Empowering Network Service Developers:
Enhanced NFV DevOps and Programmable MANO

Thomas Soenen, Wouter Tavernier, Manuel Peuster, Felipe Vicens, George Xilouris, Stavros Kolometsos,
Michail-Alexandros Kourtis and Didier Colle

Abstract—Although network function virtualization redefined
the role of the network service developer, existing concepts
that are supposed to enable them are still limited, cambersome
and time consuming in regard to the promised flexibility. This
article describes how to move forward from these initial steps,
identifies the challenges network service developers face both
during development and runtime, and explains how to overcome
them with our service construction kit (SCK) and programmable
MANO framework. We detail how our SCK facilitates the service
creation process, resulting in two enhanced NFV DevOps cycles,
test flexibility and quicker service development. We elaborate on
our programmable MANO framework with both architectural
considerations and a use case, to depict its customisability by
network service developers, giving them finegrained control over
their service throughout its end-to-end operational lifecycle.

I. INTRODUCTION

The rise of network function virtualization (NFV) has
broken the lock-in between hardware and software for network
functionality. Before, providing a new network function meant
designing and creating one or more physical middleboxes, of-
ten in narrow cooperation with telecom operators, which had to
be placed in the network. Now, one only needs to provide the
software, typically packaged as a virtual machine or container,
and the telecom operator executes this virtual network function
(VNF) on general-purpose hardware at one of its premises. In
theory, this transition enables every programmer to become an
NFV developer, calling for a re-assessment of the developer
roles. We identify two distinct roles:

o« The VNF developer develops single VNFs. Their re-
sponsibility starts and stops at the VNF interfaces, so
they aren’t concerned with end-to-end metrics. They
can be considered as application developers which are
unaffiliated with telecom operators.

« The network service developer, further also referenced
as the developer, creates end-to-end services by chaining
one or more VNFs together. To ensure that the service
provides the required QoS for its users, the developer is
concerned about the functionality offered by the selected
VNFs and about capabilities such as latency and through-
put of the network infrastructure used to connect them.
The developer researches which VNFs to use, designs the
service function chain (SFC) and develops and tests the
associated descriptors, configuration files and code. These

Thomas Soenen, Wouter Tavernier and Didier Colle are with Ghent
University - imec; Manuel Peuster is with Paderborn University; Felipe Vicens
is with Atos Research & Innovation; George Xilouris, Stavros Kolometsos and
Michail-Alexandros Kourtis are with NSCR Demokritos.

artefacts describe how to (re)configure the service and its
components for various regimes they might operate in.
This developer needs a deeper knowledge about network
infrastructure and their providers, but isn’t necessarily
affiliated with them.

In this article, we contribute to the state-of-the-art of the
NFV domain by empowering these developers in quickly
developing products that provide the required stability in every
regime they might operate in.

The first contribution of this article is a modular pro-
grammable management and orchestration (MANO) frame-
work that can be customised per network service or VNF. The
MANO framework extends its functionality with workflows
created by the network service or VNF developer. These
workflows — we refer to them as service and function specific
managers — replace the generic MANO behaviour only for
that specific network service or VNF. This grants developers
the control they require over the operational lifecycle, since
only they know how to manage and configure their product in
different regimes. We explain the architecture and exemplify
the mechanism by using it to add non-generic self adaptation
capabilities to a rudimentary content delivery network.

The second contribution is a service construction kit (SCK),
a set of tools that ease the life of the developer. Most
importantly, it includes an Emulator which allows a developer
to emulate a telecom operator’s infrastructure of virtualised
compute and networking resources on a local machine. This
allows the developer to perform large amounts of testing effort
locally for various topologies, making for shorter development
cycles. Final testing still needs to occur on operational NFV
infrastructure. For this, the SCK offers tools that interface with
such environments to upload and instantiate the service to be
tested, to configure and trigger troubleshooting engines that
will generate different regimes for the service to operate in and
to extract monitoring data in order to evaluate the service’s
performance. We argue that these tools, combined with the
Emulator, significantly enhance the NFV DevOps cycle and
thus greatly improve developer’s flexibility to evolve network
services quickly and incremental. As a final contribution, we
present an assessment of this DevOps model.

