
IEEE Communications Standards Magazine • June 2018 552471-2825/18/$25.00 © 2018 IEEE

Abstract
In this article, we advocate for the use of IEEE

802.1 Time-Sensitive Networking (TSN) as deter-
ministic transport for the network layer of fog
computing in industrial automation. We give an
overview of the relevant TSN protocol services
and motivate the use of TSN. We propose a
configuration agent architecture based on IEEE
802.1Qcc and OPC Unified Architecture (OPC
UA), capable of performing runtime network
configuration. We briefly present the configura-
tion challenges for scheduled networks (consid-
ering a subset of TSN mechanisms), and illustrate
one problem: the configuration of schedule
tables of such networks for hard real-time control
applications. We propose a list scheduling-based
heuristic to solve this problem. Our evaluation
and comparison to previous work demonstrate
the feasibility of reconfiguring the scheduled net-
work at runtime for industrial applications within
the fog.

Introduction
We are at the beginning of a new industrial revo-
lution, i.e., Industry 4.0, which is underpinned by a
digital transformation that will affect all industries.
Industry 4.0 will bring increased productivity and
flexibility, mass customization, reduced time-to-
market, improved product quality, innovations
and new business models. However, Industry 4.0
will only become a reality through the conver-
gence of Operational and Information Technolo-
gies (OT & IT), which use different computation
and communication technologies. OT consists of
cyber-physical systems that monitor and control
physical processes that manage, e.g., automat-
ed manufacturing, critical infrastructures, smart
buildings and smart cities. These application areas
are typically safety-critical and real-time, requiring
guaranteed extra-functional properties, such as
real-time behavior, reliability, availability, indus-
try-specific safety standards, and security. OT uses
proprietary solutions imposing severe restrictions
on the information flow.

IT such as cloud computing and service ori-
ented architecture (SOA) cannot be applied to
the bottom levels, at the edge of the network,
where industrial machines are located, and
where very stringent extra-functional proper-
ties have to be guaranteed [1]. Instead, a new

paradigm, called fog computing, is envisioned
as an architectural means to realize the IT/OT
convergence. According to the OpenFog con-
sortium, fog computing is a “system-level archi-
tecture that distributes resources and services
of computing, storage, control and networking
anywhere along the continuum from Cloud to
Things.” With fog computing, communication
devices such as switches and routers are extend-
ed with computational and storage resources
to enable a variety of communication and com-
putation options. This is illustrated in Fig. 1. Fog
computing will enable a powerful convergence,
unification and standardization at the network-
ing, security, data, computing, and control levels.
It will lead to improved interoperability, security,
more efficient and rich control, and higher man-
ufacturing efficiency and flexibility [2]. The vision
is to virtualize control and achieve the same lev-
els of dependability as the ones taken for grant-
ed in Operational Technology.1

In this article, we advocate for the use of
TSN for fog computing in industrial automation,
and we present the relevant protocol services
that motivate the use of TSN. We propose a
configuration agent architecture capable of per-
forming runtime network configuration, and we
discuss the configuration challenges. To illus-
trate a configuration case study, we identify the
configuration of schedule tables of TSN for hard
real-time control applications as a challenging
problem. Then, we propose a scheduling heuris-
tic to solve this problem, and our experimental
evaluation demonstrates the feasibility of recon-
figuring TSN at runtime for industrial applica-
tions within the fog.

Fog Computing for Industry 4.0
The integration of computational and storage
resources into communication devices is realized
in the fog node. In many applications, including
industrial automation and robotics, several layers
of fog nodes with differing computation, com-
munication and storage capabilities will evolve,
from powerful high-end fog nodes to low-end fog
nodes with limited resources. Companies have
started to bring computing and storage closer to
the edge of the network (called edge computing).
However, edge computing does not provide the
dependability and real-time properties required
for demanding industrial applications. Research

Paul Pop, Michael Lander Raagaard, Marina Gutiérrez, and Wilfried Steiner

1 See the FORA project,
http://fora-etn.eu.

TIME-SENSITIVE NETWORKING STANDARDS

Paul Pop and Michael Lander Raagaard are with the Technical University of Denmark; Marina Gutiérrez and Wilfried Steiner are with TTTech Computertechnik AG.

Enabling Fog Computing for
Industrial Automation Through
Time-Sensitive Networking (TSN)

Digital Object Identifier:
10.1109/MCOMSTD.2018.1700057

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201856

works have started to propose solutions for the
implementation of fog nodes [2] including via
extensions of the networking layer [3, 4], and fog
node solutions have started to be developed by
companies. Ongoing work in this area is reported
in conferences such as the Fog World Congress,
and efforts for standardization are performed
within the OpenFog consortium and the Industrial
Internet Consortium.

