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Abstract—The evolution of the future beyond-5G/6G networks
towards a service-aware network is based on network slicing tech-
nology. With network slicing, communication service providers
seek to meet all the requirements imposed by the verticals, includ-
ing ultra-reliable low-latency communication (URLLC) services.
In addition, the open radio access network (O-RAN) architecture
paves the way for flexible sharing of network resources by
introducing more programmability into the RAN. RAN slicing is
an essential part of end-to-end network slicing since it ensures
efficient sharing of communication and computation resources.
However, due to the stringent requirements of URLLC services
and the dynamics of the RAN environment, RAN slicing is
challenging. In this article, we propose a two-level RAN slicing
approach based on the O-RAN architecture to allocate the
communication and computation RAN resources among URLLC
end-devices. For each RAN slicing level, we model the resource
slicing problem as a single-agent Markov decision process and
design a deep reinforcement learning algorithm to solve it.
Simulation results demonstrate the efficiency of the proposed
approach in meeting the desired quality of service requirements.

Index Terms—Network Slicing, Ultra-Low Latency, Open Ra-
dio Access Network, 6G, Deep Reinforcement Learning.

I. INTRODUCTION

Although fifth-generation (5G) standards are not yet fully
finalized, the roadmap for sixth-generation (6G) networks is
already taking shape due to several industrial and academic
research efforts [1]. 6G networks are expected to support more
diversified services compared to 5G networks, which should
create exciting business opportunities in many vertical sectors
[2] Achieving this requires (i) improving the technologies
behind the evolution of 5G, such as network slicing [3], and
(ii) leveraging machine learning (ML)/artificial intelligence
(AI) techniques, such as deep reinforcement learning (DRL)
for an efficient management of network resources. In addi-
tion, to meeting the requirements of various industries, 6G
should not only rely on new enabling technologies but also
provide an innovative network architecture beyond current
network designs. Open radio access network (O-RAN) is a
key component of this architectural transition to more open
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and intelligent networks [4]. The O-RAN approach sustains
the disaggregation between hardware and software to create a
multi-supplier RAN solution through open and interoperable
protocols and interfaces. The O-RAN specification, which is
still compliant with 3GPP standards, introduces the hierarchi-
cal RAN Intelligent Controller (RIC), including non-real-time
RIC (non-RT) and near-real-time RIC (near-RT) where ML/AI
algorithms are integrated to enable RAN programmability.

RAN slicing is a critical component of end-to-end network
slicing, as it determines the degree of flexibility network
operators have to meet the needs of new verticals. In particular,
ultra-reliable low-latency communications (URLLC) is the
foundation for emerging mission-critical applications in 6G
networks, such as autonomous driving, industrial IoT, e-health
(e.g., remote surgery) and mobile or m-health (e.g., patient
monitoring and virtual reality-assisted care in ambulances).
Due to the stringent requirements of these applications, they
are expected to rely on multi-access edge computing (MEC)
to deliver added value services to the end users. Therefore,
effective management of RAN slicing will rely on the ability
to optimally manage communication and computing resources
placed at the MEC [5].

Considerable efforts have been devoted to improving the
performance of RAN slicing to efficiently offload tasks at the
MEC [6], where the RAN resource slicing problem is usually
formulated using optimization techniques [7]. However, due
the dynamics of the RAN environment, solving the problem
of RAN slicing is challenging to solve in polynomial time.
To overcome these issues, 6G RAN slicing operations will
need to be performed with more intelligent resource allocation
capabilities that achieve delay-efficient performances. Under
the O-RAN architecture, RICs can dynamically create multiple
RAN slices tailored to URLLC services using ML/AI capa-
bilities such as DRL algorithms. Indeed, non-RT and near-
RT RICs can leverage DRL’s excellent learning ability and
effectiveness in solving complex and dynamic environment
problems, such as the RAN environment, to make optimal
RAN slicing decisions for URLLC services [8].