II. SERVICE AND FUNCTION SPECIFIC MANAGEMENT AND
ORCHESTRATION

A network service might experience various regimes during
its runtime lifecycle. For example, a change in user behaviour
can create a tangible increase in its load, or the performance
might degrade due to saturation of the used infrastructure. To

: NS] [} [Service
i | Placement Lifecycle
H Plugin Manager
VNF Function
Scaling Lifecycle
Plugin Manager

oDL Kubernetes
Wrapper Wrapper
\ PoP #2

VNF4

Openstack
Wrapper

Docker

Fig. 1: MANO framework Architecture with Specific Man-
agers.

ensure end-to-end QoS offered by a network service during
its lifetime under various regimes, they need to be flexibly
reconfigurable to adapt upon any given situation. In many
cases, it is solely the developer that knows which lifecycle
events (e.g. how to scale the service, how to reconfigure
the SFC, which VNF to migrate) assure the required QoS
when new regimes occurs. A similar scenario arises when
instantiating a new network service: the location where VNFs
are deployed can have a significant impact on the QoS. Again,
only the developer knows which placement decisions for a
given resource availability and topology yield the intended
objective. For this reason, a MANO framework should be
programmable by the developer, to make network service or
VNF lifecycle events consider developer input and to trigger
developer defined lifecycle events based on monitoring data.

One solution could be that developers add this specific
knowledge to the network service and VNF descriptors. This
allows the MANO framework to remain generic — all service
and VNF instances are subject to the same workflows —
but limits its flexibility and potential. Describing a placement
algorithm through descriptor language will either be highly
complicated or limit the options of the developer to a prede-
fined set. Reconfiguration payloads, and how to inject them,
for running VNFs can be defined in numerous different ways,
making it impossible to support all of them through descriptor
language. Keeping the MANO generic leads to suboptimal
services, cutting into the potential of the NFV ecosystem.
Therefore, it is our believe that MANO framework workflows
should be customisable per network service and VNF by the
developer.

Looking at the state-of-the-art, some MANO customisation
features were proposed. OSM [1] and Open Baton [2] allow
developer-defined function specific VNF managers (VNFM)
— implemented as Juju Charms — to be attached to their
frameworks. Both platforms instruct these Juju Charms instead

Instantiate NS
—_—
Parse NSD/VNFD.

On-board specific manager

SM controller SM verifier

Download SM image

Boot SM image, create isolated channel

Specific manager on-boarded

Instantiate specific manager

NOILVILNVLSNI WSX

Register

Specific manager instantiated

Placement SSM

Check in NSD if placement SSM is available for NS

Request placement calculation for given infrastructure topology

forward request
= Calculate
placement
Respond with
calculated placement

Verify integrity
of response

AWILNNY WSX

Forward response

Fig. 2: Specific Manager instantiation and runtime sequence
diagram.

of the generic VNFM for lifecycle events (e.g. starting, config-
uring or healing a VNF) of associated VNFs. Both platforms
miss the ability to customise lifecycle events on the service
level — the VNFM operates only on VNFs — which are
implemented in the NFV orchestrator (NFVO). If (part of) a
network service requires migration, a generic NFVO doesn’t
know how to calculate the new placement while guaranteeing
acceptable QoS. Similar for scaling a network service; a
generic NFVO doesn’t know which additional VNFs to deploy,
which existing instances to reconfigure and how to connect
them in a new SFC. These events can only be supported if the
NFVO is customisable as well. ONAP introduced a concept for
a closed loop automation management platform (CLAMP) [3]
which allows operators to create a control loop with access
to monitoring data. Required lifecycle events resulting from
diagnoses are described by policies, which can instruct the
NFVO. Although this allows operators to customise the NFVO
to some extend, it misses fine-grained control and can’t be
used by developers. From academic work, [4] and [5] mention
the necessity for NFVO and VNFM customisation without
proposing solutions.

We solve this necessity by introducing a MANO frame-
work that maximises the programmability by developers. Our
mechanism — first mentioned in [6] and shown on Fig. 1 —
allows service specific managers (SSM) and function specific
managers (FSM) to be attached to the MANO framework.
Specific managers are processes created by network service
and VNF developers that incorporate service and function
specific MANO behaviour. The network service or VNF
descriptor indicates where they are stored and which lifecycle
events they customise. Once the associated network service or
VNF is instantiated by the MANO framework, they are on-
boarded, instantiated and attached to the framework as shown
in the xSM instantiation block on Fig. 2. For each lifecycle
event that needs to be executed, the MANO framework looks
up in the associated descriptor whether a specific manager
exists that customises this event. If that is the case, this specific
manager will be inquired to execute that workflow. If not,
the generic MANO framework workflow is executed. Among

