3].

From a cyber security perspective, discovering and analyz-
ing the structure and dynamics of this huge amount of hidden
contents is of paramount importance. Many illegal activities
in the cyber space are based on the existence of these hidden
contents. Common examples of this fact are the presence of
malware propagation mechanisms, botnets communications,
exchange of child pornography or copyrighted contents, etc.

The use of services like P2P is relevant for some of these
illegal activities. As an example, some of the botnets studied in
previous research works use Command & Control mechanisms
that are based on existing P2P networks (parasite P2P botnets)
[4]. Despite this fact, the crawling and analysis of the resources
shared using these protocols has received little attention so far.
Again, we can conclude that, from a cyber security perspective,
studying the contents in P2P networks is essential.

In this paper, we focus on the Mainline implementation
of BitTorrent, the most used P2P network nowadays, called
Mainline. The publication of a resource in BitTorrent is done
by somehow sharing a torrent file containing metadata
related to the content description and location of the shared
resource. These torrent files are either published in the
public Web (specific web sites for torrent files that will be
referred to as torrent-discovery sites in advance) or simply
sent to the interested users in an out-of-band channel (email,
deep web, IRC, etc.). This mechanism for publication lead
us to make an analogy with the classification of contents in
the Web, and divide the BitTorrent resources into two parts:
those that are publicly announced in the Web, that we denote
as the Surface Torrent, and those that remain hidden to the
general public and are shared in private communities, i.e., the
Deep Torrent. Note that the concept of Deep Torrent does not
include only private torrents. In fact, in this work we do not
consider private torrents, as they have been analyzed in other
works [5]. We specifically focus on resources that are being
announced by out-of-band mechanisms instead of public web
sites, while still being shared in public trackers or DHT.

In the present work we focus on demonstrating the existence
of such a Deep Torrent and evaluating its size. We propose the
use of a combined crawler for both the Surface and the Deep
Torrent based on: (i) a Mainline monitoring module, and (ii) a



2

Web crawler for torrent-discovery sites. The system combines
the output of these two modules to obtain a list of Deep Torrent
resources. We make an evaluation of the system for a 39 days
period extracting experimental results about the Deep Torrent.
Up to our knowledge, there is no previous research published
on analyzing or describing this phenomena.

The rest of the paper is organized as follows. In Section II,
some related work is presented. In Section III, some funda-
mentals of BitTorrent-based networks are given. After that, the
overall functional architecture for the proposed Deep Torrent
crawling system is detailed in Section IV. Section V describes
the preliminary results obtained from our proposed system.
Finally, Section VI draws the main conclusions and points out
directions for future work.

II. RELATED WORK

Since the work by Bergman in 2001 [1], there have been
some efforts in the research community to investigate the
magnitude and features of the Deep Web. These efforts have
been concentrated towards two directions.

The first one is related to the understanding of the nature of
hidden contents and the methodologies to automate the data
extraction from the Deep Web sites [6]. The second direction
of research is related to optimizing the number of queries used
to dig the Web in order to obtain the maximum percentage of
the hidden contents [7]. In the first prototype of our system
we are aligned with the first direction of research, as we are
really interested on getting an overview of the features of the
Deep Torrent, without caring too much about efficiency.

Additionally, there exist works specifically focused on
crawling torrent-discovery sites [8], [9]. These works are
not really focused on extracting information about the Deep
Torrent, as they are only able to get information about the tor-
rent files publicly published in torrent-discovery sites (Surface
Torrent). Among torrent-discovery sites, it is worth to mention
the existence of the so called DHT search engines, which
publish information (magnet links instead of torrent files)
about resources being shared in the BitTorrent DHT. The first
engine capable of searching BitTorrent DHT was btdigg.
This engine was active during our research period and closed
in June 2016 for several months. It is currently active again
under a different domain (https://btdig.com/). In December
2016, a new DHT search engine called Alphareign (https:
//alphareign.se/) have just appeared. Up to our knowledge,
these are the only DHT search engines up to date.

