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Abstract

Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and
meet the diverse performance requirements of 5G networks. With abundant access points, each
with communication, computation and storage resources, UDN brings unprecedented benefits,
including significant improvement in network spectral efficiency and energy efficiency, greatly re-
duced latency to enable novel mobile applications, and the capability of providing massive access
for Internet of Things (IoT) devices. However, such great promises come with formidable re-
search challenges. To design and operate such complex networks with various types of resources,
efficient and innovative methodologies will be needed. This motivates the recent introduction of
highly structured and generalizable models for network optimization. In this article, we present
some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, sup-
ported by various motivating applications. A special attention is paid on algorithmic approaches
to deal with nonconvex objective functions and constraints, as well as computational scalability.

1 Introduction

As mobile data traffic keeps growing at an exponential rate, and mobile applications pose more
and more stringent and diverse requirements, wireless networks are facing unprecedented pressures.
To further evolve wireless networks and maintain their competitiveness, network infrastructure
densification stands out as a promising approach. By deploying more radio access points, supple-
mented with storage and computational capabilities, we can not only increase network capacity,
but also improve network energy efficiency, enable low-latency mobile applications, and provide
access for massive mobile devices. Such ultra-dense network (UDN) provides an ideal platform to
develop disruptive proposals to advance wireless information technologies, including cloud radio ac-
cess networks (C-RANs), wireless edge caching, and mobile edge computing. These are achieved by
leveraging innovative ideas in different areas, such as software-defined networking, network function
virtualization, content-centric networking, cloud and fog computing.

By enabling capabilities of cloud computing and software-defined networking, UDNs can easily
support C-RAN as an effective network architecture to exploit the benefits of network densification
via centralized signal processing and interference management [1, 2]. This is achieved by moving
the baseband processing functionality to the cloud data center via high-capacity fronthaul links,
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Table 1: Generalized Sparse and Low-Rank Optimization for UDNs
Models Structured Sparse Optimization (1) Generalized Low-Rank Optimization (2)

Applications

Large-scale network adaptation: Network optimization with side information:

1. Network power minimization 1. Topological interference management

2. User admission control 2. Wireless distributed computing

3. Active user detection 3. Mobile edge caching

Algorithms

Convex optimization solver [5]: Riemannian optimization solver [6]:

1. O(1/k) convergence rate: (k: # iterations) 1. Superlinear convergence rate with conjugate gradient

2. Subspace projection per iteration 2. Quadratic convergence rate with trust-region

3. Parallel cone projection per iteration 3. Compute Riemannian gradient and Hessian per iteration

supported by massively deployed low-cost remote radio heads (RRHs). Meanwhile, the Internet is
shifting from the “connection-centric” mode to the “content-centric” mode to support high-volume
content delivery [3]. By enabling content caching at radio access points, i.e., wireless edge caching,
UDNs can assist the Internet architecture evolution and achieve more efficient content delivery for
mobile users [4]. Another trend is the increasing computation intensity in mobile applications,
which puts a heavy burden on resource-constrained mobile devices. Mobile edge computing was
recently proposed as a promising solution, by offloading computation tasks of mobile applications
to servers at nearby access points. It avoids excessive propagation delay in the backbone network,
compared to mobile cloud computing, and thus enables latency-critical applications. All of these
systems are built upon the UDN platform, which enables integration of the storage, computing,
control and networking functionalities at the ubiquitous access points. In particular, C-RANs serve
the purpose of providing higher data rates, while mobile edge caching and computing networks
enable low-latency content delivery and mobile applications.

However, all the emerging networking paradigms associated with UDNs bring formidable chal-
lenges to network optimization, signal processing and resource allocation, given the highly complex
network topology, the massive amount of required side information, and the high computational
requirement. Typical design problems are nonconvex in nature, and of enormously large scales,
i.e., with large numbers of constraints and optimization variables. For examples, the uncertainty
or estimation error in the available channel state information (CSI) yields nonconvex quality-of-
service (QoS) constraints, while such network performance metrics as sum throughput and energy
efficiency lead to nonconvex objective functions. Thus effective and scalable design methodologies,
with the capability of handling nonconvex constraints and objectives, will be needed to fully exploit
the benefits of UDNs. The aim of this article is to present recent advances in sparse and low-rank
techniques for optimizing dense wireless networks [7, 8, 9], with a comprehensive coverage includ-
ing modeling, algorithm design, and theoretical analysis. We identify two representative classes of
design problems in UDNs, i.e., large-scale network adaption and side information assisted network
optimization.

