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ABSTRACT Massive multiple-input multiple-output antenna systems, millimeter wave communications, 
and ultra-dense networks have been widely perceived as the three key enablers that facilitate the development 
and deployment of 5G systems. This article discusses the intelligent agent that combines sensing, learning, 
and optimizing to facilitate these enablers. We present a flexible, rapidly deployable, and cross-layer artificial 
intelligence (AI)-based framework to enable the imminent and future demands on 5G and beyond. We present 
example AI-enabled 5G use cases that accommodate important 5G-specific capabilities and discuss the value 
of AI for enabling network evolution.   

I. Introduction 
Does 5G cellular communications technology in the age of 
intelligence really look like the Thomas W. Lawson 
Schooner (the last of the large cargo sailing ships) of modern 
times? 5G networks are anticipated to achieve system capac-
ity improvements through aggressively increased spectral 
efficiency, channel bandwidth and higher densification [1]. 
However, concerns are raised whether this is a revolutionary 
leap from today’s wireless communications or a simple pil-
ing up of less innovative wireless functionalities. The Inter-
national Telecommunication Union (ITU) classifies 5G into 
three categories of usage scenarios: enhanced mobile broad-
band (eMBB), massive machine-type communication 
(mMTC), and ultra-reliable and low latency communication 
(URLLC) to account for more diverse services and resource-
hungry applications. eMBB is a service category that ad-
dresses bandwidth-hungry applications, such as massive 
video streaming and virtual/augmented reality (VR/AR). 
mMTC is a service category enabling massive sensing, mon-
itoring, and metering in support of the massive deployments 
of the Internet of Things (IoT). URLLC is a service category 
that supports latency sensitive services including autono-
mous driving, drones and the tactile Internet. Whereas 5G 
seems to offer virtually any service, the importance of cog-
nitive resource management cannot be underestimated and 
artificial intelligence (AI)-defined 5G radio access networks 
are proposed to support those unprecedented requirements 
and leverage the emergence of mobile edge computing and 
caching, smart cities, and context-aware networking. 

Shaped by the Turing machine theory in the 1930s and 
rekindled again by the advent of deep neural networks, AI 
approaches have been extensively applied in a wide range of 
research fields, including natural language processing, com-
puter vision, and wireless communications [2]. The artificial 
neural network (ANN) is one of the oldest approaches to cre-
ate AI. It mimics brain in its ability of massive parallelism, 

distributed representation, and computation. Among various 
types of neural networks, recurrent neural networks (RNNs) 
allow neurons to create and process memories of arbitrary 
sequences of input patterns, where the connections between 
layers form a loop [3]. A deep neural network or deep belief 
network (DBN) employs a hierarchical structure with multi-
ple restricted Boltzmann machines (RBMs) and works 
through a successive learning process, layer-by-layer. RBMs 
form an undirected graphical model without visible-visible 
and hidden-hidden connections. The advantages of DBN lie 
in the ability of unsupervised learning, fast inference and 
flexibility due to its multi-layer structure. A convolutional 
neural network (CNN) is built on layers of convolving train-
able filters that result in a hierarchy of increasingly complex 
features [4]. A CNN is fundamentally different from a DBN; 
the DBN behaves as a generative model which describes the 
joint distribution of data and the corresponding targets, 
whereas a CNN is a discriminative model which describes 
the distribution of targets conditioned on data. A special in-
terest of various types of neural networks in wireless com-
munications arises from the fact that they can perform non-
linear approximations and are intrinsically data-driven.  