The defining characteristics of a fog node are:
• A fog node is equipped with computational

resources that allow the execution of appli-
cations.

• The fog node is connected to a larger data
processing facility like a cloud environment
through a “northbound” connection.

• The fog node is connected to its environ-
ment, e.g., machines in the industrial auto-
mation use case, through a “southbound”
connection.

• A fog node has the ability to configure the
communication and computations reachable
on its southbound connection.

• The fog node itself must be configurable in
terms of communication and computation
through its northbound connectivity.
These five characteristics allow the realization

of the following examples of generic fog node
use cases:
• Computation tasks can be moved from end

devices (e.g., drives) to the fog node and to
the cloud.

• Updates and patches can be central-
ly planned in the cloud and automatically
rolled out.

• Statistics can be gathered on an end device,
fog node, and cloud level as well as any
combination thereof.

• Information from the lowest levels, e.g., sen-
sor reads, are seamlessly accessible every-
where in the system on demand, and ideally
without a need for protocol gateways.

IEEE 802.1 Time-Sensitive Networking

From fog node characteristics and use cases it
becomes clear that the technical capabilities and
commercial success of the fog node depends on
the technical characteristics of the overall infra-
structure that embeds the fog node. In particu-
lar, the choice of technology for the southbound
connection is crucial in the industrial automation
area. Today, the industry uses mostly proprietary
protocols [5] that lock customers into the product
portfolio of individual product vendors, impairing
interoperability.

The initial goal of the IEEE 802.1 Time-Sensitive
Networking (TSN) Task Group [6] was to pro-
vide timing guarantees for demanding applica-
tions such as those in the automotive area. This
will support the development of an ecosystem
consisting of component and machine builders,
system integrators, and hardware and software
vendors. Thus, IEEE 802.1 TSN is the ideal tech-
nology choice for the fog node’s southbound
connection, and is most effective by integrating
a TSN switch (i.e., IEEE 802.1 Bridge). The vision
with TSN is to provide a superior technical solu-
tion based on open standards.

TSN guarantees bounded latency communica-
tion between the fog node and its environment.
This guarantee enables the re-location of real-time
critical tasks from the machine to the fog node.
Sensor data can be made accessible anywhere
in the system by the appropriate configuration of
the switch’s forwarding table without the need for
data or protocol conversion. Furthermore, TSN
defines a central network configurator (CNC) that
can be operated from a fog node as well. Togeth-
er with higher-layer protocols like Open Platform
Communications Unified Architecture (OPC
UA),2 which currently standardizes OPC UA over
TSN, and an OPC UA publish-subscribe proto-
col suite, TSN not only enables mix-and-match of
products, but also plug-and-play capabilities.

There is a strong interest in the industry in
adaptive networks that can support safety-critical
real-time applications [7]. For example, industrial
applications require dynamic reconfiguration to
meet new business demands, allowing computa-
tion and communication services to evolve over
time with minimal disruption. Hence, we focus
on solutions that can be used to perform runtime
reconfiguration.

TSN and the
Integration of IT/OT

The southbound connection of a fog node con-
nects it to its environment, e.g., sensors and actua-
tors, machines, machine components, or to other
fog nodes. Thus, the quality of the communica-
tion on the southbound interface determines how
tightly a fog node integrates in the automation
and control processes. While industry, today,
deploys various real-time Ethernet variants as a
communication means on these low levels, TSN
offers an alternative based on open standards of
which we review some in this section.

TSN consists to a large extent of amendments
to IEEE 802.1Q3. It provides the description of
basic capabilities like queue-based switching in
each outgoing port. A switch that receives a mes-

Figure 1. Fog Computing platform. Boxes represent fog nodes, connected
with each other and to the Cloud; the thick lines are the network.
Applications (Apps) run in the fog and Cloud. Fog nodes may contain a
Configuration Agent (CA).

Apps

Cloud

Fog

Edg
e o

f

net
work

TSN

Apps

CA

Fog
node

2 https://opcfoundation.org

3 We will not provide refer-
ences for all standards, but
these can be easily found
based on their names via
IEEE Xplore.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 57

sage will decide on which of the physical output
ports the message is forwarded, as well as into
which queue on each output port the message
is added. Further functions in the IEEE 802.1Q
standard include prioritization of messages and
the definition of virtual LANs. It also incorporates
features that allow bounded latency communica-
tion (IEEE 802.1Qav, Credit-Based Shaper) and
bandwidth reservation (IEEE 802.1Qat) for Audio/
Video Bridging (AVB).