The first class of design problems are for the efficient network adaptation in UDNs, including
radio access point selection [7], backhaul data assignment, user admission control, user association
[10], and active user detection [9]. Such large-scale network adaptation problems involve both
discrete and continuous decision variables, which motivates us to enforce sparsity structures in the
solutions. The success of the structured sparse optimization for network adaptation comes from
the key observation that such adaptation can be achieved by enforcing structured sparsities in the
solution, which will be presented in Section 2 in details. The second class of design problems
involve how to effectively utilize the available side information for network optimization, including
topological interference management [11], wireless distributed computing [12], and mobile edge
caching [4]. Network side information is critical to design UDNs, and it can take various forms,
such as the network connectivity information, cache content placement at access points, and locally
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Figure 1: Group sparse beamforming for green Cloud-RAN design, with L RRHs and K users.
Switching off the l-th RRH and the corresponding fronthaul link corresponds to setting all the
beamforming coefficients in the l-th beamforming coefficients group z̃l = [zl1, . . . ,zlK ] to be zeros
simultaneously, where zlk is the transmit beamforming vector from RRH l to mobile user k. Note
that, when switching off one RRH, the remaining RRHs need to support the QoS requirements for
all the mobile users.

computed intermediate values in wireless distributed computing. In Section 3, we will present a
general incomplete matrix framework to model various network side information, which leads to a
unified network performance metric via the rank of the modeling matrix for optimizing UDNs.

Although the structured sparse and low-rank techniques enjoy the benefits of modeling flexibil-
ity, the sparse function and rank function are nonconvex, which brings computational challenges
[13, 14]. Furthermore, typical optimization problems in UDNs bear complicated structures, which
make most of the existing algorithms and theoretical results inapplicable. To address these algorith-
mic challenges, we present various convexification procedures for both objectives and constraints
throughout our discussion. Moreover, scalable convex optimization algorithms and nonconvex opti-
mization techniques, such as Riemannian optimization, will be presented in Section 4. This article
shall serve the purpose of providing network modeling methodologies and scalable computational
tools for optimizing complex UDNs, as summarized in Table 1.

2 Structured Sparse Optimization for Large-Scale Network Adaptation

In UDNs, to effectively utilize densely deployed access points to support massive mobile devices,
large-scale network adaptation will play a pivotal role. For various network adaptation problems
in UDNs, the solution vector is expected to be sparse in a structured manner, e.g., radio access
point selection results in a group sparsity structure. To illustrate the powerfulness of the generalized
sparse representation and scalable optimization paradigms, in this section, we present representative
examples of group sparse beamforming for green C-RANs, and structured sparse optimization for
active users detection and user admission control.

2.1 Generalized Structured Sparse Models

In this part, two motivating applications of generalized sparse models for large-scale network adap-
tation are presented.

2.1.1 Large-Scale Structured Optimization

We take green C-RAN as an example to illustrate structured optimization for network adaptation.
In C-RANs, the network power consumption consists of the transmit power of active RRHs and
the power of the corresponding active fronthaul links. By exploiting the spatial and temporal
data traffic fluctuation, network adaption via dynamically switching off RRHs and the associated
fronthaul links can significantly reduce the network power consumption. To minimize the network



4

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
95% success
50% success
5% success

(a) Phase transitions in noiseless scenario.

10 20 30 40 50 60 70 80 90 100

10
-3

10
-2

10
-1

10
0

(b) NMSE in noisy scenario.