Regarding the research efforts related to monitoring activity
in BitTorrent, in our previous work [4] we developed a moni-
toring system to detect files belonging to P2P parasite botnets.
There are other similar approaches in the literature, like [10],
[11], [12]. Unluckily, all of them are aimed to analyze some
features of BitTorrent files without paying attention to the
Deep Torrent phenomena.

Finally, it is important to highlight that the combination
of both modules, i.e., a Surface Torrent crawler in the Web
and a BitTorrent monitor, in a complete system to crawl the
Deep Torrent is not present in the literature and it represents
a contribution of this work.

III. BITTORRENT GENERAL CONCEPTS

The BitTorrent protocol is used to share resources among
peers in a large network. For every resource shared in Bit-
Torrent, the nodes of the network can play different roles:
seeders are nodes that contain a complete copy of a shared
resource; leechers are those that have partially downloaded the
considered resource —note that leechers really download the
parts of a resource not only from seeders, but also from other
leechers—; finally, trackers are special nodes in the network
that keep track of the leechers and seeders for every shared
resource.

To locate the resources shared in the network, the BitTorrent
protocol uses torrent files, which contain metainformation
about resources and, when necessary, about their correspond-
ing trackers. The 20 bytes SHA-1 hash of the info section
of a torrent file is called infohash, and it uniquely
identifies a resource in the network.
Torrent files are stored in torrent-discovery servers (nor-

mally Web based) that allow users to search contents and then
get the corresponding torrent file to start the corresponding
download. Some examples of these torrent-discovery sites
are: https://thepiratebay.org/, https://torrentdownloads.me/ or
http://extratorrent.cc/, among others.

Since 2005, the BitTorrent protocol implements a distributed
operation mode that does not require the participation of
trackers. It was first implemented in the Azureus torrent client
(currently known as Vuze). In this operation mode, a dis-
tributed hash table (DHT) is used to store the correspondence
among the resources and the peers that share them. Here, we
could say that each peer plays the role of a tracker. Currently,
there exist two different incompatible implementations of
DHT: Vuze and Mainline. Both are specific implementations
of Kademlia [13]. In this paper we focus in Mainline [14], as
its use is more widespread [8].

Mainline uses 20 bytes unique identifiers for both nodes
and resources (infohash) in the DHT network. In the case
of nodes, they are known as nodeIDs, and are randomly
generated the first time a BitTorrent client is initiated. These
identifiers will not change unless a user manually uninstalls the
BitTorrent application or changes its configuration file. Even if
a user changes its IP address, its nodeID will remain and, for
this reason, we can assume that nodeID is a unique identifier
per user.

In Mainline, a metric for the closeness between a DHT node
and a resource is defined as the XOR operation between their
corresponding identifiers: nodeID and infohash. The DHT
nodes that are closer to a resource are in charge of keeping
track of the list of peers that are sharing it.

There are four queries in the Mainline DHT protocol:

• ping: verifies if a peer is alive and responsive.
• find_node: requests a node for the list of closest nodes

to a given nodeID in its routing table. A response
message is issued with the IP address, port, and nodeID
of every node in this list.

• announce_peer: announces that a peer holds the
resource (or a part of it) identified by its infohash.



3

Mainline Monitor

Torrent-discovery sites

BitTorrent

Network

Web crawler

Not present

in crawling

Passive

search

Node

crawler

Message

sniffer

Active

search

...

Fig. 1: Functional architecture of the Deep Torrent crawler.

• get_peers: get a list of peers associated with a
infohash. If the queried DHT node does not have this
information, it returns the eight nodes in its routing table
closest to the infohash supplied in the query.

Then, if a peer wants to announce that it has a copy of a
given resource infohashi, it has to find first the list of peers
that are closest to infohashi. With this purpose, it sends
get_peers messages that iteratively reach the nodes in the
DHT containing this information, thus getting the response.
After that, an announce_peer message is sent to the nodes
in the list of peers. As this information expires after a time-out
that depends on the client implementation (around 30 minutes),
the announcing peer is responsible for re-announcing the tuple
<IP:port,infohashi> over time.