More recently also a synchronous shaping
mechanism has been added to the standard, IEEE
801.Qbv, the Enhancements for Scheduled Traffic.
IEEE 801.Qbv implements a time-triggered com-
munication paradigm: message transmissions are
planned at design time of the system (or through
explicit reconfiguration actions). This plan implic-
itly defines transmission and forwarding points
in time for the messages, and each end system
and switch in the system locally stores portions of
this communication plan (schedule). By reference
to this plan, each end system and switch knows
when to enable the transmission selection from
which queues on the output ports.

A prerequisite for time-triggered communica-
tion is the presence of a network-wide reference
time, such as the IEEE 802.1AS synchronization
protocol that allows local clocks in the end sta-
tions and switches to synchronize to each other.
IEEE 802.1AS is a profile of the IEEE 1588 stan-
dard and is currently under revision. The updated
IEEE 802.1AS-rev will provide further synchroni-
zation mechanisms, such as improved fault-tol-
erance by means of hot-standby configurations.
The synchronized time in the network enables,
e.g., time-triggered communication, coordinated
scheduling of tasks and messages, and the imple-
mentation of fault-tolerance services.

Furthermore, with TSN critical control tasks can
now be migrated to the fog node as the real-time
communication mechanisms (IEEE 802.1Qbv,
IEEE 802.1Qav, IEEE 802.1Qch) of TSN guarantee
the timely response. Even more, such real-time
communication mechanisms are currently under
standardization, e.g., IEEE 802.1Qcr (asynchro-
nous traffic shaping). Frame preemption (IEEE
802.1Qbu) benefits the integration of real-time
and non real-time traffic: critical frames can be
configured to interrupt non-critical frames. The
transmission of the non-critical frames is resumed
once the critical transmission is completed. TSN
also standardizes configuration options in IEEE
802.1Qcc, as discussed later.

Configuration Challenges and
Related Work

Industrial applications are typically safety-critical
and real-time. There has been a lot of work in the
area of analysis and optimization of real-time sys-
tems. In the context of “Deterministic Ethernet,”
researchers have addressed the topology design
problem, the introduction of new traffic types and
the assignment of traffic types to messages; they
have proposed solutions to typical communication
synthesis problems, such as routing, scheduling,
frame packing and fragmenting. A common con-
straint that needs to be satisfied is the schedulabil-
ity of messages, and researchers have worked on
simulation and timing analysis. The communication

synthesis problems have also been addressed in
conjunction with task-level scheduling. For a brief
survey of the typical configuration problems relat-
ed to Deterministic Ethernet systems, including
TSN, the reader is directed to [8].

In this article we showcase the configuration
capabilities of TSN using the problem of sched-
uling time-sensitive traffic, which is critical for
providing guarantees for industrial applications
requiring lowest latency. Researchers have shown
how to derive at design time the schedule tables
for both tasks and messages such that deadlines
are satisfied [9], and how to incrementally add
time-triggered flows at runtime in a Time-sensitive
Software-defined Network [10].

We have proposed an Integer Linear Program-
ming (ILP)-based formulation for the design-time
scheduling problem for TSN [8]. In this article,
we propose a configuration agent architecture
that uses the capabilities of TSN and OPC UA.
We also present an approach to the reconfigu-
ration of schedules at runtime, and we compare
the results with the related work on design-time
configuration of TSN.

Configuration Agent
Architecture

In Time-Sensitive Networking (TSN), the runtime
reconfiguration is supported by the extension IEEE
802.1Qcc. It defines a user network interface
(UNI), which enables the user to specify stream
requirements without knowledge of the network,
thereby making the network configuration trans-
parent to the user.

This is achieved via one of three configuration
architectures:
• Fully distributed model, where stream require-

ments propagate through the network. The
UNI is between an end station and its access
switch.

• Centralized network/distributed user model,
which introduces an entity, called the cen-
tralized network configurator (CNC), with
complete knowledge of all streams in the
network, and all configuration messages orig-
inate in the CNC. The UNI is still between
the end station and access switch, but in this
architecture the access switch communicates
directly with the CNC.