Figure 2: (a) Phase transitions for structured sparse estimation for massive device connectivity,
given the random measurement Y = ΘQ with N = 100 and M = 2. The heat map indicates the
empirical probability of success (black=0%; white=100%). (b) NMSE of estimating Θ, given the
noisy model Y = ΘQ+W with N = 100, M = 2, K = 20 and Wij ∼ CN (0, 0.01). Each entry in
Q ∈ C

N×L is distributed as Qij ∼ CN (0, 1) with L as the number of random measurements.

power of a C-RAN, we need to optimize over both the discrete variables (i.e., the selection of RRHs
and fronthaul links) and continuous variables (i.e., downlink beamforming coefficients), yielding
a mixed combinatorial optimization problems, which is highly-intractable. To support efficient
algorithm design and analysis, a principled group sparse beamforming framework was proposed in
[7] by enforcing the group sparsity structure in the solution vectors. This is achieved by a group
sparsity representation of the discrete optimization variables for RRHs selection as shown in Fig.
1. Specifically, by regarding all the beamforming coefficients of one RRH as a group, switching off
this RRH corresponds to setting all the associated beamforming coefficients in the same group to be
zero simultaneously. We thus enforce the group sparsity structure in the aggregative beamforming
vector to guide switching off the corresponding RRHs to minimize the network power consumption.
Similar to group sparse beamforming for RRH selection, there is a corresponding user side node
selection problem. With crowded mobile devices, it is critical to maximize the user capacity, i.e.,
the number of admitted users. This user admission problem is equivalent to minimizing the number
of violated QoS constraints (modeled as gi(x) ≤ 0 for the i-th user and may be infeasible), which
can further be modeled as minimizing the individual sparsity of the auxiliary vector z = [zi] with
zi ≥ 0 indicating the violations of the QoS constraints. That is, for the constraint gi(x) ≤ zi (always
feasible as the auxiliary variable zi ≥ 0), zi = 0 indicates that the original QoS constraint gi(x) ≤ 0
is feasible, while zi > 0 indicates that the original QoS constraint gi(x) ≤ 0 is infeasible. Therefore,
by enforcing this structured sparsity in the solution, user admission can be effectively handled.

2.1.2 High-Dimensional Structured Estimation

With limited radio resources, it is challenging to support massive device connectivity for such
applications as IoT. Fortunately, only part of the massive devices will be active at a time given
the sporadic traffic for the emerging applications (e.g., machine-type communications, Internet-of-
Things (IoT)) [9]. Active user detection is thus a key problem for providing massive connectivity
in UDNs, which turns out to be a structured sparse estimation problem. Specifically, suppose we
have N single-antenna mobile devices (K of which are active) and one M -antenna base station
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(BS). The received signal at the BS has the form Y = HΣQ + W , where Σ ∈ R
N×N is the

unknown diagonal activity matrix with K non-zero diagonals whose positions are to be estimated,
H ∈ C

M×N is the unknown channel matrix from all the devices to the BS, Q ∈ C
N×L is the known

pilot matrix with training length L, and W is the additive noise. We thus need to simultaneously
estimate the channel matrix H and Σ, which poses a great challenge. We observe that detecting
the active users is equivalent to estimating the group sparsity structure of the combined matrix
Θ = HΣ ∈ C

M×N , which has a group structured sparsity in columns of matrix Θ, induced by
the structure of Σ. That is, when mobile device n is inactive, all the entries in the n-th column in
matrix Θ become zeros simultaneously. Due to the limited radio resources, the training length L
will be much smaller than the channel dimension N , and thus, the estimation problem is ill-posed
and yields a high-dimensional structured estimation problem.

Fortunately, the embedded low-dimensional structure (i.e., the structured sparsity) can be al-
gorithmically exploited to ensure the success for the high-dimensional structured estimation, as
illustrated in Fig. 2 for the behaviors of phase transitions and normalized mean square error
(NMSE) . Phase transition defines a sharp change in the behavior of a computational problem as its
parameters vary. Convex geometry and conic integral geometry provide principled ways to theoreti-
cal predicate the phase transitions precisely [15]. In particular, the phase transition phenomenon in
Fig. 2 (a) reveals the fundamental limits of sparsity recovery in the best cases, i.e., without noise.
Specifically, such study reveals that the required training length, or the number of measurements,
depends on the sparsity level of Θ, and highly accurate user activity detection can be achieved with
sufficient measurements. Fig. 2 (b) further demonstrates that the low-dimensional structure can
be exploited to significantly reduce the training length for active users detection even in the noisy
scenarios.