others, an SSM can provide custom workflows that describe
the placement calculation during instantiation, how to scale
the network service, how to heal it, reconfigure it or how to
react to associated monitoring alerts. In terms of customising
the VNFM, an FSM can define how to scale a VNF, how
to configure it after instantiation or migration, how to heal
it, etc. Of course, each specific manager has to consume the
correct MANO framework API [7]. In terms of customising
VNEF lifecycle events, our mechanism is similar to those in [1]
and [2]. The main contribution steams from the SSMs, which
give network service developers a fine-grained control over the
NFVO, a feature unavailable in other MANO frameworks.

For example, when instantiating a new network service, the
mapping of the VNFs and virtual links onto the substrate needs
to be calculated. Since only the developer knows, given the
infrastructure topology and its capabilities, which mapping
results in acceptable end-to-end network service QoS, he
or she can embed the placement algorithm that implements
that knowledge in a placement SSM. The MANO framework
knows from the descriptor that a placement SSM is available
for this service, and will invoke it when a mapping is needed,
instead of using the generic placement algorithm. This call to
the SSM includes a view of the available infrastructure, and
the MANO framework verifies whether the response yields a
realistic mapping. This process is shown in the xXSM runtime
block on Fig. 2. More complex structures can be created.
An SSM can program how the MANO framework reacts to
monitoring alerts. The MANO framework forwards all the
monitoring data associated to the network service to this SSM.
This allows the SSM to diagnose suboptimal performance of
the network service and undertake steps to resolve this by
instructing the MANO to execute a custom workflow. Among
others, such a workflow can contain instructions to migrate
(which first require an invocation of the placement SSM), scale
(such as adding VNFs and reconfiguring the SFC), heal (e.g.
by triggering an FSM that accesses the VNF and restarts a
process) or a combination of the above.

To ensure that the developer doesn’t abuse the granted
freedom to undermine the MANO integrity, some measures
need to be taken. Communication between the MANO frame-
work and any specific manager is isolated, protecting sensitive
control information of other network services. Messages from
specific managers are screened by a specific manager verifier
which incorporates a set of verification tools, such as [8].
These evaluate whether requested configurations are feasi-
ble, whether proposed workflows make sense (e.g. chaining
instructions can never precede placement calculations), etc.
A specific manager controller is required to manage their
lifecycles (e.g. on-boarding, instantiating and registration) and
to monitor there resource usage. Interactions with the specific
manager controller and verifier are detailed on Fig. 2.

An operational implementation of this MANO framework
design was created during the SONATA and 5SGTANGO
projects, and is shown on Fig. 1. The generic NFVO behaviour
is implemented by the service lifecycle manager and the func-
tion lifecycle manager implements the generic VNFM, both
using a set of submodules. xSMs are executable binaries. To
aid the developer, the implementation provides an xSM source

code template that allows it to connect and register with the
MANO framework. The template’s main function consumes
messages from the MANO framework and, depending on their
content, triggers specific callback functions. By defining the
logic in these callback functions, the developer customises
the MANO. For example, if an SSM receives a request to
evaluate monitoring data, the associated callback contains the
developer’s code that analyses the data and decides whether
a scaling event is needed. When the function concludes, the
result is sent to the MANO. The developer can use the
available template, or start from scratch. In that case, the
MANO framework API isn’t available through predefined
functions and the developer should be careful to obey it.
Our implementation comes with a tool to test whether xSMs
obey this API and how each callback function behaves for all
possible MANO inputs.

ITI. SPECIFIC MANAGER CASE STUDY: SELF ADAPTATION
FOR A CONTENT DELIVERY NETWORK

To exemplify the specific manager mechanism introduced
in the previous chapter, we use it to add self adaptation
capabilities to a rudimentary content delivery network (CDN).
Users from two adjacent access networks request to stream
content. The CDN uses instances of two VNFs: a video content
cache (vCache) able to provide and store content and a traffic
classifier (vTC) that inspects incoming traffic and decides
upon the appropriate service chaining. The vTC intercepts all
ingress traffic from the network service and the traffic steering
decisions implemented at the vTC are:

o Traffic is a user web traffic request, forwarded to vCache

e Traffic is streaming media content coming from the
streaming server, forwarded to vCache