In this work, we are motivated to apply the DRL algo-
rithms within the O-RAN architecture to jointly slice the
communication and computation resources at the RAN level
for URLLC task offloading operations. Indeed, we propose a
two-level RAN slicing approach based on DRL. The first level
– communication slicing level, concerns the allocation of radio
resources to end-devices. The second level – computation slic-
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ing level, deals with the allocation of computation resources to
end-devices. The contribution of our work is as follows. We
first introduce the RAN slicing paradigm and its associated
challenges. Then, we model each RAN slicing resource level
as a single agent Markov decision process. Next, we propose,
for each RAN slicing level, a DRL algorithm to solve it.
Finally, we illustrate through extensive simulations that the
proposed approach exhibits fast convergence and achieves
delay-efficient performance.

II. UNVEILING THE CURTAIN: RAN SLICING

Network slicing is the transformation of a physical network
into a set of logical networks on top of a shared infrastructure.
RAN slicing is a critical part of end-to-end network slicing to
enable differentiated traffic processing and isolation. This can
be achieved through application-based prioritization of data,
resource allocation, and scheduling.

A. RAN Slicing Efforts

To date, various efforts have been presented to improve
the capacity to deliver URLLC services through RAN slic-
ing. The Third Generation Partnership Project (3GPP) has
made significant standardization efforts to define RAN slicing
specifications and promote its implementation. For instance,
3GPP introduced the RAN slicing management framework
to manage the life cycle of RAN slices [9]. In addition, it
provided efficient solutions that allow end-devices to rapidly
access a cell and select the desired RAN slices [10]. A joint
RAN slicing framework for communication and computation
resources has been developed in [11]. Communication and
computation resources are allocated to RAN slices in order
to minimize the delay needed to offload and process time-
sensitive users’ tasks. To support a maximum number of
RAN slices while meeting their performance requirements, [6]
proposes to share the radio resource between RAN slices by
allocating a fraction of bandwidth that maximizes the access
probability to the base station and the energy efficiency of
end-devices.

Reinforcement learning (RL)-based RAN slicing approaches
have also emerged as practical solutions with low computa-
tional complexity and simplified implementation. For instance,
[12] introduces a RL-based framework to dynamically allocate
radio spectrum and computation resources to RAN slices.
The allocation process considers the delay as the primary
QoS metric. [13] employs DRL to design a decentralized
RAN resource orchestration system. The latter includes an
agent to slice each RAN resource and a central coordinator
that manages the resource orchestration between the agents.
Each orchestration agent uses DRL to allocate its resources
to RAN slices, while the central coordinator ensures SLA
requirements.

B. Open Challenges in RAN Slicing

Despite the aforementioned solutions, various issues remain
open. These issues could be summarized as follows:

• Resource Sharing: Efficient resource sharing is a primary
objective of RAN slicing. However, when a slice is

instantiated, dedicated resources may become unavailable
to others. Resources reallocation among slices may fur-
ther enhance optimizing resources utilization as well as
improving the network performance. However, dynamic
changes in network load, end-devices mobility, and task
distribution make resource reallocation challenging.

• Dynamic Slice Creation/Management: In light of the
previous point, optimizing resource allocation is indis-
pensable to maximize verticals’ benefits, where dynamic
slice creation/management are critical during the slice
lifecycle. To accommodate a maximum amount of service
requests with minimum resources, the network operator
needs to deploy various dynamic mechanisms to quickly
create/manage slices.

• Mobility Management: Today’s users may shift from a
network to another while requesting services. Seamless
handover and interference management add more chal-
lenges to RAN slicing. For instance, it is critical to
ensure fast mobility handover for real-time services. The
system performance relies on the performance of the
handover mechanism. Therefore, there is a need for a
slice-oriented mobility management protocol to tackle the
mobility issues in RAN slicing.

• Algorithmic Aspects: Resource allocation is a challenging
problem that often encompasses many parameters and
constraints. Different algorithms have been adopted to
solve the problem according to its complexity. Exact
algorithms can be applied to find optimal solutions for
less complex problems, while meta-heuristic algorithms
are more efficient when dealing with more complex
problems. Therefore, practical resource allocation algo-
rithms are necessary with the ability to reconfigure slice
resources based on the dynamic network changes.