2.2 A Generalized Sparse Optimization Paradigm

We have demonstrated that effective network adaptation can be achieved by either inducing vector
sparsity in the structured manner or estimating the structured sparsity pattern. In this part, we
provide a generalized sparse optimization framework to algorithmically exploit the low-dimensional
structures in UDNs. This is achieved by optimizing a constrained composite combinatorial objec-
tive:

minimize
z∈Cn

f(z) := f1(Supp(z)) + f2(z) subject to z ∈ C, (1)

where Supp(z) is the index set of non-zero coefficients of a vector z, f1 is a combinatorial positive-
valued set-function to control the structured sparsity in z, f2 is a continuous convex function in
z to represent the system performance such as transmit power consumption, and the constraint
set C serves the purpose of modeling system constraints, e.g, transmit power constraints and QoS
constraints. The most natural convex surrogate for a nonconvex function f is its convex envelope,
i.e., its tightest convex lower bound. The main motivation for convexifying function f is that
the convexified optimization problems make it possible to use the convex geometry theory [15] to
reveal benign properties about the globally optimal solutions, which can be computed with efficient
algorithms. For example, the individual sparsity function with ℓ0-norm in z can be convexified to
the ℓ1-norm. The group sparsity function can be convexified by the mixed ℓ1/ℓ2-norm. More general
convex relaxation results can be derived based on the principles of convex analysis [15]. Note that,
it is critical to establish the optimality for various convex relaxation approaches in UDNs. For
example, for the nonconvex active user detection problem in Section 2.1.2, the optimality condition
can be established via the conic geometry approach in [15].

The constraint set C serves the purpose of modeling various QoS constraints including unicast
beamforming, multicast beamforming, and stochastic beamforming, just to name a few. For exam-
ple, the nonconvex QoS constraints for unicast beamforming can be equivalently transformed into
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Figure 3: (a) A partially-connected 5-user interference channel with the index set of connected
links as V = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 5), (4, 1), (4, 5), (5, 1)}. (b) A cache-aided 5-user
interference channel with cached messages at each receiver indexed by C1 = {2, 5}, C2 = {1, 5},
C3 = {2, 4}, C4 = {2, 3} and C5 = {1, 3, 4}. (c) Let M = [Mij ] ∈ C

K×K with Mij = uH

i vi ∈ C,
where ui ∈ C

n and vi ∈ C
n are the precoding and decoding vectors with n as the number of

channel uses for transmission. The incomplete matrix M with partial known entries indexed by
V serves as the side information modeling matrix for (a) and (b), i.e., Mii = 1 means to preserve
the desired signals for each receiver, Mij = 0,∀(i, j) ∈ V represents cancelling the interference, and
Mij = ∗,∀(i, j) /∈ V ∪ {(i, i)} can be any (unknown) values.

convex second-order cone constraints [7]. Furthermore, physical layer integration techniques can
effectively improve the network performance via providing multicast services, which, however, yield
nonconvex quadratic QoS constraints. The semidefinite relaxation (SDR) technique turns out to be
effective to convexify the nonconvex quadratic constraints via lifting the original vector problem to
higher matrix dimensions, followed by dropping the rank-one constraints. For stochastic beamform-
ing with probabilistic QoS constraints due to CSI uncertainty, the probabilistic QoS constraints can
be convexified based on the principles of the majorization-minimization procedure, yielding sequen-
tial convex approximations. In summary, the general formulation in (1) enables efficient algorithm
design and analysis for network adaptation in UDNs.