Recent breakthroughs in computing and AI have 
encouraged researchers in the field of wireless 
communications to leverage AI especially in the 5G context, 
which is illustrated in Fig. 1. An AI-defined 5G network 
provides the base stations (BSs)/Cloud with the capability to 
create a cognitive and comprehensive data repository by 
splitting, processing and interpreting the operational data. 
(The BS is defined in this article as the remote radio head plus 
the centralized and virtualized baseband unit pool of a single 
mobile network operator.) Massive amounts of real-time data 
are generated across a large number of users and ranges from 
channel state information (CSI) to IoT device readings. The 
received data and geolocation databases are fused to derive a 
complete understanding of the environment. From the human-
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centric communication perspective, the human behaviors are 
learned and adapted by the reconfigurable AI-defined wireless 
network to evolve the network functionalities and create 
people-oriented services. From a machine-centric 
communication perspective, big data analytics are leveraged 
to extract massive patterns, especially at the physical (PHY) 
and medium access control (MAC) layers and enable self-
organizing operations. Neural networks can be used to 
redefine communication networks, solving a number of 
nontrivial design problems at runtime and across layers for 
cognitive link adaptation, resource scheduling, signal 
classification, and carrier sensing/collision detection, among 
others. An RNN has also the capability to capture and mitigate 
the imperfections and nonlinearities of radio frequency (RF) 
components, such as high-power amplifiers (HPAs), which 
incur at the PHY and can affect the network performance. 
DBN and CNN are better suited for resolving a range of upper 
communication layer tasks such as network optimization and 
resource management. This article briefly examines the key 
5G enablers and use cases and what role AI may play. We 
discuss some of the emerging PHY and MAC layer issues of 
5G networks and propose two AI-based 5G radio access 
technology (RAT) architectures and illustrate their potentials 
through numerical results. We conclude the paper with 
pointing out some limitations, open issues and research 
challenges. 

 

 
5G Services Type Applications 
Broadband VR/AR 
 Massive Streaming 
Distributed Mobile Cloud Computing 
 Smart Infrastructure 
Omnipresent Massive IoT 

FIGURE 1.  Application scenarios of AI-defined 5G networks. 

 
II.  Artificial Intelligence Supporting 5G Enablers 
The complexity of 5G context and the power of AI allow 
rethinking cellular communications. Figure 2 shows the 
critical 5G use cases and the application of different types of 
neural networks as key 5G enablers. Massively parallel 
processing devices such as graphic processing units (GPUs) 
and neural network processing units (NPUs), which can be 
deployed in a 5G BS/Cloud, enable offloading the traditional 
data processing and have shown to be highly energy-efficient 

for neural network learning and inference [5]. This section 
discusses the benefits of an AI framework to satisfy the 
technical challenges of 5G. 
 
Massive MIMO 
Massive MIMO is widely perceived as a leading candidate 
technology for 5G. The high number of BS antennas requires 
a large number of PAs, one per antenna. The primary prob-
lem in RF PAs is known as the design trade-off between lin-
earity and efficiency: amplifiers can be designed to attain 
good linearity at the cost of efficiency [6]. While the highly 
linear PAs are expensive and power-inefficient, the exces-
sive number of BS antennas makes the use of inexpensive 
components desirable to keep the overall capital expendi-
tures (CAPEXs) and operational expenditures (OPEXs) 
manageable [1]. On the other hand, emerging energy- and 
spectrum-efficient wideband wireless communication sys-
tems are vulnerable to nonlinear distortions that are at-
tributed to the RF front ends, especially those of the HPAs, 
which affect the performance of the intended receiver and 
the entire network.  

Furthermore, as next generation communication systems 
will operate in more dynamic environments and in different 
bands, the dynamic range requirements will likely become 
more demanding. Therefore, the PAs need to meet stricter 
linearity specifications while maintaining an acceptable ef-
ficiency. The highest PA efficiency is achieved when con-
stantly feeding the PA, at the limit of its highest-power linear 
region. This is not a feasible solution for high peak-to-aver-
age power ratio (PAPR) signals and is not realistic for 5G 
BSs. Instead, signal processing-based solutions are used to 
provide a better cost-performance trade-off. 

One of the main advantages of ANNs is their ability to 
extract, predict, and characterize nonlinearities from massive 
datasets. Since ANNs can capture many kinds of relationships 
between a variety of time-varying inputs and outputs, such as 
complex nonlinear relationships or highly dynamic 
relationships, they are well suited to tackle nonlinearity 
problems at the PHY, including PA nonlinearity tracking, 
predistortion and impairment correction. A detail discussion 
of AI-aided energy-efficient beamforming is provided later. 