With O-RAN, the door is now unlocked to enhance RAN
slicing and address many of its challenges using the non-RT
and near-RT RICs [14]. The former handles the heaviest RAN
functions, at a time scale > 1s, including robust RAN ana-
lytics, control policy design, providing trained AI/ML models
and guidance to support near-RT RIC operations. The latter
executes critical RAN functions, at a time scale that could be
as low as 10ms, to interpret and enforce the received policies
from non-RT RIC such as using AI/ML inference to control
RAN behavior. Therefore, the interaction between non-RT and
near-RT RICs can be used to design and fine-tune efficient
AI/ML control algorithms for RAN slicing. In this work, we
leverage the hierarchical RIC features and DRL capabilities
to achieve dynamic slice creation and management, as well
as efficient resource reallocation and sharing to meet the
requirements of URLLC services. Indeed, we propose a DRL-
based RAN slicing approach driven by the non-RT RIC and the
near-RT RIC. In each resource slicing level, a DRL algorithm
can be retrained to dynamically reallocate resources among
slices based on changes in network load and task distribution.
Moreover, RICs are used to automate the deployment and
monitoring URLLC slices.
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III. JOINT SLICING OF COMMUNICATION AND
COMPUTATION RAN RESOURCES

We describe, in the following, the proposed two-level RAN
slicing approach, where the communication and computation
RAN resource are jointly sliced and allocated to the end-
devices according to their URLLC requirements.

A. System Model

Network Model: We consider an O-RAN-based cellular
network architecture, as depicted in Figure 1, composed of
(i) non-RT RIC that is directly connected to near-RT RIC
through A1 interface, MEC servers, and gNodeBs through O1
interface to enables non-real-time control of RAN elements
and resources, (ii) near-RT RIC that performs near-real-time
control of O-RAN elements and resources over the E2 inter-
face, (iii) a set of MEC servers, controller by the near-RT
RIC, that form a MEC server sharing group, (iv) a set of
gNodeBs (gNBs) that provide communication resources to
URLLC end-devices in their coverage area, and (v) URLLC
end-devices that offload their computing tasks under URLLC
constraints, i.e., strict latency, to the MEC servers.

Each gNB is attached to one MEC server to provide
computation resources to URLLC end-devices. A gNB sharing
group consists of a group of gNBs with highly overlapped
in their communication coverage areas. The communication
and computation resources, considered in this work, are the
resource block (RB) of gNB and the CPU core of the MEC
server, respectively. RB is the smallest unit of radio resources
that can be allocated to an end-device. A CPU core is defined
as the computation capability in terms of CPU cycles per
second. We also consider the orthogonal frequency division
multi-access offloading scenario, where the radio resources of
a gNB are divided into multiple RBs. Hence, we avoid intra-
cell interference where a specific RB is exclusively assigned
to only one end-device.

Assumptions: In our model, we consider the following
assumptions: (i) since radio resources are limited, it is chal-
lenging to provide enough orthogonal radio resources (in a
multi-cell scenario). Thus, some gNBs can share the same
radio resources, which may cause interference between cells.
To counterbalance radio resources sharing and inter-cell in-
terference reducing, the same set of radio resources can be
assigned to multiple gNBs as long as the distance between
them is sufficient to reduce inter-cell interference; (ii) since
a gNB sharing group is an area with strong overlaps be-
tween gNBs, the orthogonal resources are assigned to gNBs
within one sharing group, which means the unavailability of
interference within gNB sharing group; (iii) each gNB covers
a set of end-devices that are uniformly distributed in the
gNB’s coverage area; (iv) each end-device is associated with
only one gNB; and (v) each MEC server is equipped with
multiple CPU cores to provide parallel computing. The near-
RT RIC performs the slicing operation of communication and
computation RAN resources in two levels: (a) communication
slicing level, and (b) computation slicing level

Communication Slicing Level: Each gNB assigns a num-
ber of RBs to its associated end-devices. The RBs allocated

Near-RT RIC

MEC Server 1
MEC Server 2

MEC Server 3

MEC Server 4

BS1
BS2

BS3

BS4

R
ad

io
 A

cc
es

s 
N

et
w

o
rk

C
o

m
p

u
t.