Note that announcing the resources is a necessary condition
to allow other nodes in the Mainline network to download
them. Based on this fact, we reduce the problem of monitoring
the shared resources to that of monitoring announce_peers
messages in the network. In what follows, we describe how
we manage to achieve this.

IV. DEEP TORRENT CRAWLER

The proposed Deep Torrent crawler is based on two mod-
ules (see Fig. 1): (i) a Mainline monitor, and (ii) a Web
crawler for torrent-discovery sites. The Mainline monitor
module is in charge of obtaining the resources that are being
actively announced in the BitTorrent network. In parallel,
the Web crawler extracts resources that can be found in
torrent-discovery sites (Surface Torrent). Finally, both data are
combined to find the resources that are being really announced
in the BitTorrent network but cannot be found in the torrent-
discovery sites. Following our own definition, these would be
the resources that belong to the Deep Torrent.

A. Mainline Monitor Module

The monitoring module for the Mainline network is based
on our previous work [4] and it is composed of two submod-
ules: (a) a node crawler, and (b) a message sniffer.

1) Node Crawler: The purpose of the node crawler is to
obtain all the active peers in a specific zone of the Mainline
network and to maintain this list updated. A zone of the
network is defined as all the identifiers with a common prefix.
For example, the crawler can monitor a eight bits prefix
zone by extracting all the active nodes in the network whose
nodeID begins with the same eight bits.

The crawling process starts getting a list of nodes in
the monitored zone, known_list, by recursively send-
ing find_nodes messages to some hardcoded bootstrap
nodes. Once it has a minimum number of known nodes, two
threads are launched. One is periodically asking the nodes
in known_list about new ones, and the other thread is
receiving their answers and registering the new nodes into
known_list.

2) Message Sniffer: Its aim is to include our monitor node
in the routing tables of the DHT nodes previously collected
in known_list. To accomplish it, this module periodically
sends ping messages to the DHT nodes, indicating that it
is alive and responsive. In this process, we forge the source
nodeID so that many different sybil nodes are included in
routing tables. As we are interested in receiving the same
messages as the nodes in known_list, the fake nodeIDs
are chosen so that they are close to them.

In summary, the Mainline monitoring procedure works as
follows. First, we obtain the active nodes of a specific zone
by using the node crawler module. After that, we try to be
inserted into the routing tables of these nodes by including
our sybils as neighbors. As a result, legitimate nodes send
announce_peer messages to our sybils when they are



4

sharing a resource with infohash in the monitored zone.
We log all these announce_peer messages into a database,
registering the infohash of the announced resource, IP ad-
dress, port, nodeID of the announcer node, and the message
arrival timestamp.

Note that this module does not alter anyway the proper
operation of the monitored zone. The only effect is that real
nodes in the monitored zone will send some extra messages
to our sybils.

B. Web Crawler Module

Recall that torrent-discovery sites publish torrent files
that are used to start the download of a specific resource. These
sites usually have a query interface that allows users to obtain
information related to the searched torrent resources. Based
on this information, a user is able to decide which is the best
torrent file for downloading a given resource.

In order to make our crawler capable of extracting this
knowledge, we use two methods:

• Passive search: information announced in the torrent-
discovery sites is obtained by using Rich Site Summary
(RSS) feeds.

• Active search: we also query special Web sites for the
resources already identified in the monitoring of the
Mainline network and focus on those that have not been
previously identified in the RSS data source.

Regarding passive search, RSS feeds of the monitored sites
are periodically queried by our crawler and all the announced
resources are stored in a database of known resources. The
information stored in this database is: a) unique identifier of
the resource (infohash); b) name of the resource; c) size
in bytes; d) number of seeders and leechers; e) timestamp at
which this resource started to be shared; f) Web site from
which this information was obtained; g) timestamp of the
instant at which the crawler got the information.

