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Abstract—This article presents a knowledge mining model, 

where a city can plan its development based on existing knowledge 

during city expansion, for example, telecommunication resource 

allocation and crowd forecasts in a new region. Unlike most works 

that focused on Internet-of-Things (IoT) sensing, this study is 

aimed at urban planning by using harvested data, from the 

perspective of city architects. For large-scale metropolitan areas, 

a massive amount of data is generated every day, either from static 

surveys or dynamic IoT sensing. For urban planners, data 

collection is not their prior concerns. How to transfer harvested 

knowledge from exiting parts of the city to suburban/rural/ 

untapped areas is a new challenge. This is because those areas still 

lack sufficient statistics, and the density of IoT deployment is low. 

Therefore, development is risky and uncertain. To exploit new 

regions requires knowledge inference. Such a transition needs data 

interpretation from historical city dynamics, involving sensor 

deployment, human activities, and resource allocation in the 

vicinity. With the proposed model, a city can estimate the 

requirement for resources when the peripheral areas on the 

outskirts of a city develop. The same model can be applied to 

enterprises for resource deployment, and applications are not 

merely limited to governments. 

 
Index Terms — Knowledge mining, crowd forecast, crowd 

modeling, crowd intelligence, data inference, city dynamics, city 

economics, city decay, city resilience, city monitoring, nonnegative 

matrix factorization, self-organizing sensing, self-organizing map, 

resource allocation, resource planning, mobile edge computing, 

smart city 

I. INTRODUCTION 

ity economics, or urban economics, discusses the interplay 

between various crowd behavior and living environments, 

e.g., populations, house prices, and communication coverage, 

in an urban spatial structure. Usually, the methodology for city 

economics involves two parts. One is detection of urban 

dynamics, and the other is prediction of urban growth/decay. 

For detection, typical approaches rely on static surveys, such as 

questionnaires and household statistics. Today, ever since 

cyber-physical systems arise, modern city economics no longer 

passively depends on static data but proactively collects them 

by leveraging the various Internet of Things (IoT). With 

advances in miniaturization of electronic circuits, the IoT can 

be deployed almost in every corner of a city. For example, 

generic IoT devices like particulate matter sensors and carbon 

dioxide meters can be installed outdoors to measure the air 

quality of a city. Gaseous and pH sensors can be respectively 
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placed underground or underwater to monitor sewage. 

More recently, as artificial intelligence technology has made 

considerable progress, it subsequently empowers edge 

computing. Edge computing is an architectural shift from 

clouds to terminals. Such a shift involves comprehensive 

technical changes in computation, communications, 

middleware, and hardware. Edge devices can provide basic 

functionalities, such as identification and encoding, to alleviate 

computational loads and constrained bandwidth of cloud sides. 

When edge computing gradually evolves into mobile edge 

computing, the IoT no longer stays fixed in one place as before.  

For mobile edge devices, heterogeneous sensors are 

simultaneously installed in carriers, like autonomous multirotor 

drones (i.e., unmanned aerial vehicles) and self-driving cars 

(i.e., unmanned ground vehicles), to capture various data. These 

carriers can provide high mobility for city monitoring by 

forming a fluid, movable, and wireless sensor network. The 

number of participatory carriers can also be adaptively 

readjusted anytime. For instance, if city regions have high 

population densities, new carriers join the network to handle 

more samples. Sensing therefore becomes more dynamic, and 

the immersion of IoT sensing can deeply fuse into daily life. 

Among all types of IoT sensing, drones particularly attract 

significant attention in recent research. Compared with ground 

vehicles, drones are capable of adapting to various terrains that 

are inaccessible to ground vehicles due to aviation capabilities. 

Sensing coverage is therefore largely enhanced. In addition to 

sensing, telecommunication can also be attached to a fluid 

mobile network, and this establishes an ad hoc net, such as 

Mobile Ad Hoc Networks (MANETs). MANETs are fluid, 

movable, wireless networks that focus on decentralized 

communications by leveraging ubiquitous mobile devices. In 

Vehicle Ad Hoc Networks (VANETs) and Flying Ad Hoc 

Networks (FANETs) [1, 2], vehicles and drones become 

telecommunication nodes — A major carrier of 

communications in a fluid network. At present, a great deal of 

effort has been devoted to urban sensing, for instance, [3-7]. 