o Traffic is streaming media content stemming from
vCache, forwarded to the user

When the user makes a request, it is intercepted by the vTC
and forwarded to the vCache for processing. If the content
isn’t available, then the vCache requests the content from the
original streaming server where the content is available. In
our network topology one micro datacenter is present in each
access network, which is considered the optimal location for
both VNFs to provide content with high bandwidth and low
delay. Each access network has a vT'C, where all requests from
that access network are consumed through chaining. Since a
vCache can potentially consume many resources, only one is
deployed and used by both vTCs. The setup is shown on Fig.
3. To lighten the load of the core network, streams originating
in the media server are capped at 12 Mb/s, too low according
to Netflix to stream Ultra-HD (4K) content. For this scenario,
we assume the requested content is available in the vCache.

To ensure high bandwidth, we extend the service with self
adaptation functionality for the vCache. We first add a mon-
itoring SSM. We extend the VNFs with a monitoring probe
that sends values for custom metrics towards the monitoring
framework. The vTC sends a metric that indicates whether it
can ping the vCache, the vCache sends an indication of its
load. These metrics are defined in the VNF descriptors, so
the monitoring framework knows what to expect. The MANO

Datacenter

Content
Server

=J

Micro datacenter

Micro datacenter

Fig. 3: rudimentary content delivery network.

forwards all received data for this service coming from the
monitoring framework to the monitoring SSM. We also add a
healing FSM for the vCache, which is designed to salvage
a corrupt vCache instance (e.g. by connecting to the VM,
running a diagnostic check and restarting a process). When
the monitoring SSM detects that the vCache is no longer
available, it instructs the MANO framework to trigger the
vCache healing FSM. Whether the FSM succeeds or fails
(e.g. the FSM can’t connect to the VM because it crashed)
is reported to the monitoring SSM. If failed, the monitoring
SSM instructs the MANO to execute a custom workflow that
terminates the old vCache, instantiates a new one, includes it in
anew SFC and triggers the respective vIC configuration FSMs
to instruct each vIC to start using the new vCache. Since
vTCs direct requests to the media server when no vCache is
available, these scenarios see a reduced bandwidth observed
by the users.

A longer lived bandwidth drop might not be bridgeable by
buffering and could result in degradation of video quality. To
prevent this, we extend our SSM to deal with this proactively.
We extend the vTC monitoring probe to send the number
of users being served. Once this reaches a threshold, the
monitoring SSM decides an additional vCache is needed. This
threshold is a trade-off between additional resource cost and
the improved QoS of users. The monitoring SSM instructs
the MANO to execute a workflow that contacts the placement
SSM to calculate where to place the vCache, instantiates the
new instance, updates the SFC and finally informs the vTCs
that two vCaches are available. The placement SSM places the
vCache so that the number of users with increased bandwidth
is maximised. Each vTC polls the vCaches frequently for their
load, to decide which vCache to use. Once a vCache becomes
unavailable, both vTCs will use the remaining vCache. As
before, the monitoring SSM will try to salvage the unavailable
vCache or instantiate a new one.

This workflow describes a non-generic scaling process to

" 'SCKonlocalmachine

Operatlon -like test environment
i

_1

Instantiate
i
; troubleshoot
i
i
‘ .
i
A2
profile monitor

3§y 3 I
[Diagnose « fetch

Flg 4: SCK Workflow for network service development

\

Emulator

—
Develop
Fix
Update

I*l

Troubleshoot

facilitate self adaptation. Looking at large scale deployments,
more access networks and vCaches will be included and each
vTC is only informed with nearby vCaches. To ensure vCache
availability, more scaling events might be required if the load
approaches their limits. The monitoring SSM has two ways to
go about this: either instruct the MANO to deploy additional
vCaches or reconfigure vICs to use those vCaches with a
below average load.

