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Abstract—The Internet of Things (IoT), as the latest in-
formation technology, is expected to support the ubiquitous
connectivity of anything, anytime and anywhere. Since numerous
IoT devices will be connected to the cellular networks, the
conflicting demands of ultra-low latency, massive connectivity
and high reliability impose significant burdens on the opera-
tional wireless networks. Exploiting various temporarily unused
computational and storage resources by invoking cooperative
caching and computing has the potential of supporting these
demanding applications. Therefore, the burdens imposed on
wireless networks by the IoT applications can be mitigated by
the proposed social networking and caching assisted collaborative
computing IoT framework.

Index Terms—Internet of Things (IoT), Social Networking,
Caching, Computing, and Non-Orthogonal Multiple Access

I. INTRODUCTION

The Internet of Things (IoT) is a revolutionary commu-
nication paradigm conceived for connecting a plethora of
devices together [1], relying on communication, caching and
computing in wireless networks. The family of IoT application
scenarios can be generally divided into two broad categories.
In massive IoT applications, sensors typically report to the
central processor on a regular basis, whilst relying on low-
cost devices with low energy consumption. Their application
examples include smart buildings, logistics, tracking and fleet
management. In critical IoT applications there are high de-
mands in terms of reliability, availability and low latency.
Critical IoT applications include remote health monitoring,
traffic safety and control, industrial applications and control,
remote manufacturing, training, surgery, etc [2]. It is predicted
that the IoT will include over 25 billion units by 2020 [3].
Naturally, this dramatic proliferation of the emerging IoT
technologies will impose significant challenges on the design
of wireless networks.
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In IoT networks, there are diverse communication equip-
ment having various computational and storage capability. In
order to further improve the efficiency of communication in
this treatise we propose to invoke cooperative caching and
computing. The devices in the wireless network may engage
in activities beyond their own capability. By cooperating with
nearby devices, Ding et al. [4] designed a cognitive network
for efficiently exploiting the temporarily unused spectral re-
sources. By contrast, our goal is to exploit the nearby devices
for cooperative caching and computing by relying on social
networking.

Traditional wireless networking mainly considers the wave
propagation characteristics and the physical locations of users
as well as their busy/idle status, but not their social char-
acteristics. To fill this gap, our proposed framework exploits
the social relationships of users such as the typical frequency
and duration of their contact, because cooperating with nodes
having a high-quality link improves the system performance
attained [5]. By jointly exploiting the physical and social
characteristics, a more powerful system may be designed [6].

In order to further enhance the performance of our frame-
work, the beneficial selection of multiple access techniques
constitutes another vital factor, which should be taken into
account. Multiple access techniques may be broadly classified
into orthogonal and non-orthogonal approaches. In Orthogonal
Multiple Access (OMA), the signals of different users do not
directly interfere with each other. By contrast, Non-Orthogonal
Multiple Access (NOMA) allows overlapping of the user-
signals in the time-, frequency-, spatial-, power- or the code-
domain, with the motivation of enhancing the throughput of
OMA [7] [8]. In most of the existing wireless networks,
the radio resources, including the time and frequency, are
orthogonally allocated to different devices for their data trans-
mission. However, in the IoT a large number of devices must
be supported, hence using OMA techniques is less practical.
Therefore NOMA has been identified as a promising technique
of supporting numerous IoT devices.

Additionally, a compelling combination of social network-
ing, cooperative caching and computing may be invoked for
supporting IoT applications. Hence in Section II we com-
mence by outlining our social networking and caching aided
collaborative computing system framework proposed for IoT
networks. Given this cross-layer architecture, in Section III we
analyze the social considerations in the proposed framework.
Next, we introduce coded caching and illustrate its advantages
as well as challenges in Section IV, whilst our NOMA solution
advocated is analyzed in Section V. Furthermore, the above-
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Fig. 1. An illustration of the proposed system framework.

mentioned techniques are studied in Section VI. Finally, we
conclude in Section VII.