• Finally, the fully centralized model allows a
central user configurator (CUC) entity to
retrieve end station capabilities and config-
ure TSN features in end stations. Here, the
UNI is between the CUC and the CNC.
Highly critical applications in industrial auto-

mation require guaranteed end-to-end delay and
minimal delay variation. In other words, predict-
able, deterministic communication. To this end,
we choose a centralized configuration architec-
ture with global knowledge of the network to
ensure that all deployed configurations meet the
dependability requirements of critical applica-
tions. Deriving the schedules is computationally
complex and should be centralized into one entity
(end system or switch) with complete knowledge
of all the streams in the network, hence, this archi-
tecture is insufficient for scheduled traffic.

An entity, the configuration agent (CA), is insert-
ed in the network to perform the configuration

In TSN the runtime recon-
figuration is supported

by the extension IEEE
802.1Qcc, which enables

the user to specify stream
requirements without

knowledge of the network,
thereby making the

network configuration
transparent to the user.

To support highly-critical
applications, we con-

sider a fully centralized
architecture that allows a
central user configurator

(CUC) entity to retrieve
end station capabilities
and configure TSN fea-

tures in end stations.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201858

and reconfiguration of the network at runtime. See
Fig. 2, where CA is added to a network consist-
ing of three end systems (ES) interconnected by a
switch (SW). We consider that both the CNC and
the CUC are consolidated into the CA as shown
in Fig. 2. End systems send stream requests to the
CUC in which the requests are transformed into
traffic parameters such as sender, receiver, data
size, period, and deadline. The traffic parameters
are communicated to the CNC via the UNI. There
are several ways to implement the CA (see [11] for
a discussion of the solution space):
• Figure 2 shows the conceptual architecture

of the CA, which can be implemented both
monolithically, in a single entity, or using sev-
eral entities (end systems and switches) for
the CUC and CNC. The fog nodes can be
used for the implementation of the CA.

• For the exchange of network configuration
information, IEEE 802.1Qcc mentions that a
variety of protocols can be used, e.g., Sim-
ple Network Management Protocol (SNMP),
NETCONF (RFC 6241) and RESTCONF (RFC
8040) and suggests YANG (IETF RFC 7950)
or Type-Length-Value (TLV) for modeling the
data. In this article, we propose the use of
NETCONF and YANG.

• Regarding the discovery of the time-sensi-
tive streams that have to be considered for
rescheduling, IEEE 802.1Qcc mentions that
“The protocols that the CUC uses […] are
specific to the user application, outside the
scope of this standard.” We propose the
use of OPC UA over TSN publish/subscribe
requests to communicate this information
between the CUC and the end systems.
The CNC has knowledge of the network topol-

ogy, the capabilities of the individual devices in
the network, and transmission rates of the links.
It runs a scheduling application that maps stream
requests to physical routes in the network, assigns
streams to output port queues, and schedules the
transmission/forwarding time of individual frames

of a stream, on every link on the route from sender
to receiver. If the stream requests are successfully
scheduled, the updated configuration is distributed
to the network devices. Once the configuration is
updated, the CUC is informed of the stream IDs
through the UNI, in order for the end systems to
start transmitting via the scheduled streams (an
example is discussed in the following section).

OPC UA
OPC Unified Architecture (OPC UA) is a commu-
nication protocol for industrial automation devel-
oped and maintained by the OPC Foundation.
It was originally based on a client/server mecha-
nism in which the client requests information and
receives a response from a server. The Unified
Architecture Working Group (WG) of the OPC
Foundation is working on extending OPC UA
with a publish-subscribe model (PubSub4) which
enables multicast communication, where network
devices subscribe to data produced by publishers.

CA introduces two types of traffic in the net-
work:
• Notification messages when new streams are

requested between end systems or existing
streams are no longer needed.

• Configuration messages, i.e., transportation
of configurations to relevant switches.

Notification messages are input to CA and con-
figuration messages are output. The configuration
messages are discussed in the next section.

With OPC UA PubSub the end systems do
not directly exchange requests and responses, but
interact via a Message Oriented Middleware that
connects the end systems to the CUC. In particu-
lar, we propose that the discovery notification mes-
sages are implemented on top of OPC UA PubSub
requests/responses to the message oriented mid-
dleware. Thus, the CUC is the central entity that
accepts and responds to notification messages with
configuration data for the end systems, while the
actual data communication between a publishing
end system and a subscribing end system is execut-
ed directly over the TSN network without a need
to involve the OPC UA stack. The implementation
details are outside the scope of this article.