Apart from IoT approaches, urban monitoring based on 

crowdsensing [8] and satellite remote sensing is also another 

widely used method for detection of urban dynamics [9, 10]. As 

a whole, city dynamics can be captured from different 

perspectives with the state-of-the-art IoT. The point is how to 

utilize and convert these harvested data into knowledge, 

especially when a city expands. How many base stations are 

required for new regions when telecommunication service 

providers operate? What is the influence of crowd activities? 
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Do crowd activities cause migration of current arrangement? A 

key to the above problems resorts to crowd prediction. 

During city development, different types of crowds may 

gradually form, and crowds may vary from street to street and 

from block to block, depending on crowd types. Herein, crowds 

refer to all the activities generated by humans, e.g., data traffic 

and subscribers. Each type of crowd has its own characteristic. 

Not every region has the same statistic. When more activities 

occur, crowds and flows become larger, subsequently forming 

hotspots. Crowd activities are usually volatile and fluctuate 

over time. Beside, different types of crowds are highly 

diversified. 

In practice, it is impossible for a city to grow infinitely when 

new immigrants keep moving in. Resources could be depleted, 

and living quality may degenerate. When parts of a city decay 

or oversaturate, expansion or crowd relocation occurs on the 

outskirts of a city. Flows may be diverted from existing regions 

to suburbs. For these peripheral suburban/rural areas, the 

sampling data of the previously mentioned IoT methods for 

crowd detection are quite limited. Thus, knowledge inference 

for those areas may be inaccurate, and development is full of 

uncertainty. For city planners and enterprises, uncertainty 

means risks. How to effectively predict the demand of those 

new regions is of prior concerns. 

Take telecommunication networks for example. The statistic 

of data flows is a good indicator during deployment of base 

stations. They are built to balance communication loads and to 

provide access points for End Users (EUs). In a metropolitan 

area, site selection should consider both service coverage and 

maintenance costs while constrained communication resources 

are satisfied at the same. An equilibrium is reached after a long 

period of adjustment. When a city expands, suburban/rural 

areas gradually evolve. The scale of the city increases, but 

original resources no longer support the new scale. With those 

developing areas, the equilibrium and activity hotspots may 

shift. To evaluate the influence of newly emerged crowds and 

manage crowd activities in advance is highlighted herein. 

In this study, crowd management is fulfilled by autonomous 

deployment of each edge device in the proposed fluid mobile 

array. Since each edge device is responsible for sensing and 

communications (i.e., data from crowds), devices have to 

provide services for crowds in a balanced way and cover crowd 

requests. To this end, swarm intelligence-enabled fluid mobile 

arrays are proposed. The capability of autonomous deployment 

in such an array is empowered by Self-Organizing Maps. The 

array has capabilities to dynamically adapt to crowd changes, 

e.g., an increase or a decrease in crowds. This allows every part 

of crowds to be serviced by an edge device. No edge devices 

are overloaded or underloaded. Demands from crowds are 

balanced out. 

The innovative contributions of this study can be divided into 

two parts. One is autonomous sensing, and the other is 

autonomous planning. Herein, sensing aims for the current 

observed data, and planning means prediction for the future. 

Two parts affect each other. 

 For autonomous sensing, this study proposes swarm 

intelligence-enabled fluid mobile edge arrays. i) The 

proposed array can resolve topological reconfiguration 

problems in MANETs by providing an automatically 

learning mechanism. Such a mechanism can 

dynamically change the topology of the array based on 

sensed data, e.g., EU requests. MANETs can self-adapt 

to environments. ii) The proposed array supports an 

incremental scheme that allows new mobile devices to 

join the current formation without reorganizing the entire 

array. iii) The proposed array has the capability of 

providing isolated subnetworks by using a logically 

hierarchical structure. Thus, heterogeneous subnetworks 

can coexist. 

 Regarding autonomous planning (including crowd 

management), harvested data are fed into the planning 

model to predict the arrival of new data. Subsequently, 

the existing data along with the predicted data are input 

to the proposed array. As swarm intelligence can adapt 

to changes, the fluid array uses the new topology for 

future deployment, e.g., site selection and array 

expansion. Requests of new crowds can be satisfied. 

The rest of this paper is organized as follows. Section II 

details city sensing based on fluid mobile arrays. Section III 

then describes city management. Next, analytic results are 

discussed in Section IV. Conclusions are finally drawn in 

Section V. 