3 Generalized Low-Rank Optimization with Network Side Information

UDNs are highly complex to optimize, for which it is critical to exploit the available network side
information. For example, network connectivity information, cached content at the access points,
and locally computed intermediate values, all serve as exploitable side information for efficiently
designing coding and decoding in UDNs. In this section, we provide a generalized low-rank matrix
modeling framework to exploit the network side information, which helps to efficiently optimize
across the communication, computation, and storage resources. To demonstrate the powerfulness
of this framework, we present topological interference alignment as a concrete example and then
extend it to cache-aided interference channels and wireless distributed computing systems. A general
low-rank optimization problem is then formulated by incorporating the network side information.

3.1 Network Side Information Modeling via Incomplete Matrix

To exploit the full performance gains of network densification, recent years have seen progresses on
interference management under various scenarios depending on the amount of shared CSI and user
messages. Typical interference management strategies include interference alignment, interference
coordination, coordinated multipoint transmission and reception, to name just a few. However, the
significant overhead of acquiring global CSI motivates numerous research efforts on CSI overhead
reduction strategies, e.g., delayed CSI, alternating CSI and mixed CSI. One of the most promising
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strategies is topological interference management (TIM) [11], for which only network connectivity
information is required. This is based on the fact that most of the wireless channel propagation
links are weak enough to be ignored, thanks to pathloss and shadowing. However, the TIM problem
turns out to be linear index coding problems [11], which are in general highly intractable and only
partial results exist for special cases. Recently, a new proposal was made for the TIM problem,
which can greatly assist the algorithm design. The main innovation is to model the network con-
nectivity pattern in UDNs as an incomplete matrix. Then the TIM problem can be formulated as
a generalized matrix completion problem1, which helps to develop effective linear precoding and
decoding strategies. Fig. 3 demonstrates the modeling framework, with Fig. 3 (a) showing a 5-user
interference channel as an example and Fig. 3 (c) showing the corresponding modeling matrix. The
task of TIM is to complete the side information modeling matrix, which will then determine the
precoder and decoder [8].

This modeling framework is very powerful, and can be adopted to consider other design problems
in UDNs. By equipping the densely deployed radio access points and mobile devices with isolated
cache storages, caching the content at the edge of the network provides a promising way to improve
the throughput and reduce latency, as well as reducing the load of the core network and radio
access networks [4]. In general, content-centric communications consist of two phases, a content
placement phase followed by a content delivery phase. However, due to the coupled wireline and
wireless communications in cache-aided UDNs, unique challenges arise in the edge caching problem.
Fortunately, the incomplete matrix modeling framework can capture the information of the content
cached at different nodes. Fig. 3 (b) shows an example for cache-aided 5-user interference channels,
where the side information is represented in the side information modeling matrix in Fig. 3 (c).
Similarly, this modeling framework can also be extended to wireless distributed computing networks
[12]. For the prevalent distributed computing structures like MapReduce and Spark, the basic idea
is that intermediate values computed in the “map” phase based on the locally available dataset,
can be regarded as the side information for the “reduce” phase to compute the output value for a
given input. This thus can help reduce the communication overhead in the “shuffle” phase to obtain
the intermediate values that are not computed locally in the “map” phase. The incomplete matrix
modeling approach will help to formulate the design problems for wireless caching and distributed
computing systems.

3.2 A Generalized Low-Rank Optimization Paradigm

We have presented an effective and general framework to model various network side information
in UDNs. Next we present a low-rank optimization formulation to exploit the available network
side information. The side information modeling matrix M as shown in Fig. 3 (c) helps cancel
interference over n channel uses, yielding an interference-free channel with 1/n degrees-of-freedom
(DoF), i.e., the first-order data characterization. Observe that the rank of the side information
modeling matrix M , denoted by rank(M), equals the number of channel uses n, which equals
the inverse of the achievable DoF. To maximize the achievable degrees-of-freedom (DoF), we thus
can minimize the rank of the side information modeling matrix, yielding the following generalized
low-rank optimization problem:

minimize
M∈Cp×q

rank(M) subject to M ∈ D, (2)

where the constraint set D encodes the network side information. Low-rank optimization has been
proved to be a key design tool in machine learning, high-dimensional statistics, signal processing
and computational mathematics [14]. The rank function is nonconvex and thus is computationally
difficult, but convexifying it leads to efficient algorithms. For example, the nuclear norm (i.e., the