II. THE PROPOSED SOCIAL NETWORKING AND CACHING
AIDED COLLABORATIVE COMPUTING FRAMEWORK

Sophisticated IoT applications require large storage and
substantial computational capability at a low cost. To resolve
these design-conflicts, we propose a social networking aided
cooperative framework to exploit the temporarily unused com-
putational and storage capability of idle social contacts both
for caching and computing.

An illustration of the proposed framework is shown in Fig.
1 and summarized as follows.

1) Information Collection: The social relationships of
nodes and their cooperative inclination is surveyed, with
special emphasis on their willingness to share their
idle storage and computational capability. The infor-
mation collected is delivered to the base station (BS)
for exploiting it in its coverage area. The corresponding
information shown in Fig. 1 is as follows:
1) the social relationships between U1 and U2-U5 are
strong, hence U2-U5 are willing to cooperate with U1;
2) U2 and U4 have similar interests in data A and also
have some idle storage capability;
3) the tasks of U1 are beyond its computational capabil-
ity;
4) U3 and U5 have idle computational capability, which
can be exploited;
Hence the ’idle capability’ matrix is introduced to quan-
tify the users’ capability of supporting caching aided
collaborative computing.

2) Data Content & Computational Task Distribution:
During content caching, data A is cached both into U2

and U4, since they have idle storage capability and share
a common interest in data A. When U1 requires data A
for executing the computational task B, it fails owning
to the exhaustion of its own computational capabilities.
Therefore, U1 has to gain access to data A first and then
resort to the social contacts’ assistance for carrying out
the computational tasks required.

3) Caching Aided Collaborative Computing Policy: By
invoking cooperative caching, data A can be acquired
from U2 and U4. Having obtained data A, it turns out
that U1 still cannot process data A due to its limited
computing power. Hence U1 partitions the related com-
putational task B into two subtasks and allocates them
to U3 and U5 for cooperative computing. After U3 and
U5 complete their tasks, the computational results are
returned to U1. To improve the caching efficiency, data
A is split into A1 and A2 first and then transmitted. In
this context, U3 and U4 may form a NOMA cluster for
their communication. Therefore, the final caching aided
collaborative computing scheme is shown at the right of
Fig. 1.

Naturally, the consideration of the associated social relation-
ships also significantly affects the efficiency of cooperation.
Therefore, a cross-layer operation aided cooperative caching
and computing scheme should be designed. In the following
section, we will analyze the impact of both the social relation-
ships as well as of the advantages of coded caching and of
the NOMA framework advocated.



3

Social Interest Similarity

Social Trust Matrix  Idle Capabilities Matrix

Cooperative Caching and Computing Scheme

Face-to-face social 
relationship

Online social 
relationship

Strong social interaction Weak social interaction

Cooperative caching or computing

Modeling

U1 U2 U3 U4 U5 U6

U1 1.0 0.9 0.8 0.8 0.9 0.3

U2 0.8 1.0 0.2 0.3 0.2 0.3

U3 0.9 0.2 1.0 0.1 0.0 0.1

U4 0.9 0.1 0.2 1.0 0.3 0.2

U5 0.9 0.3 0.0 0.4 1.0 0.3

U6 0.2 0.2 0.2 0.1 0.2 1.0

Cluster formation

×

× ×

U1 U2 U3 U4 U5 U6

Idle computational capability 0 1 0 1 0 0

Idle storage capability 0 1 1 1 1 1

…… capability …… …… …… …… …… ……

U1

U2

U3

U5U4

U6

U1

U2

U3

U5U4

U6

Fig. 2. An illustration of the proposed framework based on social relationships.