NETCONF
To reconfigure each device, TSN has the notion of
managed objects. Managed objects can be con-
figured to achieve different features of the stan-
dards, e.g., managed objects enable setting and
receiving the transmission schedules in individual
output ports of the network devices. We propose
to implement the managed objects using YANG, a
data modeling language designed to be used with
the Network Configuration Protocol (NETCONF).
In a NETCONF architecture there are servers and
clients. The CNC component of the CA, with glob-
al knowledge of the network, distributes new con-
figurations to all the NETCONF servers sitting in
the network switches. We assume that the recon-
figuration is realized with NETCONF.

Reconfiguration Case Study
In this case study we consider the configuration
of the synchronized transmission schedule as
defined in IEEE 802.1Qbv, where time-triggered
traffic is implemented by configuring gate-con-
trol lists (GCLs) inside network switches. For each

Figure 2. Configuration agent consisting of CUC and CNC.

ESES

ES

SW

Configuration agent

CNC

CUC UNI

OPC UA

NETCONF
(1)

(8)

1 32

1

(3)

(4)

(5)

(7)

(2)

(8)

(6)

(9)

4 OPC UA Part 14, PubSub
Specification, Version 1.04,
OPC Foundation.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 59

outgoing port a GCL specifies which queue is
allowed to transmit at precise points in time. In
this way, frames are forwarded in the network
in a time-triggered manner. For simplicity, in
this article, we refer to GCLs as a schedule. The
schedule is distributed in the output ports of the
network devices and must be guaranteed to pro-
vide deterministic paths in the network for critical
applications. Figure 3a shows such a schedule for
transmitting a stream (stream 1) from ES1 to ES3
via the switch in Fig. 2.

A window is periodically reserved every 100
ms in the output port of ES1 for transmitting the
(only) frame of stream 1 to the SW1. Similarly, a
window is reserved in the first output port queue
(q1) of SW1 for forwarding the frame to ES3 (its
destination). The two transmission windows are
scheduled such that the frame is forwarded out
of SW1 just after it has arrived in the queue, in
order to minimize end-to-end latency. The ded-
icated transmission windows prevent best-effort
traffic from introducing nondeterministic queuing
delays.

Suppose that ES2 is a sensor node that has
just been connected to the network in Fig. 2. We
assume that all links have transmission rates of 1
Gbps. A distributed control application requires
the sensor data to be transmitted to a process-
ing node (ES3) every 150 ms. The sensor data has
a size of 4.5 kilobytes. The steps to establish a
stream from ES2 to ES3 are illustrated in Fig. 2 and
are as follows:
1 ES2 sends an OPC UA publish request to

CUC.
2 ES3 sends an OPC UA subscribe request to

CUC.
3 CUC communicates to the CNC via the UNI

that a time-sensitive stream with period 150
ms and data size 4.5 kilobytes is needed from
ES2 to ES3.

4 The message data is placed into three max-
imum sized Ethernet frames of 1542 bytes
each (including overhead). Considering the
transmission rate of the links, we have a
transmission duration of 12.336 ms for each
of the three frames.

5 The scheduling application routes the stream
through the only available route, and extends
the schedule with three new frames such
that they do not interfere with the existing
frames (Fig. 3b).

6 From the updated schedule, a new configu-
ration is derived for SW1, which is communi-
cated via NETCONF.

7 Once the reconfiguration is completed, CNC
notifies CUC that the stream was success-
fully scheduled with stream ID 2, and of the
transmission schedule for ES2.

8 Via OPC UA, CUC passes this information
on to the publisher ES2 and subscriber ES3.

9 The distributed application is executed, i.e.,
ES2 starts to transmit the sensor data period-
ically according to the schedule. In this way,
ES3 receives sensor data every 150 ms with
guaranteed latency and minimal jitter.

Scheduling Heuristic
We present a scheduling heuristic for reconfigur-
ing the transmission schedule at runtime (see [12]
for details). In order to minimize the impact of the
reconfiguration, the heuristic incrementally adds
new streams to the existing schedule. If the incre-
mental approach is unsuccessful, the entire sched-
ule is rebuilt using the heuristic. If this also fails,
the scheduler resorts to design-time approaches
such as [3, 4]. While these design-time approach-
es are searching for a feasible schedule, the net-
work operates with the current configuration.

We consider that the CUC periodically com-
municates changes in stream requirements to the
CNC. When the scheduler is executed in the CNC,
some streams have disappeared since the previous
reconfiguration and are to be removed from the
current configuration, whereas other streams have
appeared and wait to be scheduled. Figure 4 illus-
trates the flow of the scheduling heuristic.