The idea of the active search is leveraging the information
already extracted from the Mainline monitor module to make
a deeper search of indexed resources in the torrent-discovery
sites. Here, all the resources identified in the Mainline monitor
module that have not been found in the queried RSS are first
identified. For each of them, using the infohash announced
in Mainline, a new specific query is launched to certain Web
sites that allow searching a torrent by its infohash. Only
when a resource is not found at this point, it is labeled as
a hidden resource and stored in the Deep Torrent resources
database.

V. MEASUREMENT RESULTS

We have monitored a part of the Mainline network during 39
days, from March 16th 2016 until April 24th 2016. During this
period, two Mainline monitors have been launched to monitor
the zones with a 8-bits prefix equal to 0x09 and 0x10
respectively. This represents a part out of 128 of the complete
Mainline network (2 zones of a size of one out of 256 each).
As nodeIDs are randomly assigned, we consider that this
sample is representative of the behavior of the whole Mainline

 5000

 5500

 6000

 6500

 7000

 7500

 8000

0
3
/1

7

0
3
/1

8

0
3
/1

9

0
3
/2

0

0
3
/2

1

0
3
/2

2

0
3
/2

3

N
u
m

b
e
r 

o
f 

in
fo

h
a
s
h
e
s

0x09

0x10

Fig. 2: New infohashes discovered every hour during the first
week.

90%

91%

92%

93%

94%

95%

96%

97%

0
3
/1
8

0
3
/1
9

0
3
/1
9

0
3
/2
0

0
3
/2
0

0
3
/2
1

0
3
/2
1

0
3
/2
2

0
3
/2
2

0
3
/2
3

0
3
/2
3

Fig. 3: Percentage of coincidence between infohashes moni-
tored by three different sensors in the zone 0x09.

network. The main reason to use two different sensors is to
check if the obtained results are biased for a specific zone.

We have conducted a preliminary experiment to check
the accuracy of our crawler when sniffing the infohashes
announced in a given zone. Three different instances of
the Mainline monitor have been launched in the same zone
(0x09). In this setup, our estimation for the percentage of
resources monitored by the Mainline crawler is the percentage
of resources observed by the three sensors. Thus, any resource
monitored by only one or two sensors is considered to be
a non-observed resource in the monitoring (worst case). In
Fig. 3 we can see that our estimation is that more than 90%
of the resources are being monitored. Note that this number
is coherent with the performance already indicated in other
works [11].

A total of 321,962 different resources have been monitored
during this period, 166,035 in the 0x09 zone and 155,927
in the 0x10 zone. We can see in Fig. 2 the evolution of the
new infohashes discovered every hour during the first week in
both zones. The similar behavior of both monitors lead us to
the conclusion that these results could be generalized to other
zones.

For each of the monitored resources we have stored
every announce_peer message received, logging the
infohash, origin nodeID, IP address and port and the
timestamp. In Fig. 4 we can see the evolution of the number
of peers communicating within the 0x09 zone for the first
week of our monitoring period. The number of peers exhibit a
periodic behavior with an increasing mean value that stabilizes



5

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

03/17

03/18

03/19

03/20

03/21

03/22

03/23

N
u
m

b
er

 o
f 

ac
ti

v
e 

p
ee

rs

Fig. 4: Evolution of the number of connected peers (0x09
zone) during the first week.

 1000

 10000

 100000

 1e+06

 1e+07

0
3
/1

7

0
3
/1

8

0
3
/1

9

0
3
/2

0

0
3
/2

1

0
3
/2

2

0
3
/2

3

N
u
m

b
e
r 

o
f 

IP
 a

d
d

re
s
s
e
s

NA

SA

EU

AF

OC

AS

Unknown

Fig. 5: Evolution of the number of different IP addresses
grouped by continent during the first week (0x09 zone).

after some days. Depending on the time of the day, around
95,000 peers are actively sending/receiving messages to/from
our system.