 
R

e
so

u
rc

e
 S

lic
in

g
C

o
m

m
. 

R
es

o
u

rc
e 

Sl
ic

in
g

RB Allocation 

RB Allocation 

RB Allocation
RB Allocation

CPU Allocation 

CPU Allocation 
CPU Allocation 

CPU Allocation 

U
R

LL
C

 
en

d
-d

ev
ic

es

M
EC

 s
e

rv
er

sh
ar

in
g 

gr
o

u
p

O
-R

A
N

 C
o

n
tr

o
l

La
ye

r
O

-R
A

N
 M

gm
t.

La
ye

r Non-RT RIC

A1 Interface

QoS 
Mgmt.

Trained 
Model

Radio Connection 
Mgmt.

Service Management and Orchestration Framework   

PolicyDesignConfig. Config.

O1 Interface

E2 Interface

xApps

Fig. 1: Reference network RAN slicing model.

to each end-device should ensure a low communication delay
in offloading the task from end-device to the associated gNB
through wireless transmission. A task’s communication delay
depends on its size and the total achievable data rate over
the allocated RBs. Each end-device can be considered as
an M/M/1 queuing system if: (i) the arrival process of each
end-device’s tasks follows a Poisson distribution, and (ii) the
inter-arrival times of the tasks are independent and follow an
exponential distribution. Therefore, the delay experienced by a
given task, in an offloading operation, can be calculated by ap-
plying Little’s law. We choose the M/M/1 queuing assumption
since it is widely used to characterize wireless communication
systems, especially in RAN slicing approaches. In addition,
under different queuing assumptions, the mathematical analy-
sis may be different and more complicated. Thus, for sake of
simplicity, in this work we only assume the M/M/1 case.

Computation Slicing Level: The computation resource
slicing consists of allocating the required CPU cycles to
successfully execute the offloaded tasks and meet the required
QoS requirements. In fact, for each arrival task in each MEC
server, the near-RT RIC needs to decide: (i) where the task
should be executed, and (ii) how many computation resources
should be allocated to this task. For a given task, the near-
RT RIC checks the available computation resources of the
associated MEC servers, based on which it decides whether the
task could be executed locally by its associated MEC server or
forwarded to another MEC server in the same sharing group.
Then, the near-RT RIC allocates the required CPU cycles to
execute this task. Indeed, checking the availability of compu-
tational resources in each MEC server should be performed by
the near-RT RIC since it enables online information collection
to optimize the control functions designed by the non-RT RIC.
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As a result, the near-RT RIC can take accurate computation
slicing decisions based on the optimized control functions
received from the non-RT RIC.

The computation delay can be defined as the ratio of
the number of CPU cycles required to accomplish this task
to the CPU cycles allocated by the near-RT RIC. When a
task is forwarded to a different MEC server, the round-trip
communication delay is added to the computation delay.

B. Deep Reinforcement Learning based RAN Resource Slicing

In an O-RAN architecture, the near-RT RIC is responsible
for making resource allocation decisions. The efficiency of
these decisions impacts the performance of the overall sys-
tem. In particular, each gNB communicates the state of its
environment, through the E2 interface, with the near-RT RIC
that allocates the required RBs to the end-devices associated
with this gNB. Similarly, the near-RT RIC collects information
about the computation resource status of the MEC servers
and allocates the CPU cycles, needed to execute the offloaded
tasks in the appropriate MEC servers. In order to meet the
requirements of URLLC services, communication and compu-
tation resource slicing need to be solved efficiently, especially
in large-scale networks where the number of end-devices
is huge. To overcome this challenge, DRL can be applied
since it can efficiently deal with the curse of dimensionality
problem. Figure 2 illustrates the overall working principle of
the proposed DRL-based RAN resource slicing in an O-RAN
architecture.