An important step in the algorithm is prioritiz-
ing the appeared streams. The priority determines
the order in which streams are incrementally
added to the schedule. As the number of streams
grows in the network, it becomes increasing-
ly difficult for the heuristic to schedule a specif-
ic stream. Hence, important streams should be
scheduled first. For instance, critical streams and
streams with early deadlines should have high pri-
ority to motivate that they are scheduled in time.

The period of a stream also affects when it
should be scheduled. To minimize jitter, streams
are sent at the same period offset in every repe-
tition. In addition, to account for all the possible
scenarios where scheduled streams may interfere
with each other, the width of the schedule must
equal the least common multiple of all stream
periods. We refer to this as the hyperperiod. This
is the reason why the width of the schedule in
Fig. 3 is increased from 100 ms to 300 ms when
a 150 ms-period stream is added. The frames of a
short-period stream are repeated more frequently

Figure 3. Schedule reconfiguration example illustrated as a Gantt chart. A box “i.j” is the jth frame of ith stream transmitted on
the respective link. The thin rows next to the queues illustrate when the frames are in the respective queues: a) initial schedule
containing stream 1; b) reconfigured to incorporate stream 2.

Time
300150 200 25010050

Time
100

(a) (b)

50

1.1 1.1 1.1[ES 1 , SW1]1.1[ES 1 , SW1]

2.1 2.12.2 2.22.3 2.3[ES2 , SW1]

1.1 1.1 1.12.1 2.12.2 2.22.3 2.3

q2
q1

[SW1 , ES3]1.1

q2
q1

[SW1 , ES3]

[ES2 , SW1]

150 period 100 period

Delays

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201860

in the entire schedule, and hence its schedule is in
general more restricted so it would benefit from
being scheduled early.

Streams are scheduled individually sorted by pri-
ority. Initially, streams are assigned to the first output
port queue in each hop to minimize the number
of queues dedicated to scheduled traffic. In an
attempt to meet the deadline of a stream, its frames
are scheduled in an as-soon-as-possible fashion, i.e.,
each frame is scheduled at the earliest point in time
such that the schedule remains feasible. In case the
frames fail to meet the deadline, the current queue
assignment is too restrictive and must be reevaluat-
ed. This is done by incrementing the queue assign-
ment in the first hop which allows a frame to start
earlier than with the current assignment.

To prevent scheduled streams from interfering
with each other, two streams cannot wait in the
same queue simultaneously. As a result, it is not pos-
sible to schedule stream 2 such that it shares queue

q1 with stream 1. Instead, it occupies its own queue
q2, as shown in Fig. 3b. Due to this restriction, a
post-processing step is introduced after a stream has
been scheduled. It reduces the time duration that
frames are queued in switches by delaying the trans-
mission on the incoming link as much as possible.
The introduced delays are marked in Fig. 3b. In this
way, it is more likely that future streams will be able
to share existing scheduled queues, thereby leaving
more queues available for best-effort traffic.

Experimental Evaluation
In the worst case, the reconfiguration scheduler has
to destroy the current schedule and reschedule all
streams. Hence, we experimentally evaluate the
worst-case execution time of the scheduler on a set
of synthetic benchmarks by letting it schedule all
streams. The scheduler is evaluated on 440 synthet-
ic test cases on three different network sizes: small
(4–7 devices, e.g., 4 ES and 3 SW), medium (50–76
devices, e.g., 48 ES and 28 SW) and large (402 devic-
es, e.g., 288 ES and 114 SW), using a star topology.
The topologies are based on industrial requirements
and are derived from [13]. The test cases have three
different hyperperiods, 1 ms, 6 ms, and 30 ms, with
high link utilizations to provoke multi-queue scenari-
os. The average link utilization is 41 percent, 13 per-
cent, and 8 percent, for the small, medium, and large
topologies, respectively. The small test cases have an
average of 15 streams fragmented into 430 frames.
Medium test cases have 55 streams and 1500 frames
on average and large test cases have an average of
290 streams and 7300 frames.

Figure 5a shows the execution times of the test
cases for different hyperperiods and topology sizes.
On average, 1300 frames are scheduled per sec-
ond across all test cases. All test cases with hyper-
period 1 ms and 6 ms are schedulable within 3
seconds, whereas large topologies with hyperpe-
riod 30 ms may take up to 1 minute. The execu-
tion times assume a high-end fog node where the
scheduler runs on a 2.5 GHz Intel Core i5 proces-
sor. The distribution of scheduled queues across all
output ports is shown in Fig. 5b. It shows that the
queue minimization strategy of the heuristic sched-
ules more than 95 percent of output ports using
only a single queue for scheduled traffic. Only a
small fraction of output ports (0.5 percent) require
more than two scheduled queues. Once the sched-
ule is determined, and the fog nodes are ready to

Figure 4. Flowchart of scheduling heuristic. If
a stream cannot be scheduled, the heuristic
attempts to reschedule all streams.