IV. ENHANCING THE NFV DEVOPS LOOP WITH AN SCK

DevOps aims to unify software development and software
operations to reap synergetic benefits. As per [9] and [10], this
is achieved through i) the availability of automated processes
to test products under construction repeatedly and reliably,
ii) development and testing is done against production-like
systems, iii) the availability of continuous monitoring to val-
idate operational quality and iv) development is done in an
iterative and incremental manner through short iterations and
systematic testing. As argued in [11] and the associated IETF
draft [9], existing IT DevOps mechanisms cannot be directly
applied to the NFV context due to different requirements and
infrastructure scale. Tools that aid development of datacenter
applications don’t account for the large, heterogeneous and
geographically spread telecom infrastructure or for the carrier-
grade requirements in terms of availability or latency. [11] pro-
poses an NFV DevOps model with verification, troubleshoot-
ing and monitoring tools up to telecom standards. However,
all tools are executed by the operator, and thus within an
operations environment. The model lacks concepts that aid
the developer in their local environment. For simplicity, the
authors also assume that service developers and telecom
providers are the same entity. Consequently, the model doesn’t
consider independent service developers that have no access
to operation environments.

We use the remainder of this section to present our
SCK [12], a toolkit with DevOps tools for both independent
and affiliated network service developers. Its key feature is the
Emulator [13], a tool that emulates topologies of telecom oper-
ator infrastructure — with both virtual compute and network-
ing resources — on a local machine. This enables developers
to test large parts of the functionality of their service locally,

700 4 NS validation and packaging
NS push
Emulator instantiation

600 -

total emulator iteration
test environment instantiation
total test environment iteration

Duration [s]

2-1 2-2 8-1 8-2
Network service [#VNF - #PoP]

UsCarrier
Telecomserbia
Telcove
Oxford
LambdaNet

lon

Interoute
Globenet
Geant2012
Dfn
DeutscheTelekom

Topology

Chinanet
BtNorthAmerica
BtLatinAmerica
BtEurope
BtAsiaPac
Belnet2010
Basnet

AsnetAm
Arpanet19728
Arpanet196912
Abilene

environment boot
PoP setup
connection setup
platform start

-
|
|
-
0

0 20 40 60 80 10 120 140

Duration [s]

Fig. 5: SCK performance: a) step duration in both development cycles; b) emulator setup time for various

infrastructure topologies.

including the SFC and end-to-end behaviour, without needing
to interface with a telecom operator’s test environment. The
Emulator provides troubleshooting features [14] with end-
points that generate traffic to simulate different regimes for
the network service to operate in. The SCK profiling tool can
be used to suggest improved resource requirements or scaling
behaviour based on these results. Since resources available in
the Emulator are limited and shared with the control plane final
testing on production-like test environments is still required.
To interface with them, the SCK packages all network service
artefacts conform ETSI’s SOL004 [15] package specifications,
pushes them to the test environment and instantiates them. The
SCK extracts monitoring data from these test environments,
allowing developers to quickly diagnose any issue.

The SCK workflow is detailed on Fig. 4 and shows two
development cycles: one using the Emulator to test the service
locally and one using operator infrastructure in a test environ-
ment. Once the service stabilises in the local cycle, it is tested
in the operations cycle. If any test fails, the network service is
updated and the procedure repeats itself. This SCK workflow
satisfies all DevOps requirements: i) All processes, except
for programming and diagnosing, are completely automated
to prevent human error, ii) a production-like environment is
locally emulated for rapid testing and interfaces with telco test
environments are provided, iii) monitoring data is continuously
collected and can be fetched anytime to ensure issues are
logged and iv) the average development cycle is substantially
shortened, as shown in the section below, allowing for in-
cremental development and fast convergence towards stable
network services. Relating to the state-of-the-art, these SCK
features further enhance the NFV DevOps loop for every
network service developer.

V. SHORTENING NETWORK SERVICE DEVELOPMENT
ITERATIONS

Developing a network service requires various steps. The
developer needs to select VNFs, describe how to intercon-
nected them, build configuration scripts (i.e. SSMs), etc.
Typically, such development requires multiple iterations where
intermediate versions are tested and improved. Since a DevOps
mindset tends to further increase the number of iterations,
minimising their duration is of paramount importance to
converge quickly to a stable product. Here, we compare the
duration of a single iteration for both types of development
cycle that are supported by our SCK and shown on Fig. 4.

The time it takes to code or update service artefacts, or
to diagnose an issue in test data depends on the developer’s
skillset. Since this is difficult to quantify and independent of
the selected development cycle, it is omitted from the mea-
surements. Fetching monitoring data is a continuous process
and omitted as well. We assume both development cycles
use identical troubleshooting tools, making its duration cycle
independent. As this duration is difficult to estimate — it
depends on how extensive the service is tested — it is
also omitted. Therefore, we compare the duration of both
cycles based on these SCK steps: validate, package, push, and
instantiate. Results are shown on Fig. 5.