 
Extended RF Spectrum and Spectrum Management 

The demand for higher end-user data rates and higher 
traffic density drive 5G networks to provide a corresponding 
capacity boost. Millimeter wave (mmWave) systems have 
access to a huge amount of available bandwidth in extremely 
high frequency bands, between 30 and 300 GHz, to enable 
multi-gigabit-per-second rate connectivity. Previously, 
mmWave at 60 GHz band has been adopted by local and 
personal area communication standards such as IEEE 
802.11ad and IEEE 802.15.3c, as well as for certain small cell 
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FIGURE 2.  5G use cases, key technology enablers and typically 
applicable AI principles (CNN: convolutional neural network, RNN: 
recurrent neural network, DBN: deep belief network).  

 
backhaul deployments. mmWave communications are 
facilitated by highly directional communication links, where 
narrow beams can focus the energy to the intended receivers, 
reduce PA requirements and suppress interference from other 
transmitters. Whereas the mmWave spectrum may not be 
scarce, it is also not very reliable due to its propagation 
characteristics. At mmWave frequencies severe channel 
variations occur due to blockage by cars, trees, solid building 
material, and even human body parts. 

As a result, a hybrid of spectrum landscape of low and 
high frequencies necessary to maintain seamless network 
connectivity and enable the 5G verticals [7]. This hybrid 
spectrum includes micro and mmWave bands and different 
types of licensing (Fig. 3). AI allows smart scheduling and 
cooperation of different spectrum portions since learning and 
inferencing can be carried out based on user behaviors and 
network conditions. Specifically, neural networks can provide 
multi-RAT BSs with the capability for real-time resource 
management. They also enable self-planning, self-organizing, 
and self-healing, where a group of distributed and 
autonomous AI agents are distributed among different BSs. 
An example of an AI-enabled spectrum access system (SAS) 
that manages multiple RATs in shared spectrum is discussed 
in later sections. 
 
Network Ultra-Densification 
It is envisioned that the explosive data traffic requirement in 
5G will be largely dependent on the deployment of ultra-dense 
small cells [8]. The technical challenges include finer-
granularity resource allocation and cross-tier interference 
mitigation. In fact, the cell densification is redeemed as one of 
the most aggressive ways to improve system capacity as long 
as the interference can be efficiently managed.  

Co-channel interference mitigation in 5G is naturally 
enabled through massive MIMO beamforming and mmWave 
transmission. When combined with a centralized AI-aided 
learning, the envisioned 5G network will benefit from both AI 
and small cell deployments, where complex radio resource 
management at “pixel” level can be performed more 
efficiently. For instance, the radio environment map (REM) is 

 

FIGURE 3.  Global snapshot of 5G spectrum (blue: Licensed, green: 
unlicensed/shared, purple: existing bands) [7].  
 
promising to provide a practical method for the realization of 
AI-enabled interference mitigation based on dense 
geolocation databases. It builds long-term knowledge by 
collecting historical radio environment measurements and 
radio scenes. The radio network prediction, evolution and 
optimization can be made by active learning based on network 
coverage, capacity and quality maps. 

The AI agent in the baseband unit (BBU) pool assists with 
the baseband processing functions, such as the radio resource 
management, interference management, and handover 
control. Such AI-driven self-organizing solutions provide 
more opportunities for design optimization of self-organized 
networking, increase the level of flexibility and achieve cost 
reductions. Moreover, the centralized processing of CSI by 
the AI agent allows additional insights into the channel that 
perform closer to channel capacity and schedulers that provide 
better fairness and end-user experience. 
 
III.  Artificial Intelligence for Diverse 5G Applica-
tion Scenarios and Services 
To further elaborate on the importance of the revolutionary 
5G paradigms wherein AIs play critical roles, this section 
discusses a few disruptive use cases of 5G. These applications 
have stringent requirements on different communication 
layers; here we focus on the 5G network implications. 
 