In this work, we opt for deep Q-learning (DQL) [15] to solve
the RAN resource allocation problem in both communication
and computation slicing. DQL uses a deep neural network
(DNN) as a Q-function approximator. This extension of the
Q-learning algorithm is known as the deep Q-network (DQN)
algorithm. Indeed, for a given input state, DQN generates
a Q-value of all possible actions. The agent’s experience
is defined by the tuple (current state, action, reward, next
state). Instead of immediately training the DNN by feeding
it with successive experience tuples, the tuples are stored in
a replay buffer according to the time sequence. During the
DQN training process, the stored experiences are randomly
sampled to train the DNN. The experience replay memory
strategy allows efficient use of previous experiences in the
DNN training process since it breaks the correlations in the
observation sequences.

To further stabilize the approximation of the Q-value func-
tion, we employ the double DQN (DDQN) algorithm for both
communication and computation slicing. DDQN mitigates the
overestimation problem that occurs in DQN algorithms since
it applies a maximization operation on both the selection
and evaluation actions. Specifically, DDQN uses two neural
networks: main Q-network to select action, and target Q-
network to calculate the estimated Q-value of each selected
action. The main Q-network is trained by minimizing the loss
function. The latter calculates the mean square error between
the current Q-values of actions selected by the main Q-
network and their estimated Q-values calculated by the target
Q-network.

In the O-RAN architecture, Figure 2, we consider that
each gNB is controlled by a DRL agent, called gNB-agent,
which performs the communication resource slicing between
the associated end-devices of this gNB. For the computation
slicing level, we consider that the MEC server sharing group is
controlled by a DRL agent, called MEC-agent, which allocates
the CPU cycles required to successfully execute the offloaded
tasks. Each DRL agent runs in a xApp on the near-RT RIC
and manages its resources through the E2 interface.

Before describing the proposed DRL-based approach, we
first model each resource slicing problem as a Markov decision
process (MDP).

MDP-based Communication Resource Slicing: Each
gNB-agent observes its environment and allocates RBs to its
associated end-devices. For each gNB, the communication
resource slicing is modeled as a single-agent MDP.

• The State Space: The state space of a gNB-agent includes
the: (i) set of associated end-devices, (ii) available RBs,
(iii) channel gain between the gNB and its associated
end-devices and (iv) maximum delay threshold required
by the URLLC service.

• The Action Space: A gNB-agent has to decide which
RBs should be allocated to each of the associated end-
devices. Since an end-device can have more than one RB
to meet the desired QoS, an action is defined by a row
vector where each element represents the RB - end-device
assignment.

• The Reward Function: The reward received by the gNB-
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agent depends on whether it successfully allocated the
required RBs or not. An action is considered to be
successful if it meets the constraints of the RB allocation
model. Since our objective is to minimize the commu-
nication delay, the received reward is the inverse of the
sum of all communication delays of all tasks offloaded
by the associated end-devices. Otherwise, the gNB-agent
is penalized with a negative reward.

MDP-based Computation Resource Slicing: We model
the computation resource slicing as a single-agent MDP.

• The State Space: The state space of the MEC-agent is
given by information about each MEC server including
the offloaded tasks and the available computation re-
sources. Since the observed state is unknown directly to
the MEC-agent, each MEC server regularly updates the
MEC-agent about its local state. An update can include
task-related information such as the number of tasks
currently in its buffer, the size of each task, the number
of CPU cycles needed, and a maximum delay threshold
required by the URLLC service.

• The Action Space: The MEC-agent decides the com-
putation resource allocation for each offloaded task. A
decision includes: (i) in which MEC server a task should
be executed , and (ii) CPU cycles allocation that consists
in determining the number of CPU cores to be assigned
for computing a received task.

