
5IEEE Communications Standards Magazine • June 2018

INDUSTRY COMMENTARY

MEF has recently begun releasing LSO (Lifecycle Service
Orchestration) application programming interfaces (APIs) in the
context of its MEF 3.0 framework, designed to enable orchestra-
tion of dynamic communication services across a global ecosys-
tem of automated networks.

The way in which the LSO APIs are described and released
represents a radical transformation of the standards process to
reflect the new reality of telecommunications: that many of the
important agreements are implemented purely in software. As we
know, software can be modified and updated in minutes, where-
as hardware (especially chips) can require many months or some-
times years to update. Interacting parties must still spend time to
discuss and agree on objectives, constraints, and mechanisms of
standardized solutions, but actual development, and the process
to arrive at high-quality agreements, can be much faster when
agreements are implemented in software.

In the LSO Reference Architecture (MEF 55), four sets of
east-west APIs and three sets of north-south APIs describe
reference points between five abstract entities, four vertically
arranged within a carrier’s domain and one representing the
customer, with differences in the east-west APIs between a cus-
tomer and a carrier and between two carriers. These APIs con-
vey information regarding status or commands between one
abstract entity and another in a manner that insulates one entity
from the specifics of the other. We document these APIs in
three forms: English prose (including use cases and business
requirements), formal descriptions (mainly information models),
and code (mainly data models, Swagger API definitions, and
example software development kits, or SDKs). We bundle the
first two into interface profile specifications (IPSs), which are
standards documents, and we expect to certify realizations of
these by operators and vendors.

The role of the information model is to capture high-level
concepts and constructs, like products, services, and resources,
and their relationships and interactions, without getting into any
protocol-level details. A data model is the protocol-level manifes-
tation of an information model. We typically use YANG for a data
model with support for other data models in the future.

A developer implements the data models and not the infor-
mation models. Some projects use an open-source tool chain
to generate data models (with some manual tweaks) from infor-
mation models and Swagger from data models. We are moving
toward a MEF-supported open-source integrated development
environment (IDE) that can string together all the open source
tools, thereby bringing more automation into the generation of
software artifacts from information models. Good tool chains
enable the automatic generation of running code, which speeds
development, improves quality, and reduces ambiguity. Thus,
they assure that models actually describe generalized functions,

not merely one-off products, thereby fostering greater interopera-
bility and a more competitive marketplace.

The value of producing both specifications and code is two-
fold. First, the example code provides experience to developers
of the abstract entities and can seed development of commercial
products. Second, when the community iterates on the code (in
an open-source repository) we learn the good (and bad) features
of the API and can improve the IPS before we issue it in final
form. Both the development of the code and the feedback loop
to the IPS require new ways of working between the traditional
standards community and the software community, even within a
single organization like MEF (or a single company).

In MEF, our members invest significant resources in commit-
tees, which produce the IPSs (the standards), and most projects
are initiated in one of these committees in what we call the “stan-
dards track.” Others increasingly are initiated in a rapid-prototyp-
ing track, which means as a MEF implementation project (often in
MEFnet, our cloud-based development environment), as a proof
of concept using code that can be proprietary or open source, as
a temporary project in the office of the CTO, or as a project in
one of our semiannual LSO hackathons. When sufficiently mature
(meaning the market needs it now), the code is released and the
project transfers to the standards track for issuance as an IPS. We
have work underway to develop a “software standardization pro-
cess” in the standards track.

The standardization process today includes standardization
of documents (mainly the IPS), but in the future it will evolve to
include standardization of associated software artifacts through
a similar peer review process for Github content that is followed
today for documents but reinforced with prior community buy-in
of the code.

Regardless of where the work is initiated, we strive to feed
experience back and forth between standards and software, and
this we are learning to do as we go. Our goal is to improve the
standards with the experience gained from the prototyping exer-
cises and to improve software implementations with the experi-
ence gained from writing up the standard. This is a constant and
iterative process pre-release and post-release of the artifacts of
both types.

Roadmaps and release dates associated with the publication
of a standard are indicative of an MVP (minimally viable prod-
uct) mindset for standards that has typically existed only for soft-
ware. As much of telecommunication and networking become
software-defined, we see this DevOps between standards and
software as the path of the future. We are charting that path as
we speak, and while we do not claim it to be painless (as is the
case for most forms of radical change) we see it as inevitable and
highly beneficial to the agility of the industry and the efficacy of
the standards community.

API Specifications and SDKs: The New Standards DevOps Dance
By Dan Pitt, Senior Vice PreSiDent, anD Bithika khargharia, Director, MeF