Vehicular Networks 
Vehicular networks leverage wireless technologies to im-
prove traffic safety and transportation efficiency, which is 
specifically useful for active driving assistance. It involves a 
broad range of stakeholders such as vehicle manufacturer, 
wireless policy regulators and transportation authorities. A 
myriad of vehicle applications is envisaged, including auto-
mated toll collection systems, autonomous driving systems, 
and information provisioning systems. Autonomous driving 
systems are capable of detecting changes in the surrounding 
by combining sensor data with signal and image processing 
to inform the driving system of hazardous road conditions. 
For example, the real-time wet road condition detection and 
anti-collision detection are necessary to improve not only 
vehicular safety, but also efficiency. 

The recent advances in 5G networks and AI enhance the 
vehicular networks by provisioning reliable, efficient, low-
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latency, and cooperative communications. The autonomous 
vehicles collect the vehicle-centric information (e.g. speed, 
global positioning, device functionality, and performance), 
road-centric information (e.g. road surface condition, routing, 
collision) and passenger-centric information (e.g. drowsiness, 
length of continuous driving) and send it to the AI-defined 5G 
BS. The BS is capable of learning the behaviors of 
autonomous vehicles on the road, predicting the speed of 
vehicles, driving states, obstacles and lane-changing 
behaviors to assist transportation systems with processed 
information and improve road mechanics. 

 
VR and AR 
VR and AR over wireless are expected to become the 5G killer 
applications. Information is perceived through audio, visual, 
and touch in VR. Computer Generated (CG) content is 
combined with real objects and visualized in AR. VR is a key 
use case where both URLLC and eMBB play important roles 
to (1) avoid motion sickness introduced by motion and visual 
coordination latency and (2) facilitate the necessary capacity 
increase that ultra-high-definition video streaming requires. In 
particular, today’s VR systems experience both computing 
and communication delay bottlenecks. Moreover, heavy 
image processing tasks require high computing power which 
is often not available locally. In emerging 5G networks, 
computing resources at the BSs could serve as the VR control 
center and connect to the VR devices over the wireless 
network. Dense 5G network nodes offer the opportunity of 
decoupling image recognition and rendering from devices, 
where the major computing tasks can be done at the network 
edge to relieve the computing and power burden on the users’ 
devices. However, this design approach introduces rate-
latency-reliability tradeoffs. In addition, the BSs need to 
collect sensor information from the VR devices to optimize its 
processing and provide interactive and immersive user 
experiences. Several users may be physically coupled to 
perform collaborative tasks in a virtual or semi-virtual world. 
Hence, massive user data, including sensor data, CSI, battery 
life, geolocation, and user gestures need to be collected by the 
network for AI-aided resource scheduling and big data 
processing. AI-defined 5G networks enable balancing the in-
VR/AR vs. in-network computing and adaptively make use of 
powerful GPUs at BSs or other edge nodes in an on-demand 
fashion. This allows trading the rather scarce edge resources 
against the abundant Cloud computing resources as a function 
of scenario and application. 
 
IV.  AI-Defined 5G RAT: PHY and MAC 
The ever-increasing demand for energy-efficient and rich-
content applications, requires a paradigm shift in 5G. In 
practice, a number of spectrum distorting effects such as in-
phase and quadrature (IQ) imbalance and nonlinear distortion 
introduce out-of-band emission and energy efficiency losses. 
Two     critical      components      of      AI-defined      network 

 

FIGURE 4.  Zero-forcing beamforming in 5G BSs: followed by non-
linear PAs (recall that RNNs are composed by interconnected neu-
rons followed by nonlinear activation functions). 

 

enhancements are introduced in this section to facilitate 
effective resource management. 
 
RNN for the PHY: AI-aided energy-efficient massive 
MIMO beamforming 
AI techniques have been investigated for wireless 
communication systems to efficiently mitigate nonlinearities 
at the PHY [9]. In particular, RNNs lend themselves well to 
address RF nonlinearity issues because they allow historical 
information to be stored through the loop-based structure. 
These networks were originally applied to solve linear 
programming problems and inspired various researches to 
address nonlinear problems. RNNs are capable of 
automatically extracting nonlinear system features that are 
invariant to the environment and can outperform traditional 
approaches in PHY signal processing [10]. 