1B. Hassibi, “Topological interference alignment in wireless networks,” Smart Antennas Workshop, Aug. 2014.
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Figure 4: Phase transitions for the topological interference management problem for a partially
connected K-user interference channel with the network side information modeling constraint set
D = {M ∈ R

30×30|Mii = 1,Mij = 0,∀(i, j) ∈ S}, where the set S is randomly and uniformly
sampled. The heat map indicates the empirical probability of success (blue=0%; yellow=100%).

summation of singular valves of a matrix) provides a convex surrogate of the rank function that is
analogous to the ℓ1-norm relaxation of the cardinality of a vector.

Given the special structure of the side information modeling matrix in UDNs, most existing
algorithmic and theoretical results for low-rank optimization are inapplicable. The recent work
[8] contributed a novel proposal of nonconvex paradigms for solving the generalized low-rank opti-
mization problem (2) by optimizing over the nonconvex rank constraints directly via Riemannian
optimization and matrix factorization. Fig. 4 illustrates the phase transition behavior for the
generalized low-rank optimization in topological interference management, which characterizes the
relationships between the achievable DoF and the number of connected interference links on aver-
age. Given the rank, representing the achievable DoF, with more connected interference links, the
success probability for recovering the incomplete side information modeling matrix is lower. It thus
provides the guidelines for network deployment in dense wireless networks, content placement in
cache-aided interference channels, and dataset placement in wireless distributed computing systems.

4 Optimization Algorithms and Analysis

We have seen quite a few algorithmic challenges for the sparse and low-rank modeling frameworks
for UDNs. In this section, we present some new trends in optimization algorithms for solving the
generalized sparse and low-rank optimization problems in the forms of (1) and (2), respectively.
Basically, numerical optimization algorithms can be classified in terms of first versus second order
methods, depending on whether they use only gradient-based information versus calculations of both
the first and second derivatives. The convergence rates of second-order methods are usually faster
with the caveat that each iteration is more expensive. In general, there is a trade-off between the per-
iteration computation cost versus the total number of iterations, though first-order methods often
scale better to large-scale high-dimensional statistics problems [13]. While optimization problems in
communication systems are typically solved in the convex paradigm with the second-order methods,
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Figure 5: (a) Graphic representation of Riemannian optimization algorithms at each iteration.
(b) Solving rank-constrained optimization problem minimizeM∈M f(M) with M = {M ∈
R
100×100|rank(M) = 5} and f(M) =

∑100
i=1(Mii − 1)2 +

∑
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T
UΣQV ,V QV ) : QU ,QV ∈ Q(r)}, where O(r) is the set of all r × r orthogonal

matrices.

thanks to the ease of use of the CVX toolbox, we have observed the necessity of the first-order
methods and the importance of the nonconvex paradigm, as will be elaborated in the following
parts.

4.1 Convex Optimization Algorithms

We have presented a variety of methodologies to convexify the nonconvex objective functions and
nonconvex constraints for the generalized sparse optimization problem (1). Newton iteration based
interior-point methods supported by many user-friendly software packages (e.g., CVX) provide a
general way to solve constrained convex optimization problems. However, the cubic computational
complexity of each Newton step limits its capability to scale to large network sizes in UDNs. This
motivates enormous research efforts to improve the computational efficiency for convex programs,
including the techniques of first-order methods, randomization, parallel and distributed computing.

Parallel and distributed optimization provides a principled way to exploit the distributed com-
puting environments to increase the levels of scalability, while reducing the communication costs.
To solve a general large-scale convex programs, a principled two-stage framework has recently been
proposed in [5] with the capability of providing certificates of infeasibility, enabling parallel and scale
computing. This is achieved, in the first stage, by the matrix stuffing technique to fast transform
the original convex programs into the standard conic optimization problem form via updating the
associated values in the pre-stored structure of the standard conic program. In the second stage,
the ADMM based algorithm is adopted to solve the standard large-scale conic optimization problem
via exploiting the problem structures [5] to enable parallel cone projection at each iterate.