 

II. FLUID MOBILE SENSING BASED ON SELF-ORGANIZING 

SWARM INTELLIGENCE 

To be self-aware, the first step is to collect as many data as 

possible before the self-reasoning process is performed. The 

following sections introduce a swarm intelligence-enabled 

sensing technique for mobile edge devices. Swarm intelligence 

is a bionically inspired subject that studies collective behavior 

of decentralized individuals [11, 12]. Such a swarm of 

individuals can present collaborative intelligence to tackle a 

difficult problem that is beyond the capability of any individual. 

Earlier research like Ant Colony Optimization (ACO) and 

Particle Swarm Optimization (PSO) focused on finding the best 

path among the search space by simulating social behavior. 

Nowadays, such technologies have been used in robots, drones, 

and satellites for sensing, such as Swarmanoid projects 

(sponsored by the European Commission), Swarm MANETs, 

and Microsatellite Swarms by Bluetronix. However, neither 

ACO nor PSO supports incremental and hierarchical 

mechanisms at the same time. Thus, Self-Organizing Maps 

along with incremental and hierarchical mechanisms are 

introduced. 

A. Self-Organizing Mobile Edge Array 

The Self-Organizing Map (SOM) is a type of neural network. 

A typical SOM consists of only two layers of neurons. One is 

the input, and the other is the visual map space. Neurons 

between layers are interconnected by edges. The input layer is 

used to perceive outside data, whereas the map space reflects 

the input by changing the topology or appearance. 

Unlike neural networks with multilayered perceptrons that 

use both feedforward and backpropagation algorithms, SOMs 
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adopt merely the former one. This means changes of the 

topology in the map space do not loop back to affect the input 

layer or weights. It is worth noting that each neuron in the map 

space is fully connected with all of the neurons in the input layer. 

To reflect strength of connectivity, a value is assigned to each 

connection. Such a value is the weight between two connected 

neurons. No weighted edges exist in the same layer. 

As a visualization tool where high-dimensional data are 

transformed into the topology of neural connections, the 

intuition behind SOMs is simply based on the law of attraction. 

The map space of SOMs is like an elastic grid net. The node on 

the net represents a neuron, and the edge denotes the distance 

between neurons. At first, the neuron on this grid net is 

uniformly distributed, with a fixed separation between 

neighbors. Every time when stimulation inputs, only one 

neuron on this net is selected. Subsequently, this neuron attracts 

its neighbors, and the proximal neighbors move closer to the 

selected neuron. Edges may become shorter or longer. Shorter 

edges represent higher similarities between two adjacent nodes, 

whereas longer edges denote lower ones. In brief, SOMs work 

as follows. 

 

Step 1: Stimulation enters a SOM 

Step 2: Similarity is compared between the stimulation and 

all the neurons in the map space 

Step 3: Most similar neuron in the map space is selected 

Step 4: Selected neuron attracts neighbors 

Step 5: Loop continues until no stimulation enters 

 

Attraction assimilates neighbors. This reveals that the 

selected neuron does not differentiate neighbors, but makes 

them similar to itself. After self-organizing mapping, like 

attracts like. Groups of similar neurons gather together. 

In the applications of mobile edge devices, the internal 

mechanism is still the same. The difference is that the neurons 

in the map space are replaced by an array of devices. The input 

layer becomes a communication layer that receives requests 

from EUs and commands from dispatch centers (if scenarios in 

telecommunications are used as an example). Whichever device 

receives a request, it broadcasts to the entire array. The array 

can dynamically modify its topology to fit the area of interest 

(i.e., the target area) and the density of requests. 

 

 
Fig. 1.  Self-organizing mobile edge array, where the topology can be 

dynamically changed based on crowds. The mobile edge array is composed of 

mobile edge devices, each of which is connected to proximal devices. The 
sensor array is deployed in the city 

 

Fig. 1 shows city sensing based on a swarm intelligence-

enabled fluid mobile array. This figure displays two layers. One 

is the geospatial layer, and the other is the fluid sensor network 

layer. The former represents the physical environment, and the 

latter denotes the proposed self-organizing mobile edge array. 

Such an array uses swarm intelligence to dynamically change 

the topology of the array. This further empowers MANETs to 

own a self-organizing capability. When data enter the array, Fig. 

1 becomes Fig. 2. 

 

 
Fig. 2.  Self-adaptation of an 8×8 mobile edge array to various EU requests 

based on the initial formation in Fig. 1. Red dots are mobile edge devices, and 

blue lines are connections between devices. Green dots represent EU requests. 