As discussed earlier, energy efficiency of a BS signifi-
cantly depends on the PA efficiency. The deployment of 
massive MIMO systems, where BSs are equipped with a sig-
nificantly larger number of antennas than the number of sim-
ultaneously served users, creates excessive degrees-of-free-
dom (DoFs) [1]. The level of underdetermination of an un-
derdetermined channel matrix increases with the number of 
BS antennas when assuming the number of users is known. 
The excessive DoFs enable selecting the transmit signals 
from a larger solution space. The objective of energy-effi-
cient beamforming in a massive MIMO system is then to 
find the beamforming matrix which introduces minimum PA 
nonlinearities within this solution space. This enables the use 
of low-cost PAs and their operation at higher power levels 
for increased energy efficiency. 

Consider a downlink massive MIMO-OFDM system 
with 𝑀௥ single antenna users, one BS equipped with 𝑁௧ an-
tennas, and 𝑁௖ subcarriers [10]. The number of BS antennas 
is significantly larger than number of users, i.e. 𝑁௧ ≫ 𝑀௥. 
Zero forcing (ZF) beamforming is applied and user infor-
mation symbols at the BS are mapped to the appropriate 
transmit antenna to ensure minimal interference. The exces-
sive DoFs allow choosing a solution that maximizes energy 
efficiency and minimizes the effects of PA nonlinearity. 
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FIGURE 5.  Energy efficiency (in Mbit/Joule) with ZF beamforming 
in RNN-aided massive MIMO system. 
 
An RNN-based solution is inspired by the similarity between 
beamforming-PA architecture in MU-MIMO systems and the 
neuron-activation function architecture in RNNs, as illustrated 
in Fig. 4. The intuition of the neuron weights training behind 
this solution is as follows: The nonlinear activation function 
in the RNN learns about the nonlinearities of the PAs 
recursively and finds suitable neuron weights that satisfy two 
requirements: 1) zero forcing beamforming, which means 
minimal MU interference and 2) minimum overall nonlinear 
distortion. The RNN models the nonlinearity of the PA array 
and it is optimized to minimal transmitted power while 
providing a ZF solution. The RNN then informs the 5G 
system on how to set its weights of ZF beamforming. 

The RNN-based scheme is simulated for a massive MU-
MIMO-OFDM downlink system with 128 subcarriers, up to 
100 antennas at the BS and up to 100 single-antenna users. 
The optimal transmitted signal and activation variable are 
derived. The relationship between the antenna configuration 
and energy efficiency is illustrated in Fig. 5. The result shows 
that huge energy-efficiency improvements can be achieved 
with this scheme as long as there is sufficient excess in the 
DoFs [10]. This also suggests that it is efficient to deploy more 
(low-cost) antennas as their CAPEX will be quickly overcome 
with a reduction of OPEX. 

 
DBN for the MAC: AI-Aided Spectrum Access System 
The spectrum access system (SAS) will be a component of 5G 
networks that is expected for systems operating in the sub-6 
GHz band, the 24-71 GHz mmWave bands, as well as in 
unlicensed bands (Fig. 3). Distributed sensing nodes in the 
mmWave band will likely be deployed to help gathering and 
extracting meaningful information about the channel quality 
and use while providing massive datasets to the SAS. These 
sensing nodes, along with additional signaling and a-priori 
information, provide enhanced capabilities to the SAS which 
will further process the contextual information to infer and 
learn how to best allocate spectrum. 

 

Configurations 
(Layers x Neurons) 

Detection rates (High 
SNR Regime, 15dB) 

Detection rates (Low 
SNR Regime, -5dB) 

3x200 0.81 0.65 
4x200 0.90 0.72 
4x400 0.99 0.85 
5x500 0.99 0.88 

FIGURE 6.  Proposed SAS architecture in 5G networks and perfor-
mance comparisons (Detection accuracy of 20 MHz 802.11ac signal 
and LTE signal which are translated to 3.5 GHz shared band). 