III. SOCIAL BEHAVIOR INFERENCE AND IMPACT

In IoT networks, the activity of the devices is intrinsically
linked to the human behavior, after all, the IoT applications
are developed to satisfy the human requirements. The social
relationship furnishes information for the IoT devices. The
social relationships may manifest themselves in terms of face-
to-face social relationships and online social relationships [9].
Face-to-face social relationships are mainly established by
localized interactions, while the online social relationships
rely on Facebook, Instagram, Linkedin and Twitter, etc. In
these two types of social relationships, the following three
aspects will be considered for reliable communication in our
framework.

A. Social Modeling Based on Social Behaviors

1) Social Interaction: direct communication can indeed
be realized, but high-integrity communication cannot be
guaranteed because of the mobility of nodes, where the
social interaction can be characterized by the contact du-
ration and contact frequency between users [5]. Specif-
ically, the data is deemed to be successfully transmitted
to others, if the transmission process is accomplished
within the contact duration.

2) Social Trust: social trust plays a vital role in deter-
mining the level of altruism amongst users, quantified
by a non-negative number s ∈ [0, 1], where s = 1
indicates unconditional availability and s = 0 indicates
no availability. The social trust between each pair of
users can be quantified by the matrix shown in Fig. 2.

3) Social Interest Similarity: users in a certain area or
during a certain period are likely to have interests in the
same content. Social interest similarity is hence a metric
quantifying how similar the interests of two users are,
which may be used for partitioning the network into
user-groups for improving the performance by content
sharing. Instead of repeatedly requesting the content of
interest from the BS, the user may request it from the
users in the same interest group.

In our framework, the social relationships are considered to
be the driving factors of cooperation. On the one hand, nodes
having ceratin needs tend to seek the nearby nodes having both
available resources and common interests, who are willing to
help them. On the other hand, the requested nodes will decide
whether to offer help based on the reputation of the requesting
nodes.
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B. Social Influence Case Study
Fig. 2 shows the influence of the social relationships on

our proposed scheme. Here, we assume that U1 has exhausted
its capability and hence needs cooperation for completing its
tasks.

First, the associated social relationships are surveyed based
on the users’ reports. When considering the social trust matrix
from the perspective of U1, the social trust indices of U2-U5

are 0.9, 0.8, 0.8, and 0.9, respectively, meeting the requirement
of U1 in terms of social trust. By contrast, U6 is not sufficiently
trustworthy. Additionally, U2-U5 all believe that U1 is depend-
able and hence they are willing to aid U1. However, U4 and
U5 still cannot assist U1, since their social relationships with
U1 are relatively weak. Bear in mind that U1’s trust in U2 is
not necessarily reciprocated at the same level, but the social
interaction has to be also bidirectional.

The associated capability matrix is also shown in Fig. 2.
For the sake of simplicity, we use “1” to indicate that the
user does have idle capability, otherwise we write “0”. It is
clear that U2 and U3 do have idle capability. According to the
above-mentioned information, a simple cooperative caching
and computing scheme can be conceived, where U1 relies on
cooperative caching or computing provided by U2, but only
on cooperative caching provided by U3. Based on their similar
interest, U2 and U3 may form a cooperative cluster to perform
cooperative caching. It can be readily seen that the social
relationships are important for beneficial candidate selection,
when invoking caching aided collaborative computing.

Furthermore, when the data content or the computational
tasks have to be partitioned into several parts, the specific
partitioning has to be carefully considered. Apart from the
capability of users, their social relationship is another non-
negligible aspect. Social trust can be exploited for beneficially
designing the content/computational task allocation schemes.
For example, more popular data content can be cached in more
dependable nodes and similarly, more computational tasks may
be allocated to more reliable nodes, such as U2 in Fig. 2.

Social relationships constitute an important consideration in
our proposed framework, but it may be a challenge to establish
an accurate mathematical model of the social relationships
amongst users. Machine learning can be used for surveying the
complex social relationships and for characterizing the social
behaviors [10].