 

 

Fig. 2 is an example of the mobile edge array powered by 

self-organizing swarm intelligence after data are received. The 

8×8 mobile edge array in Fig. 2 is a two-dimensional view of 
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the fluid sensor network layer in Fig. 1. The position of each 

mobile edge device is mapped into a geographical coordinate 

— Latitude and longitude. At the initial stage, the topology of 

an array is a uniform formation. The perimeter of the array 

approximately covers the area of interest. When more requests 

are received, the topology of the array gradually updates itself 

according to the geographical distribution of EUs and the 

density of requests. The updating strategy follows steps 1–5 of 

the SOM algorithm. 

The topology of the array reveals important clues for 

MANETs. 1) The distribution of mobile devices is based on the 

population of requests. When the density of the population is 

higher, more mobile devices focus on the area. This implies that 

more ad hoc nodes provide resources. 2) The communication 

load of each device is displayed on the hit map of the SOM. Hit 

maps collect the statistics of selected neurons after requests are 

input. 3) The edge of the topology shows the original 

communication path between connected mobile devices. 

Devices can identify neighbors by checking these edges. 4) The 

number of connected edges, or node degrees, indicates whether 

or not a mobile device is a boundary node. Identification of 

boundary nodes and nonboundary nodes is important when 

SOMs need expansion. 

 

B. Incremental Self-Organizing Mobile Edge Array 

The initial size and the shape of the topology usually follow 

default settings. When the area is larger than expected or when 

EU requests increase, the existing array may be incapable of 

offering sufficient resources. This is the reason why SOMs need 

expansion and why new mobile devices are required. 

Furthermore, EUs may relocate, and the perimeter could 

become boarder than that in the early phase. Although SOMs 

can update themselves to reflect relocation, a large perimeter 

lowers efficiency of communications. 

Under such a circumstance, Growing Self-Organizing Maps 

(GSOMs) [13] are suitable for expansion of the mobile edge 

array. Unlike typical SOMs, the size of GSOMs can be 

dynamically expanded. This means new mobile devices can 

join an existing array and share communication loads. When 

resources are depleted, dispatch centers can send more mobile 

devices to a target zone of high population density. As long as 

the number of nodes in the map space increases, the topology 

of GSOMs can readjust itself. The target zone can be serviced 

by new mobile devices and their neighbors. 

 

C. Incremental Hierarchical Self-Organizing Mobile Edge 

Array 

 

 
Fig. 3.  Sectional drawing of 8×8 neurons based on Fig. 2 when Fig. 2 is 
presented in a hierarchical structure. White rectangles are GSOMs. Red circles 

represent neurons. Dashed lines indicate the relation between parent and child 

GSOMs. For a mobile edge array, the hierarchically structural view represents 
a logical formation, not a physical one. 

 

In a typical SOM, there is no difference between one neuron 

and the other ones. Every neuron is equally treated in the same 

way. This means communications via a mobile edge array has 

the same priority, and various collected data are processed with 

the same scheme. Nonetheless, edge sensing could generate 

data with a variety of rate-distortion characteristics, such as 

high-definition photographs, acoustic signals, video streams, 

and environmental readings. This implies multimodal sensing 

may be blended with complex transmission requirements, e.g., 

multisources, multidestinations, multirates, and various time 

sensitivity, which make the system difficult to manage the 

network. 

For such a problem, the Growing Hierarchical Self-

Organizing Map (GHSOM) [13] is a feasible solution to 

heterogeneous sensing networks among MANETs. GHSOMs 

are variants of GSOMs, where the topology can be vertically 

and horizontally expanded. Fig. 3 shows that a typical edge 

array can own a hierarchical topology when different groups of 

edge devices need to be isolated. Fig. 2 is the top view, whereas 

Fig. 3 is a side view. The sizes of the both arrays are 8×8. In 

Fig. 3, each SOM (marked as a white rectangle) has the 

capability of growing nodes (denoted as red dots) automatically. 

Namely, each SOM is a GSOM. Besides, layers are 

automatically and gradually formed based on EU requests. The 

top layer is the initial layer. The lower layers are derived from 

the higher ones. Directed edges are used to indicate the relation 

between parent and child layers. The head, or the terminal 

vertex, with an arrow points at child layers, whereas the tail, or 

the initial vertex, represents source nodes from parent layers. 

Whether or not a node in the parent layer grows a child layer 

relies on the learning/adaptation phase. This means not every 

node in the parent layer points at a GSOM in a child layer. 

Furthermore, it is worth noting that an arrow points at a GSOM 
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instead of a node. A layer without any child layer is a leaf layer. 