Remove disappeared
streams

More streams?

Return
schedule

Minimize queued time
for frames

Yes

Yes

No

No

Within deadline?

Increase queue
assignment

Schedule frames
as soon as possible

Choose next stream
and route in network

Prioritize appeared
streams

Figure 5. Experimental evaluation of scheduling heuristic: a) execution time as a function of the frames for different hyperperiods and
topologies; b) scheduled queues in output ports.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5
1mshyperperiod

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
6 ms hyperperiod

0 5 10

(a)

(b)

15 20 25
0

10

20

30

40

50

60
30 ms hyperperiod

Small topologies Medium topologies Large topologies

Scheduled queues Percentage
1
2
3+

95.2
4.3
0.5

Ex
ec

ut
io

n
tim

e
(s

)

Frames (10 3)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 61

receive it (according to NETCONF), the reconfig-
uration takes a few seconds or less, considering
current TSN network switch prototypes.

We were also interested to compare the pro-
posed heuristic to the related work. Thus, we have
implemented the OMT approach from [13] and
the ILP approach from [8]. Both Optimization
Modulo Theories (OMT) and Integer Linear Pro-
gramming (ILP) are mathematical formulations that
rely on solvers to find the optimal solution, in this
case the optimal number of scheduled queues (K).
ILP formulates the problem as a linear program
where all variables take integer values. OMT aug-
ments Satisfiability Modulo Theories (SMT) solv-
ers with optimization capabilities. SMT determine
the satisfiability of first-order logical formulas. The
values of K are presented in the table, including
the lower K— and upper bound —K. The lower bound
is assuming a single scheduled queue in all out-
put ports forwarding scheduled traffic, and the
upper bound assumes the minimum of the avail-
able queues in the output port and the number of
scheduled streams forwarded through that output
port. We have compared the three approaches
on the test cases from [8], and our scheduler has
been able to obtain the same optimal solutions in
a fraction of a second for all test cases, as shown
in Table 1. However, note that our heuristic is not
guaranteed to find the optimal solution in all cases.

Conclusions
We have presented the main features of a fog
node, and argued that IEEE 802.1 TSN is the right
solution for the networking layer of fog com-
puting in industrial automation. However, TSN
presents several configuration challenges, and
configuration is also desirable at runtime. Hence,
we have proposed a configuration agent architec-
ture and we have used the derivation of sched-
ule tables as a case study to illustrate the runtime
configuration challenges. We have proposed a
scheduling heuristic for the synthesis of the sched-
ule tables in TSN. We have extensively evaluated
our proposed heuristic, and the conclusion is that
it is able to handle large runtime reconfiguration
problems, leading to good quality solutions.

Acknowledgment
The research leading to these results has received
funding from the European Union’s Horizon 2020
research and innovation program under the Marie
Sklodowska-Curie grant agreement No. 764785,
FORA–Fog Computing for Robotics and Industrial
Automation.

References
[1] M. García-Valls, T. Cucinotta, and C. Lu, “Challenges in Real-

Time Virtualization and Predictable Cloud Computing,” J.
Systems Architecture, vol. 60, no. 9, 2014, pp. 726–40.

[2] F. Bonomi et al., “Fog Computing: A Platform for Internet of
Things and Analytics,” in Big Data and Internet of Things: A
Roadmap for Smart Environments. Springer, 2014, pp. 169–86.

[3] D. Henneke, L. Wisniewski, and J. Jasperneite, “Analysis of
Realizing a Future Industrial Network by Means of Soft-
ware-Defined Networking (SDN),” 2016 IEEE World Conf.
IEEE Factory Commun. Systems (WFCS), 2016, pp. 1–4.

[4] J. Farkas, S. Haddock, and P. Saltsidis, “Software Defined
Networking Supported by IEEE 802.1q,” CoRR, vol.
abs/1405.6953, 2014, http://arxiv.org/abs/1405.6953.

[5] P. Gaj, J. Jasperneite, and M. Felser, “Computer Communica-
tion within Industrial Distributed Environment — A Survey,” IEEE
Trans. Industrial Informatics, vol. 9, no. 1, 2013, pp. 182–89.