Other lines of works have focused on the use of first-order methods and randomization to solve
large convex programs. In particular, for sparse convex optimization problems, Frank-Wolfe-type
algorithms (a.k.a., conditional gradient) have recently gained enormous interests, fueled by the
excellent scalability with projection-free operations via exploiting the well-structured sparsity con-
straints. The coordinate descent method has gained its popularity for scalability by choosing a
single coordinate (or a block of coordinates) to be updated within each iteration, thereby reducing
the iteration computing cost. Approximation techniques, including randomization methods and
sketching methods, further provide algorithmic opportunities to enable scalability for, in particular,
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first-order methods, via speeding up numerical linear algebra or reducing problem dimensions. In
particular, the stochastic gradient method provides a generic way to stochastically approximate
the gradient descent method to solve large-scale machine learning problems. All the above pre-
sented algorithmic and theoretical results may be leveraged to solve large-scale convex optimization
problems in UDNs.

4.2 Nonconvex Optimization Algorithms

Recently, a new line of work has attracted significant attentions, which focuses on solving the
nonconvex optimization problems directly via developing efficient nonconvex procedures, some-
times with optimality guarantee. We have seen recent progress on nonconvex procedures based on
various algorithms (e.g., projected/stochastic/conditional gradient methods, Riemannian manifold
optimization algorithms) for a class of high-dimensional statistical problems and machine learning
problems, including low-rank matrix completion, phase retrieval and blind deconvolution, to name
just a few. In particular, optimization by directly exploiting problems’ manifold structures is be-
coming a general and powerful approach to solve various nonconvex optimization problems. The
structured constraints such as rank and orthogonality appear in many machine learning applica-
tions, including sensor network localization, dimensionality reduction, low-rank matrix recovery,
phase synchronization, and community detection.

At a high-level standpoint, Riemannian optimization is the extension of standard unconstrained
optimization searching in the Euclidean space to optimizing in the Riemannian manifold space by
generalizing the concepts such as the gradient and Hessian [6]. A graphic representation of Rieman-
nian optimization algorithms is illustrated in Fig. 5. Specifically, the Euclidean gradient ∇f(Xk)
needs to be projected to the tangent space TXk

M of manifold M to define a search direction ξXk

(which can be computed based on the principles of the conjugate gradient method or trust-region
method), followed by the retraction operator RXk

to define a new iterate Xk+1 = RXk
(αξk) (α is

the step size) on the manifold M. In particular, we exploit the manifold geometry of fixed-rank
matrices to solve the low-rank optimization problem (2) efficiently. Fig. 5 (b) demonstrates the
effectiveness of Riemannian optimization based methods. It shows that the Riemannian optimiza-
tion enjoys fast convergence rates, e.g., compared with an existing approach based on alternating
minimization.

5 Conclusions and Future Directions

This article presented generalized sparse and low-rank optimization techniques for optimizing across
communication, computation and storage resources in UDNs by exploiting network structures and
side information. Illustrated by important application examples, various structured sparse mod-
eling methods were introduced, and an incomplete matrix representation was presented to model
different types of network side information. Methodologies of designing scalable algorithms were
discussed, including both convex and nonconvex methods. The presented results and methodologies
demonstrated the effectiveness of structured optimization techniques for designing UDNs.

Despite the encouraging progress, there still remain a variety of interesting open questions. To
date, generalized sparse and low-rank optimization techniques are mainly applied to improve the
network energy efficiency and spectral efficiency in UDNs. However, emerging mobile applications
have strong demands for user privacy and ultra-low latency communications, which call for more
general mathematical models and formulations. Other interesting problems concern the theoretical
analysis for the generalized sparse and low-rank optimization models and algorithms. Although we
have seen significant progresses for theoretical understanding of sparse and low-rank optimization
problems via convex relaxation approaches [15] and nonconvex procedures, it is challenging to apply
existing results to the generalized sparse and low-rank optimization problems (1) and (2) due to
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the complicated structures. Finally, there are a variety of interesting research directions associated
with improving the computational scaling behaviour of various algorithms via recent proposals, e.g.,
randomized algorithms based on sketching.
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