IV. EXPLOITING CODED CACHING IN THE PROPOSED
FRAMEWORK

By prefetching popular content during off-peak times for
the devices, wireless caching is capable of alleviating the
peak-hour network congestion, especially for delay-tolerant
applications. Again, IoT devices may request desired content
form each other [11] [12] with the aid of cooperative caching
amongst them. Therefore, caching-aided networks have the
potential of reducing the backhaul load, in turn reducing
the end-to-end access delay and increasing the peak rate
[13]. In multi-user caching scenarios the social relationships
developed in the previous section can be exploited to form both
cooperative clusters and the NOMA-pairs to be developed in
the next section.

Furthermore, coded caching exploits that each content of
interest can be partitioned into multiple content fragments,
which may be cached in different devices, hence further
increasing the caching efficiency [14]. When a user sends
a content request, nearby devices which have cached the
different content fragments of the content items requested are
capable of delivering the desired content fragments. For ex-
ample, the maximum distance separable (MDS)-coded caching
schemes [11] split each content item into n parts and encode
them into N(N > n) coded pieces. Once the original n
coded fragments have been collected, the original content
can be recovered, which beneficially reduces both the content
download time and the backhaul rate. Apart from the above-
mentioned advantages, coded caching can also be exploited
for caching aided collaborative computing.

Cache-enabled wireless networks operate in two phases in
general, namely the content placement and content delivery.
During the content placement, the collection of information
concerning the user-capability and social relationships will be
performed first. As shown in Fig. 3, based on the information
collected, the BS distributes the content to the most suitable
zones, where the users have common interests. According to
the social relationships of nodes, popular content will be stored
by the trusted users to increase the successful content sharing
probability. With the aid of coded caching the content delivery,
cooperative caching and collaborative computing become more
flexible. In Fig. 4 Case 1, U3 can download content A form
U1 and U2. Therefore, content A can be readily retrieved from
the close-by users instead of the BS to avoid excessive loading
for the BS. With the advent of coded caching, content A is
not necessary fetched from a single user. This is practically
beneficial, when content A is excessive or when a cooperator
is only prepared to offer limited assistance.

To apply coded caching in our proposed framework, a range
of practical issues have to be solved. Because of the limited
computational capability of IoT devices, the coded strategy
associated with a low complexity is indeed compelling. Fur-
thermore, both the user’s interest in the content and their social
relationships are time-variant. Hence the cooperative caching
scheme has to be adapted accordingly.

V. NOMA AIDED SOCIAL NETWORKING FOR CONTENT
DELIVERY AND COMPUTATION OFFLOADING

In the fully-fledged IoT networking of the near future
numerous devices must be supported within a small region.
Hence it is unrealistic to have an exclusive orthogonal channel
for each device. Fortunately, NOMA allows multiple devices
to use the same resource-slot, hence improving the spectral
efficiency of conventional OMA.

A. Basic Concept of Power-Domain NOMA

For simplicity, we assume that there are two users in a
NOMA cluster, each having a single transmit and receive
antenna. The basic concept of NOMA is shown in Fig. 4.
According to [15], the NOMA cluster may support a user
having higher transmit power and a poorer channel condition
as well as a lower-power user having better channel conditions.
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Let us assume that U1 is assigned a higher and U2 a
lower transmit power. During transmission in the downlink,
the signals of U1 and U2 are superposed first and they are
transmitted over the same time- and frequency-slot. U1 directly
decodes its own higher-power signal which is only slightly
contaminated by the lower-power U2. At U2 the higher-power
U1 signal is not required, but since the higher-power signal
can be more reliably detected, it is this one, which is detected
first and then remodulated, followed by its subtraction from the
composite (U1+U2) signal to generate the noise-contaminated
U2 signal.

B. NOMA for Heterogeneous IoT

As mentioned, a substantial benefit of NOMA invoked for
the IoT is that the devices transmit in the same time- and
frequency-slot, which leads to efficient exploitation of the
limited spectral resources. Additionally, when the channel gain
between U1 and the BS is significantly different from that of
the BS-U2 link, the performance gain of NOMA over OMA
can be significant. Since the battery of IoT devices is limited,

the energy consumption is also a crucial issue to be considered.
NOMA is capable of enhancing the energy efficiency.