The figure shows the duration of the steps for four different
network services, two containing two VNFs spread over one or
two datacenters and two with eight VNFs, also evenly spread
over one or two datacenters. Results are averaged over ten
measurements. Every VNF is an Ubuntu Cloud VM operating
as a switch. For both cycles, the duration is dominated by
the instantiation phase, and it is sensible longer on the test
environment, here managed by a SONATA service platform
(SP). This is due to the lightweight nature of the Emulator,
which only needs to instantiate the service, compared to the SP
that performs a lot of additional work that is obsolete for test
scenarios (e.g. related to security or communication between

various SP components, storing records, etc.). Additionally, the
Emulator uses local resources, while the SP orchestrates on
top of remote virtualised resources available from datacenters
and networking equipment, typically controlled by virtual
infrastructure managers (VIM) like OpenStack and OpenDay-
Light. Therefore, the SP has to interface with such VIMs to
instantiate the service, a much slower process than controlling
locally emulated resources. Test environment instantiations are
faster when two datacenters are involved, since some work is
done in parallel.

Figure 5 shows instantiation times on a simple telco infras-
tructure with one or two datacenters. Our experiments show
that it takes the Emulator roughly two seconds to emulate
this type of topology. Figure 5 shows how long it takes the
Emulator to set up more realistic telco topologies, obtained
from The Internet Topology Zoo. It takes a couple of minutes
for a few of them, but most are emulated in less than a minute.
Within a matter of minutes, the Emulator allows a developer
to test a network service on a large and diverse set of realistic
telco infrastructures, something that is close to impossible
when having to interface with each operator’s environment
directly to test on their topology.

The experiments show that the Emulator-based development
cycle is faster and far more flexible in terms of tested topolo-
gies than the test environment cycle. Introducing the Emulator
clearly reduces overall development time of network services,
especially in a DevOps scenario where the number of iterations
increases. As a best practice, we suggest that developers
use the Emulator development cycle up to the point where
the service performs as desired for targeted telco topologies.
Then, the test environment cycle should be used to validate
that the service performs similarly on targeted production-like
environments. As a final note, we compared the efficiency of
our SCK with those from OSM and ONAP. For each SCK, we
modelled the number of developer steps required for a single
cycle from programming or updating network service artefacts
until on-boarding the package. For each SCK, we observed a
linear correlation between this number of steps and the number
of VNFs in the service. The slope of this correlation is more
or less twice as steep for the other SCKs when compared to
ours. This can be explained by the high level of integration
between our tools resulting in a higher degree of automation,
and by our service model where services and their VNFs are
packaged as a single package, greatly simplifying on-boarding
procedures.

VI. SUMMARY

The role of network service developer has evolved with
to the introduction of NFV in the telco domain. A tight
relationship between the network service developer and the
operator is no longer required. In this article, we provide
two fundamental and necessary mechanisms that empower
the developer in its new independent role: a modular MANO
framework architecture that can be programmed per service or
VNF by the developer and an SCK with software tools that
ease the life of developers throughout a significantly enhanced
NFV DevOps lifecycle.

To customise the proposed MANO framework, the devel-
oper can construct service or function specific managers. These
managers are attached to the MANO when the associated net-
work service or VNF is being instantiated, and they overwrite
the generic MANO behaviour with customised workflows for
lifecycle events of those specific network services and VNFs.
The mechanism is secure and uses a public API. We included
a use case where a content delivery network is extended with
self adaptation capabilities through this mechanism. It shows
that such programmability capabilities are essential for non-
trivial network services to reach their full potential.

Secondly, we provided an SCK that enhances the NFV
DevOps loop. The SCK contains tools that aid the service
developer at every step: during development, when interfacing
with operator infrastructure or when diagnosing test results.
The Emulator, the core SCK component, emulates telco in-
frastructure on a local machine, enabling the developer to
execute a portion of the tests locally without needing to
interface with actual operator equipment. We show that our
SCK meets all DevOps criteria during the entire development
cycle, reduces development time as the introduction of the
Emulator significantly shortens single development iterations,
and out performs other available SCKs.

ACKNOWLEDGMENT

This work was funded through SONATA (671517) and
SGTANGO (761493), in the scope of the EC’s Horizon 2020
and 5G-PPP programs. The expressed views are those of the
authors only.