Both the topology of each layer and each SOM can be 

dynamically expanded, depending on the learning/adaptation 

phase. In fact, GHSOMs can be viewed as nested GSOMs. The 

node of an outer GSOM can accommodate an inner GSOM. 

When a node in an outer GSOM has an inner GSOM inside, this 

node becomes a bridge. Communications across GSOMs or 

layers must go through bridges. With the hieratical structure of 

GHSOMs, MANETs can be divided into subnets to meet 

diverse purposes. When all the mobile devices in the same 

GSOM are responsible for the same type of data sensing or 

communications, they are homogeneous. If two separate 

GSOMs are homogeneous and derived from the same parent 

GSOM, the parent GSOM may become heterogeneous. In 

highly diverse heterogeneous MANETs, where homogeneous 

and heterogeneous GSOMs coexist, bridges are important. 

They can isolate heterogeneous subnets and control flows (e.g., 

prioritizing data streams). Based on this concept, the 

communication functionality of mobile edge arrays at least has 

two modes — Terminals and bridges. Terminals are for data 

harvesting. Bridges coordinate subnets and prioritize 

transmissions. Besides, bridges can also work as sink nodes for 

data pooling before collected data are transmitted to cloud 

centers. 

In MANETs, security and privacy [14] are important topics, 

especially on terminal sides, where harvested data are exposed 

to entire networks. Protection can be done inside the hardware 

of individual devices by using obfuscation or encryption 

mechanisms. Sensitive data, e.g., user locations, can therefore 

be protected in hardware. This prevents information leakage in 

the software level before data are pooled in sink nodes and 

transmitted to clouds. Another challenge is self-organization 

since it requires intensive cloud computing to decide locations 

of deployment. Future advancement could rely on decentralized 

computing to accelerate calculation. 

III. CITY RESILIENCY MANAGEMENT BY PREDICTION AND 

PLANNING 

In the previous section, SOMs are used to determine the best 

location for deploying each edge device of a fluid array based 

on current crowds. However, crowds may appear in other 

regions in the future, and those regions, e.g., peripheral 

suburban/rural areas on the outskirt, may still contain 

insufficient information on crowds currently. This causes 

uncertainty. To resolve such a problem in advance, one of 

incomplete data analyses “Collaborative Filtering (CF)” is 

introduced herein to forecast crowds. Subsequently, predicted 

crowds can be fed back into SOMs in consideration of future 

deployment. A brief diagram of CF planning is presented in the 

top of Fig. 4. The detail is described as follows. 

CF is a technique for missing-value imputation. Imputation 

means to fill in entries that contain missing values with 

approximate values. At present, CF has developed many 

approaches, such as item-based methods and matrix 

factorization. This article particularly concentrates on the 

category of matrix factorization, where nonnegative matrix 

factorization is examined, because it fits urban monitoring 

applications. When nonnegative matrix factorization works on 

matrices, it decomposes a matrix into two matrix factors, where 

elements are nonnegative. With criteria like Frobenius norm, 

nonnegative matrix factorization is capable of handling 

matrices with missing values. In urban planning, the layout of a 

city can be converted to a planar map. Based on this map, the 

entire city including suburban/rural regions can be divided into 

rectangular subregions. Each subregion may contain various 

partial statistics from urban sensing. Typically, one 

representative value is selected for a subregion. For crowd 

prediction, the process is the same as imputation. Given a grid 

view of a city map X, nonnegative matrix factorization can 

decompose X into two factors W and H, such that X  WH. At 

the initial stage, zeros are placed in those entries with missing 

values to enable arithmetic computation. Meanwhile, W and H 

are initialized with random nonnegative numbers. The 

imputation is based on minimizing Frobenius norm of errors, or 

equivalently the distance between X and WH. To minimize 

errors, the decomposition employs an iterative process, 

consisting of two phases. One is element-wise computation of 

Frobenius errors, and the other is the element-wise gradient 

update of the two factors. Both phases disregard the entries with 

missing values and focus on complete ones. When the iteration 

converges, those missing values can be imputed by simply 

taking the product of W and H. 

With CF, city planners can evaluate and predict the statistics 

of new regions. Such data help city planners, for instance, 

determine whether or not a new base station should be built in 

a new region. To illustrate such a concept, this work uses Fig. 

4 to show CF. For convenience, EU requests are employed as 

an example of crowd activities. Assume green and pale blue 

dots represent existing and predicted EU requests, respectively. 

CF aims for predicting pale blue dots by using green ones. 