As reported in the Sandvine 2015 report [15] Asia (AS) is
the continent with a higher percentage of BitTorrent usage.
This fact is reflected in Fig. 5, where we show the monitored
IP addresses grouped by its continent geolocation. Note that,
due to this greater percentage of users from Asia, we obtain a
periodic wave showing the typical evolution in a day/night
traffic in Fig. 4. In fact, using the time UTC+8 (China)
the maximum number of peers is reached at 9 PM and the
minimum at 4 AM.

These resources have been shared by 86,915,611 differ-
ent nodes (different nodeIDs) with 23,417,933 different IP
addresses from all the continents. Note the huge difference
between the number of nodes and IP addresses. This could be
either due to the existence of NAT boxes or the use of sybil
mechanisms. For example, DHT search engines like bitdigg
make use of sybil procedures to collect information from
network, in a similar way that we are doing in our Mainline
crawler. A prior inspection of these data showed that there are
certain IP ranges that comprise a huge number of nodes. As
an example, two IP ranges from Russia and Kazajstán contain
8M and 6M of nodeIDs respectively, presenting a mean value
of 14K nodeIDs per IP. Due to this size, we consider that
it is more likely that they have a sybil behavior than they are

NAT boxes.
Estimation of the Deep Torrent Size. Using the Web

crawler module, we have conducted our passive search since
December 20th 2015, receiving information from some of the
most common torrent-discovery sites. First, we have chosen a
meta-search engine like torrentz (https://torrentz.eu/), due
to the fact that it allows to search information in a large
list of other torrent-discovery sites. During the monitoring
period, torrentz comprised a list of 29 torrent sites1. In
addition, we have also checked directly some of the more rel-
evant torrent-discovery sites, like http://bitsnoop.com/, https:
//piratebay.to/, among others. Finally, we have also decided
to collect information from https://btdigg.org/, the only DHT
search engine at the time of the experiment.

Each of these sites generates a periodic report with the
newest torrent resources, which are subsequently downloaded
and stored by our crawler. Depending on the torrent-discovery
site, the frequency of the crawling varies between 24 and 48
hours. As a result, we have stored in our database a total of
22,174,122 resources. Out of the 321,962 resources collected
in the Mainline monitor module, we found 80,869 (25.12%)
within the 22 millions of resources obtained by the Web
crawler.

For the rest of the resources (a total of 241,093), we
conducted an active search using some of the most common
torrent-discovery sites that allow to find torrent resources by
using their infohash. After this, we only found information
about 23,878 additional resources of our set. At the end,
we have 217,215 unidentified resources, which supposes a
67.47% of the monitored resources. This is our estimated
size of the Deep Torrent. Note that these results are only a
proof of concept, as more exhaustive search methodologies for
the Surface Torrent could be followed. Anyway, the obtained
percentage points out that the size of Deep Torrent is not
negligible at all.

Exploring Features of Shared Resources. One application
of the Web crawler is to explore the meta-data included in
torrent files to draw conclusions about the contents and
the sharing mechanisms.

For example, we wanted to inspect the active duration of the
sharing of resources, in order to find out possible differences
between the Deep (DT) and Surface Torrent (ST) resources.
This duration is defined as the number of hours during which
the monitor receives messages announcing a specific resource.
The results can be seen in Fig. 6. First, note that DT resources
are shared during less time. This is an expected result, as these
resources are not being publicly published in torrent-discovery
sites and, therefore, they are not expected to be so popular.
Indeed, there exist a total of 159,195 DT resources with less
than 5 hours of active duration, which supposes a 73.29% of
the total amount of DT resources, while the number of ST
with less than 5 hours of active duration is 25,015 (23.88% of
the total amount of ST resources). Yet, it is notable that many
of the resources in the DT are still being shared during a long
time.

1See complete list at http://web.archive.org/web/
20160323031455/http://torrentz.eu/help)



6

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Active duration (hours)

 

 

ST

DT

Fig. 6: Normalized cumulative histogram of the active duration
of Deep Torrent (DT) and Surface Torrent (ST) resources.