 
Previously, we demonstrated our spectrum sharing con-

tribution for next generation public safety networks [11]. We 
analyzed the feasibility of broadband public safety applica-
tions in the 3.5 GHz band using a cognitive repeater. The 
proposed system architecture provides flexibility for storing 
operational data, which reduces the reporting overhead. In 
this article we enhance the SAS with an AI-aided framework 
to facilitate intelligent spectrum regulation in 5G by training 
it with previously generated operational data and REMs. 

A reconfigurable deep learning framework based on our 
proposed AI-aided 5G BS system is shown in Fig. 6 for in-
terpreting the signaling environment. It includes an offline 
training phase (including training and fine-tuning) and an 
online spectrum access phase. This framework leverages the 
fact that the trained model (especially the weights) can be 
efficiently stored to facilitate online spectrum access deci-
sions in real time. It aims to extract meaningful spectrum us-
age information from massive spectrum datasets and regula-
tory databases in different radio contexts and provide com-
prehensive baseline knowledge of efficient spectrum access 
solutions. With the capability of distributed spectrum moni-
toring and awareness, the centralized SAS in the 5G BS can 
improve the spectrum utilization. To demonstrate this frame-
work, we use a stack of RBMs to train the DBN in a layer-
by-layer manner to reduce the training complexity. The net-
work first models the input datasets of spectrum and regula-
tion with the parameters of the first layer of RBM. It then 
trains the subsequent layers of RBM with the samples from 
the output of the previous layer. The contrastive divergence 
of the 1-step iteration (CD-1) method is applied to update the 
weights in each layer [3] thus allowing to find the parameters 
for all layers of the RBM. In the online spectrum access 
phase, a spectrum decision is made to generate proper trans-
mission schemes, that is, a suitable access method, carrier 
frequency and bandwidth, modulation and coding scheme, 
and transmission power. 
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The simulation results for the interference recognition in 
the SAS are shown in Fig. 6, which demonstrate how DBN is 
applied to detect the signals in the 3.5 GHz band in high and 
low signal to noise ratio (SNR) regimes. DBNs are trained 
with frequency domain data. The payload data of 802.11ac 
and physical downlink shared channel (PDSCH) of LTE are 
both QPSK modulated. The results show that the DBN-based 
signal detection achieves a very high detection rate in the high 
SNR regime with 4 layers and 400 neurons in each layer. 
 
V.  Limitations, Challenges and Open Research 
Problems 
The success of AI-defined 5G networks relies on solving a 
number of research challenges across networks of 
heterogeneous capabilities and different levels of context-
awareness. Technical issues such as network function 
virtualization, environmental awareness and security 
challenges, among others, are expected to have a significant 
impact on ongoing AI-defined 5G network research. Some of 
the critical limitations, challenges and open research problems 
are discussed in continuation. 
 
AI at-the-edge or AI over-the-bridge? 
The developments of mobile edge computing and caching 
make it possible for mobile devices to satisfy the demands 
of intelligence locally. Enormous types of xPUs which are 
implementations of AI hardware accelerators have been in-
troduced over the past few years. (The different types of xPUs 
include the brain processing unit, the deep learning processing unit, 
the intelligence processing unit, and the NPU.) Scalable and dis-
tributed AI agents that are distributed across a plethora of 
devices along with appropriate training data. This approach 
is referred to as on-device AI or AI at-the-edge. The AI-pow-
ered smartphones with limited application context such as 
AI-assisted photography or Apple’s Memoji have been ex-
tensively adopted by smartphone manufacturers in recent 
years and this concept is likely to be adopted for physical 
and network layer problems. There are various advantages 
for AI at-the-edge including the available features of geo-
graphical location services (GPS, cellular triangulation), 
connectivity (4G/5G, Wi-Fi), and many types of non-stand-
ard sensors (gyroscope, barometer, accelerometer). How-
ever, the computational power, memory, and battery life pre-
sent potential obstacles to intensive 5G services. As a result, 
it may be difficult to implement large-scale, complex AI-de-
fined 5G functionalities due to the limited resources that are 
available in current generation smartphones, although this 
may change in the future.  