• The Reward Function: The reward obtained by the MEC-
agent depends on whether the chosen action is feasible
or not and at what level the computation delay was
minimized. An action is considered feasible if it meets the
computation resource allocation constraints The received
reward is the inverse of the sum of computation delays
of all tasks offloaded by the end-devices. Otherwise, the
received reward is set to a negative value to prevent the
MEC-agent from choosing non-feasible actions in the
future.

C. Deep Q-learning Slicing Algorithm

A DDQL-based approach consists of two main phases: the
training phase and the implementation phase, i.e., inference.
In the training phase, a DDQN is trained in an offline manner.
In the implementation phase, the agent takes actions in an
online manner based on its trained DDQN. In the O-RAN
architecture, the DDQN model is trained offline in the non-
RT RIC, while the model inference is deployed in the near-
RT RIC. The non-RT RIC uses the O1 interface to collect
data for offline model training. Note that the trained model
can undergo an evaluation step validating that it is reliable
for deployment in the near-RT RIC. The model inference is
executed and fed with online data, through the E2 interface,
to produce the slicing actions that will be used in the resource
allocation operation. The training and implementation phases
of both slicing levels are conducted in the same way1, which
can be summarized as follows.

1The term agent is used to refer to the gNB-agent or MEC-agent, based on
the slicing level.

The Training Phase: It consists of several episodes and
requires, in each episode, the state of the environment as input.
As output, a trained DDQN is produced.

The learning process begins by iterating the episodes. At the
beginning of each step for each episode, the agent observes
the state of its environment and chooses an action according
to an ε-greedy policy. With the help of ε-greedy policy,
the training process is balanced between exploitation and
exploration. At each step, the agent takes a random action with
a probability of ε and follows its current policy by choosing
the action with the highest Q-value in the remaining time. As
the training process proceeds, the ε value gradually decreases,
indicating that the agent becomes more confident to optimally
interact with the environment and choosing optimal actions.
The obtained experience tuple is stored in a replay buffer.
When the buffer contains enough experiences, the agent picks
a random sample to create training data. Then, it performs
the gradient descent algorithm to minimize the loss function
and update the parameters of the main Q-network. On the
other hand, the target Q-network parameters do not need to
be updated at each training step but replaced by the main Q-
network parameters with a certain frequency.

The Implementation Phase: Once the offline training
phase is complete, the agents can use their trained DDQNs
to efficiently allocate RBs and CPU cycles. During the im-
plementation phase, when a new state of the environment is
observed, the agent selects the action with the highest Q-value.
Afterward, end-devices can offload their tasks to the associated
gNB using the optimal RBs. Then, tasks will be executed by
the MEC servers using an optimal CPU cycle allocation.

IV. PERFORMANCE EVALUATION

Simulation Setup and Scenario: Following the reference
network model shown in Figure 1, we implemented an O-
RAN-based cellular network architecture with four gNBs
using Python programming language. The gNBs are deployed
in a geographical zone modeled by a square of a side of
2000 m. Each gNB covers a circular area with a radius of
500 m and is accompanied by one MEC server. Each MEC
server is equipped with four CPU cores with a computation
capability equals to 3 gigacycles each. End-devices, with
URLLC services, are uniformly distributed within the coverage
area. Each end-device is associated with only one gNB and
can offload only one task at a time. The data size of each task
is uniformly distributed from 0.5 MB to 2 MB and the required
CPU cycles to compute one bit is 400. The transmission
power of end-devices is 23 dBm, while the bandwidth of
an RB is 180 kHz and the noise power is -114 dBm. The
DDQNs were implemented and trained using the PyTorch
framework, an open source machine learning library written
in Python. For the training, we used two fully connected
hidden layers composed of 256 neurons each, ReLu as the
activation function, Adam as the optimizer, and the mean
square error as the loss function. The learning rate of the
communication model and the computation model is 0.01 and
0.001, respectively, while the mini-batch size is 64 and 256,
respectively. The simulations were conducted on a laptop with
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Fig. 3: Training performance of the communication model.
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Fig. 4: Training performance of the computation model.

a 2.2 GHz Intel i7 Processor, 16 GB of RAM, and NVIDIA
GeForce GTX 1070 graphic card.