REFERENCES

[1] “OSM Release Four Documentation,” https://osm.etsi.org/wikipub/
index.php/OSM_Release_FOUR_Documentation, (Accessed Oct. 10,
2018).

[2] G. Carella et al., “Prototyping nfv-based multi-access edge computing
in 5g ready networks with open baton,” in /IEEE NetSoft, 2017, pp. 1-4.

[3] ONAP, “Documentation of ONAP’s CLAMP module,” http:
//onap.readthedocs.io/en/latest/submodules/clamp.git/docs/index.html,
(Accessed Oct. 10, 2018).

[4] S. Van Rossem et al., “Introducing development features for virtualized
network services,” IEEE Communications Magazine, no. 99, pp. 2-10,
2018.

[5] R. Szabo et al., “Elastic network functions: opportunities and chal-
lenges,” IEEE network, vol. 29, no. 3, pp. 15-21, 2015.

[6] H. Karl et al., “Devops for network function virtualisation: an architec-
tural approach,” Trans. on Emerging Telecommunications Technologies,
vol. 27, no. 9, pp. 1206-1215, 2016.

[7]1 “Specific Manager API as defined in SONATA,” https://github.com/
sonata-nfv/son-mano-framework/wiki, (Accessed Oct. 10, 2018).

[8] S. Spinoso et al., “Formal verification of virtual network function graphs
in an sp-devops context,” in European Conference on Service-Oriented
and Cloud Computing, 2015, pp. 253-262.

[91 C. Meirosu et al., “Devops for software-defined telecom infrastructures,”

IETF, pp. 1-20, 2015.

A. Reddy, “Devops: The ibm approach,” Nova York: IBM Corporation,

2013.

W. John et al., “Service provider devops,” IEEE Communications

Magazine, vol. 55, no. 1, pp. 204-211, 2017.

S. Van Rossem et al., “A network service development kit supporting the

end-to-end lifecycle of nfv-based telecom services,” in IEEE NFV-SDN,

2017, pp. 1-2.

M. Peuster et al., “Medicine: Rapid prototyping of production-ready

network services in multi-pop environments,” in /[EEE NFV-SDN, 2016,

pp. 148-153.

[10]
(1]

[12]

[13]

[14] 1. Pelle et al., “One tool to rule them all: A modular troubleshooting
framework for sdn (and other) networks,” in ACM SIGCOMM, 2015,
p. 24.

[15] “Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; VNF Package specification,” http://http:
/Iwww .etsi.org/deliver/etsi_gs/NFV-SOL/001_099/004/02.03.01_
60/gs_nfv-s0l004v020301p.pdf, (Accessed Oct. 10, 2018).

Thomas Soenen obtained his M.Sc. degree in Physics and Astronomy in 2012
from Ghent University. Currently, he is a researcher at IDLab, the Internet and
Data science research group at Ghent University - imec. His interests focus
on new network paradigms such as SDN and NFV.

Wouter Tavernier received his M.Sc. degree in Computer Science in 2002
from Ghent University, where he joined the IDLab group in 2006. He obtained
a Ph.D. in 2012 and is currently professor at the same university. His interests
focus on performance aspects of SDN, NFV and large-scale routing.

Manuel Peuster received his M.Sc. degree in computer science from
Paderborn University in 2014, where he is a doctoral research associate in
the Computer Networks group. His research interests are NFV, SDN, and
performance benchmarking of distributed systems.

Felipe Vicens holds a Degree in Telecommunication Engineering from Andres
Bello Catholic University (2009), where he was professor of the Telematics
Lab (2009-2012). He is currently employed at Atos Research & Innovation.
His interests are in SDN networks and cloud-native.

George Xilouris is a fellow researcher at Media Networks Lab, at the Institute
of Informatics and Telecommunications at NCSR Demokritos. His interests
are next generation networks and software networks.

Stavros Kolometsos is a research assistant at Media Networks Lab, at the
Institute of Informatics and Telecommunications at NCSR Demokritos. Recent
research activities include software networks and Service Function Chaining.

Michail-Alexandros Kourtis is a fellow researcher at Media Networks Lab,
at the Institute of Informatics and Telecommunications at NCSR Demokritos.
His research interests include NFV, SDN and Quality of Service.

Didier Colle is professor at Ghent University, where he received a Ph.D.
in 2002 and a M.Sc. in electrotechnical engineering in 1997. His research
interests are on fixed Internet architectures, optical networks and design of
network algorithms.