Existing EU requests, or green dots, are collected from existing 

city blocks, surrounded by a red rectangle, i.e., X. When a city 

expands, existing data X are used to predict new EU requests 

on the outskirts, encompassed by a larger purple border, i.e., X′. 

For better visualization, an abstraction layer is placed at the top 

part of Fig. 4. The data within red/purple rectangles of the layer 

reflect the same data at the bottom of Fig. 4. In brief, city 

planners can estimate X′ with the use of X when CF is applied. 

The predicted data are fed back into SOMs for autonomous 

topological formation. 
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Fig. 4.  Crowd prediction based on CF. Green and pale blue dots represent 

existing and predicted EU requests, respectively. CF uses green dots X, 
surrounded by a red rectangle, to predict pale blue ones X′, marked with purple.  

 

After the prediction/analysis by CF, city planners can make 

arrangements in advance by subsequently examining SOM 

simulation results. For instance, assume CF predicts that more 

EU requests appear in the new region, marked with pale blue in 

Fig. 5. SOM simulations on such a new distribution can reveal 

the movement of existing mobile edge devices after the new EU 

requests are input. Fig. 5 shows that the lower cluster of the 

edge array slightly moves towards the new region to maintain 

an equilibrium. City planners can determine whether or not the 

new coverage satisfies the growing EU requests and make 

arrangements for resource allocation in advance. 

 

 
Fig. 5.  Incremental self-adaptation of the proposed array to newly added EU 

requests (marked with pale blue) based on Fig. 2. These new data are predicted 
by CF. Fig. 5 uses the status of Fig. 2 as the initial topology for the same 8×8 

array. When new data arrive, the topology in the vicinity of new data changes. 

Edge devices move towards the new zone where new EU requests are generated. 

 

 

Although CF helps crowd prediction, the major challenge is 

that it needs sufficient observed data in an area when the system 

uses the area as the baseline evidence to predict new areas. This 

indicates if most of subregions in this area have no data, 

prediction errors increase. Another problem is that different 

types of statistics are separately predicted in CF. However, 

indicators could be interconnected and influenced by each other. 

Individual CF on independent variables does not reflect such a 

relation by describing weights. Future work could focus on 

coplanning by CF to model covariates [15]. 

 

IV. EXPERIMENTAL RESULT 

Experiments for swarm intelligence-enabled fluid arrays and 

CF planning were conducted on open “Call Data Records 

(CDRs)” (dandelion.eu). For testing fluid arrays, 1000 records 

were extracted from the dataset, and their coordinates were used 

for modelling an array. The sizes of arrays included 2×2, 3×3,…, 

and 20×20. Statistics about service ranges and the number of 

serviced users for an edge device were computed. Fig. 6 

displays the SOM results, where the vertical axes respectively 

represent “the average distance between a user and an edge 

device,” “the average number of serviced users,” and 

“adaptation time.” The horizontal axis denotes “the size of the 

array.” Standard deviation is denoted as “I” shapes, whereas 

circles represent means. As shown in Fig. 6, when array sizes 

became larger, each device was closer to users and serviced a 

balanced number of users. 

For CF, the same CDRs were used, but their coordinates were 

normalized. The entire geographic area covering all the CDRs 

was divided into 10×10–20×20 subregions. Thus, each 

subregion contained partial CDRs. This was the ground truth. 

To test CF, the experiment randomly selected 10%–30% of the 

subregions. During selection, the CDRs inside the selected 
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subregions were removed and became zero. The system then 

employed CF to predict CDRs in those empty subregions and 

compared predicted values with the ground truth. Experimental 

results indicated when the number of CDRs was fixed, more 

subregions enhanced prediction accuracy. Root-mean-squared 

errors of prediction were decreased from 2.814 to 0.782 when 

the number of subregions was increased from 102 to 202 with 

30% of the subregions containing removed CDRs. 

 

 
Fig. 6.  Performance the swarm intelligence-enabled fluid array. 

 

V. CONCLUSION 

This article presents an urban self-reasoning model — How 

knowledge of city dynamics can be adaptively collected and 

used for planning. The former relies on swarm intelligence, 

where a fluid mobile edge array is adopted for self-organizing 

sensing. The latter utilizes collected data and context-aware CF 

for resource/crowd prediction during city expansion. The 

prediction can be fed back to the swarm intelligence model for 

validating the future influence on resource balance after 

resource allocation is made. Two methods resonate and iterate 

to discover solutions. Such an urban self-reasoning model can 

benefit both city planners and business operators in strategic 

making. 
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