DDQN Training Performance: Figures 3 and 4 show the
training performance of the communication and the computa-
tion models, respectively. Indeed, Figures 3a and 4a illustrate
the convergence of the communication and computation DQL
algorithms, respectively, versus training episodes. It can be
seen from both figures that when the number of training
episodes increases, the cumulative average reward grows. We
also notice that the convergence of the computation DQL
algorithm is faster (converge after 2000 episodes) than that
of the communication DQL algorithm (from episode number
2500). The convergence of the communication DQL algorithm
is relatively slow due to the mobility of end-devices, so the
channel gains between the gNBs and the end-devices change
frequently. These convergence results demonstrate the effec-
tiveness of the proposed algorithms. Indeed, when end-device
mobility is high, the wireless channel changes rapidly, which
impacts the accuracy of the channel state information (CSI)
at the gNB. A gNBs estimates the gain between itself and its
associated end-devices using the CSI. In the communication
slicing level, the estimated gain is used as input for the DDQN

algorithm during its training phase. Therefore, an imperfect
CSI, caused by the high mobility of end-devices, can reduce
the learning performance of the proposed DDQN algorithm.
As a result, under the imperfect CSI constraint, the DDQN
algorithm takes more time to accurately learn the appropriate
policies. However, once the offline training of the DDQN
algorithm is performed, the learned policy can be applied
rapidly to obtain the resource allocation solution.

Figures 3b and 4b show how the behavior of the loss
function for both communication and the computation DQL
algorithms, respectively, evolves as training proceeds. In the
early stages of the training process, the performance of both
algorithms is weak due to exploration phenomena, i.e., the
gNB-agents and the MEC-agent take random actions more
than exploiting what they have learned. The loss value de-
creases to reach a minimum value at the end of the training
process, which indicates that the Q-value approximation has
become accurate.

Delay Performance: In this experiment, we evaluated the
performance of the proposed RAN slicing approach in terms
of the delay experienced by tasks. For each resource slicing
model, we varied the number of end-device and calculated the
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Fig. 5: Delay performance.

delay experienced by tasks for different task sizes, e.g., 0.5
MB, 0.7 MB, and 1 MB. Based on the observed results in
Figures 5a and 5b, we make the following observations: (1) it
is clear that as the number of end-device increases, the delay
experienced by the tasks increases, and (2) the performance
gap between the three task sizes remains relatively constant for
a different number of end-devices. For (1) when the number
of the end-devices becomes higher, the competitiveness among
end-devices increases to obtain sufficient RBs and CPU cycles.
In fact, when the number of the end-devices is low, the gNB-
agents and the MEC-agent can assign several RBs and CPU
cycles, respectively, to only one end-device. In contrast, when
the number of end-devices is high, the gNB-agents and the
MEC-agent, respectively, assign a minimum of RBs and CPU
cycles to satisfy all end-devices. Observation (2) demonstrates
the scalability of the proposed RAN slicing approach under a
dense network topology.

V. CONCLUSION AND FUTURE WORK

In this article, we designed a two-level RAN slicing ap-
proach to allocate communication and computation resources
to URLLC end-devices. The approach is integrated in the O-
RAN architecture with MEC technology. We modeled each
RAN resource slicing problem as a single-agent MDP. Then,
we developed a DQL algorithm to solve each resource slicing
problem and described the role of non-RT and near-RT RICs
in performing slicing operations. The proposed DQL-based
solution shows robust and efficient performance in meeting
the requirements of URLLC services. The results of this study
show that a deep reinforcement learning based RAN resource
slicing architecture such as the one presented is promising and
deserves further investigation. However, it is also clear that this
flexibility may come with the price of possible slice specifica-
tion violations. One direction that would be worth investigating
is the relationship between reconfiguration interval duration,
the probability of slice specification violations, DLR training
accuracy, and retraining frequency. Another interesting issue
to study is the trade-off between the penalties of overbooking
strategies and slice requirement violations in a DRL-based
resource partitioning architecture.
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