[6] IEEE, “Official Website of the 802.1 Time-Sensitive Network-
ing Task Group,” http://www.ieee802.org/1/pages/tsn.
html, 2016.

[7] “ARTEMIS EMC2 project, Internet of Things Living Lab,
Open Deterministic Networks,” https://www.artemis-emc2.
eu/project overview/ll5_internet_of_things/.

[8] P. Pop et al., “Design Optimization of Cyber-Physical Distrib-
uted Systems using IEEE Timesensitive Networks (TSN),” IET
Cyber-Physical Systems: Theory & Applications, vol. 1, no. 1,
2016, pp. 86–94.

[9] S. S. Craciunas and R. S. Oliver, “Combined Task- and Net-
work-Level Scheduling for Distributed Time-Triggered Sys-
tems,” Real-Time Systems, vol. 52, no. 2, 2016, pp. 161–200.

[10] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental Flow
Scheduling Routing in Time-Sensitive Software-Defined Net-
works,” IEEE Trans. Industrial Informatics, vol. PP, no. 99,
2017, pp. 1–1.

[11] M. Gutiérrez et al., “Self-Configuration of IEEE 802.1 TSN
Networks,” IEEE Int’l. Conf. Emerging Technologies and Fac-
tory Automation, 2017, pp. 1–8.

[12] M. L. Raagaard and P. Pop, “Optimization Algorithms for
the Scheduling of IEEE 802.1 Time-Sensitive Networking
(TSN),” Technical University of Denmark, Tech. Rep., Jan.
2017.

[13] S. S. Craciunas et al., “Scheduling Real-Time Communi-
cation in IEEE 802.1Qbv Time Sensitive Networks,” Proc.
24th Int’l. Conf. Real-Time Networks and Systems, 2016, pp.
183–92.

[14] F. Dürr and N. G. Nayak, “No-Wait Packet Scheduling for
IEEE Timesensitive Networks (TSN),” Proc. 24th Int’l. Conf.
Real-Time Networks and Systems, 2016, pp. 203–12.

Biographies
Paul PoP [SM] (paupo@dtu.dk) is a professor at DTU Compute,
Technical University of Denmark (DTU), and the director of DTU’s
IoT Research Center. He received his Ph.D. degree in computer
systems from Linköping University in 2003. His main research inter-
ests are in the area of system-level design of cyber-physical systems.
He has published extensively in this area, and has received the best
paper award at the DATE 2005, RTiS 2007, CASES 2009, MECO
2013 and DSD 2016 conferences and the EDAA Outstanding
Dissertation Award (co-supervisor) in 2011.

Michael lander raagaard (michael@raagaard) received the
M.Sc. degree in computer science and engineering from the
Technical University of Denmark (2017). His main research
interest is combinatorial optimization in embedded systems
design. He has applied his research to the areas of safety-critical
networks and microfluidic biochip synthesis.

Marina gutiérrez [M] (marina.gutierrez@tttech-automotive.com)
is a project engineer at TTTech Computertechnik AG. She is a
voting member of the IEEE 802.1 TSN working group and the
editor of the P802.1Qcw, a project that is standardizing YANG
models for TSN features. She holds a BS in physics and an MS
in computer science from the University of Cantabria, and she
is currently enrolled in Mlardalen University as a Ph.D. student.
Her research is focused on the configuration and management of
deterministic communications for cyber-physical systems.

Wilfried Steiner (wilfried.steiner@tttech.com) is a corporate
scientist at TTTech Computertechnik AG and Leader of the
research team TTTech Labs. He holds a degree of Doctor of
Technical Sciences from the Vienna University of Technology,
Austria. His research is focused on the design of systems and
network protocols with real-time, dependability, and security
requirements. Target areas are automotive, space, aerospace,
and more recently the Industrial Internet of Things.

Table 1. Comparison of ILP, OMT, and scheduling heuristic.

ID
Arch. Running time (s) Queue usage

ES SW ILP OMT Heuristic K K
—
K

T01
T04
T05
T10
T11
T12
T14
T18

3
3
3
5
5
5
3
3

1
1
1
2
2
2
1
1

0.66
2.49
3.73
4.70
16.54
210.03
39.06
10.98

0.81
2.46
3.43
5.12

12.94
34.33
22.87
7.17

0.02
0.05
0.10
0.06
0.10
0.09
0.12
0.03

2
2
2
4
3
5
2
2

2
2
2
4
3
5
2
2

5
5
3
8
7
9
3
5

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 12,2022 at 21:58:29 UTC from IEEE Xplore. Restrictions apply.