Specifically, in Fig. 4 Case 1, U1 and U2 form a NOMA
cluster. The content A is partitioned into two fragments, which
are transmitted simultaneously to U3 through the same chan-
nel. Similarly, U3 can also delegate computational subtasks to
U ′
1, U ′

2 and then fetch the computational results through the
same channel, as seen in Fig. 4 Case 2 and Case 3.

Although the NOMA concept brings about several ad-
vantages in our proposed framework, there are still several
challenges as for its practical application in the proposed IoT
framework. Firstly, our proposed framework considers both
physical and social system characteristics, hence the NOMA
cluster formation and resource allocation schemes are more
complex. But IoT devices cannot afford complex calculations,
hence low-complexity yet efficient allocation algorithms are
required. Secondly, when the number of cooperative users in
a NOMA cluster is increased, the spectral efficiency can be
enhanced. However, having more cooperative NOMA users
mapped to the same time- and frequency-slots will cause more
interference and makes the process of successive interference
cancellation (SIC) more challenging for both the cooperative
users and for the BSs.

VI. EXAMPLE SCENARIO AND ITS PERFORMANCE

In this section, we characterize the performance of the
proposed framework. To illustrate the effects of social rela-
tionships, we introduce a non-negative number Si,j to model
the social relationships between users i and j where having a
higher Si,j means a stronger social relationship. When Si,j

is sufficiently high, caching aided collaborative computing
can be relied upon. The simplest possible NOMA cluster
supporting as few as two users is exploited for transmitting
the desired content or computational task. We assume that
every content file is partitioned into two independent fragments
and that two users of the NOMA cluster will cache a single
fragment of content. Similarly, a specific computational task
may be divided into two subtasks for cooperative computing
by the NOMA cluster. The cooperation is deemed successful,
when both cooperative users complete their caching aided
collaborative computing task. During the computing process,
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we assume that the users have different CPU clock frequencies
of {1.0, 1.2, 1.4, 1.6} GHz. The complexity of the computa-
tional tasks is quantified in terms of the number of bits to
be processed given by

{
1.0× 105, 1.5× 105, 2.0× 105

}
bits,

where the number of CPU cycles required per bit obeys the
uniform distribution in the range of [500, 1000] cycles/bit. The
total bandwidth is 10MHz, which is divided into 10 subbands
for data transmission. In OMA, every subband supports only
one of the cooperating users, while NOMA supports two
cooperating users in each subband.

Fig. 5 shows the system’s latency quantified in terms of
the total time required by the caching aided collaborative
computing task. The social index represents the requirements
concerning the users social relationships. A higher social index
indicates a user’s preference for a stronger social tie, higher
social trust and more similar interest. Observe in Fig. 5 that
the social relationship is an important factor in terms of prede-

termining the performance improvements attained, especially
for the situation where more users are involved. However,
relying on an excessively high social index makes it hard to
perform cooperative caching and computing, hence resulting
in a degraded system performance. The system performance
attained may be further enhanced, when coded caching is
invoked, which increases the speed of data sharing.

Fig. 6 shows the energy consumption of a two-user scenario
dealing with different computational tasks or contents. It is
clearly seen that NOMA imposes a lower energy consumption,
since NOMA enhances the transmission efficiency. Further-
more, when the difference of channel conditions becomes
more pronounced, significant improvements can be achieved
by NOMA over OMA.

VII. CONCLUSIONS

A social networking and caching aided collaborative com-
puting framework was proposed for IoT networks by consid-
ering the interplay between the physical system and social
characteristics. We have quantified the impact of social rela-
tionships on our framework. To further enhance the perfor-
mance, both coded caching and NOMA techniques have been
incorporated. Finally, our numerical results have characterized
the efficiency of the proposed framework.
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