VI. CONCLUSIONS AND FUTURE WORK

This paper explores the Deep Torrent, i.e., torrents available
in BitTorrent that cannot be found by means of public Web
sites or search engines. We discuss the necessity for studying
its properties, proposing a system to crawl Deep Torrent
resources that combines:(a) a Surface Torrent crawler for the
Web, and (b) a BitTorrent (Mainline) monitor.

For demonstrating the usefulness of the crawler, we have
collected information from a part out of 128 of the Mainline
network during 39 days, identifying a total of 321,962 re-
sources. Among them, 32.53% belongs to the Surface Torrent,
i.e., they can be found in torrent-discovery sites; and the
remaining 67.47% are part of the Deep Torrent. We have
shown how the information obtained from the crawler is
proven to be useful to extract interesting characteristics of the
Deep Torrent.

Despite these results, we consider that there are many
interesting details and questions to be solved as part of future
work. Specifically, we plan to work on:

• Extending the monitoring period and the number of
monitored zones to derive more general results.

• Thoroughly studying the features of the resources in the
Deep Torrent and comparing them to those of the Surface
Torrent.

• Including a new module in our system to automatically
download Deep Torrent resources in order to study them
in a posterior phase.

• Trying other techniques for the crawling of Surface
Torrent by our Web crawler.

ACKNOWLEDGMENTS

This work has been partially supported by Spanish Go-
vernment-MINECO (Ministerio de Economı́a y Competitivi-
dad) and FEDER funds, through project TIN2014-60346-R
and the Corporacion Tecnológica de Andalucı́a through project
CTA 15/795.

REFERENCES

[1] M. K. Bergman, “White Paper: The Deep Web: Surfacing Hidden
Value,” The Journal of Electronic Publishing, vol. 7, Aug 2001.

[2] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang, “Accessing the Deep
Web,” Communications of the ACM, vol. 50, pp. 94–101, May 2007.

[3] D. Sui, J. Caverlee, and D. Rudesill, “The Deep Web and the Darknet:
a look inside the Internet’s massive black box,” tech. rep., Oct 2015.

[4] R. A. Rodrı́guez-Gómez, G. Maciá-Fernández, P. Garcı́a-Teodoro,
M. Steiner, and D. Balzarotti, “Resource monitoring for the detection of
parasite P2P botnets,” Computer Networks, vol. 70, no. 0, pp. 302–311,
2014.

[5] X. Chen, Y. Jiang, and X. Chu, “Measurements, analysis and modeling
of private trackers,” 2010 IEEE 10th International Conference on Peer-
to-Peer Computing, P2P 2010 - Proceedings, 2010.

[6] M. Balduzzi and V. Ciancaglini, “Cybercrime In The DeepWeb,” in
Black Hat 2015 EU, Amsterdan, 2015.

[7] Y. He, D. Xin, V. Ganti, S. Rajaraman, and N. Shah, “Crawling deep
web entity pages,” Web Search and Data Mining, pp. 355–364, 2013.

[8] C. Zhang, P. Dhungel, D. Wu, and K. W. Ross, “Unraveling the
BitTorrent Ecosystem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, pp. 1164–1177, Jul 2011.

[9] H. Jin, H. Jiang, S. Ibrahim, and X. Liao, “Inaccuracy in Private Bit-
Torrent Measurements,” International Journal of Parallel Programming,
vol. 43, pp. 528–547, Oct 2013.

[10] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of KAD,”
Internet Measurement Conference, 2007.

[11] G. Memon, R. Rejaie, Y. Guo, and D. Stutzbach, “Montra: A large-scale
DHT traffic monitor,” Computer Networks, vol. 56, pp. 1080–1091, Feb
2012.

[12] M. Varvello and M. Steiner, “DHT-based traffic localization in the wild,”
in 2013 Proceedings IEEE INFOCOM, pp. 3141–3146, Apr 2013.

[13] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems, IPTPS ’01, pp. 53–65,
2002.

[14] “Mainline DHT Implementation.” http://bittorrent.org/beps/bep 0005.
html. [Online; accessed May-12th-2016].

[15] Sandvine, “Global Internet Phenomena Asia-Pacific & Europe,” 2015.