AI applied at the BS/Cloud, the so-called AI over-the-
bridge, has access to considerable computing resources, 
memory bandwidth and power supply, which are all neces-
sary for supporting 5G services with vastly heterogeneous 
requirements through efficient resource scheduling and co-
ordination. AI over-the-bridge overcomes the resource 
shortcomings with massive resource availability. Models 

that are trained on the device for later AI over-the-bridge de-
ployment could reduce the uplink data traffic. As a result, 
the AI-defined 5G networks should leverage the available 
edge resources, learn and predict the user needs and environ-
mental circumstances and periodically cache the pre-trained 
models from edge users to the network for subsequent use. 

 
Channel State Information 
Accurate channel estimation is necessary at the receiver for 
coherent detection and at the transmitter for beamforming 
and power control. The CSI is one of the most important fac-
tors for inference, prediction, and big data analytics in AI-
defined 5G systems. The rich context information and large 
amount of CSI pose significant potential for facilitating 
novel AI-enabled applications beyond immediate context 
awareness. With massive CSI, AI enables 5G networks to 
learn and adapt from the datasets generated by the users and 
BSs in different environments. 

The overhead of channel estimation pilots in the frequency 
division duplex (FDD) mode scales linearly with the number 
of transmit antennas, which limits the practical number of 
antennas. When operating in time division duplex (TDD) 
mode, the massive MIMO-equipped 5G BS obtains the uplink 
CSI via uplink pilots, and downlink CSI is implicitly obtained 
due to channel reciprocity. However, the AI models for 
downlink usage which were trained by uplink CSI might be 
misleading in some cases. One reason is that the RF 
components and processing chains at the BS are generally not 
reciprocal between the uplink and downlink, and the 
inexpensive hardware components in the analog domain used 
by massive MIMO systems can exacerbate this problem 
further. Inaccuracies in channel estimation caused by pilot 
contamination can also introduce AI model training errors. In 
addition, the massive volumes of CSI inherent with large-
scale MIMO systems pose challenges to storage and real-time 
processing. Redundancies of the CSI data need to be 
eliminated to reduce processing latency and resource 
overhead and imperfect CSI estimates need to be considered 
in the decision-making process. 

 
Security and Privacy 
Security and privacy are critical in wireless networks and 
especially for 5G networks, which will provide mission-
critical services. First, AI agents themselves can be the target 
of attack from a malicious adversary. For example, a selfish 
user operating in the AI-defined SAS context could broadcast 
fake signals to the BS and users to manipulate the AI training 
so that spectrum is denied to other users, which enabling the 
malicious party to gain access to a large portion of the shared 
channels. In addition, attacks through the wireless channel, 
such as denial-of-service, spoofing, and malicious data 
injection, could also disrupt the AI agent and lead to 
misbehaviors. Since massive amount of training datasets are 
required for training AI, efficient and expeditious detection of 
malicious training contents becomes challenging. Therefore, 



To Appear in IEEE Communications Magazine, March 2019 

 

collaborative efforts among various parties and stakeholders 
are required to prevent security breaches and privacy leaks 
and ensure the trustworthiness of data and decisions. 
 
VI. Conclusions 
In this article we introduced the concept of AI-defined 5G 
networks and discussed how AI agents entail some of the key 
5G enablers and critical application scenarios. We presented 
AI-aided applications and examples for solving different 
aspects of 5G network deployment and management and 
discussed two architectures for the PHY and MAC layer 
processing at the BS/Cloud. We also elaborated on some 
limitations, challenges and open issues for researchers to 
address. We encourage AI-defined 5G and beyond research 
and collaborations between AI and wireless communications 
scientists and practitioners, who need to share their insights 
and data just like the envisaged network nodes do in the age 
of contextual awareness and intelligence. 
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