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Abstract

Prior work has shown the value of changing applica-
tion fidelity to adapt to varying resource levels in a mobile
environment. Choosing the right fidelity requires usto pre-
dict its effect on resource consumption. In this paper, we
describe a history-based mechanism for such predictions.
Our approach generates predictors that are specialized to
the hardware on which the application runs, and to the spe-
cific input data on which it operates. We are able to predict
the CPU consumption of a complex graphics application
to within 20% and the energy consumption of fetching and
rendering web images to within 15%.

1. Introduction

A key strategy in mobile computing is adapting applica-
tionbehavior toresource avail ability and user goals. Chang-
ing application fidelity — the quality of results presented to
the user — has been shown to be effective in adapting ap-
plication resource consumption to varying resource avail-
ability [7, 11, 12]. Fidelity is an application-specific notion
of the “goodness’ of a computed result or data object: for
example, the JPEG Quality Factor of a lossily compressed
image, or the precision bound of a floating point compu-
tation. Naturally, there is a tradeoff between fidelity and
resource consumption: alower fidelity resultsin alower re-
source consumption, but at the cost of presenting a more
degraded result to the user. Fidelity is not always a single
real number: there could be multiple fidelity metrics, each
of which could be discrete or continuous.

The ultimate goal of fidelity adaptation is to improve a
mobile user’'s computing experience by delivering results
quickly, with low battery drain and little distraction of the
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user. Consider a graphics computation that operates on a
3-D model in a mobile augmented reality application. The
latency of the computation depends both on the CPU con-
sumed by the computation and the CPU demands of other
applications. The CPU consumption depends on the fidelity
— the resolution of the model. If we could predict the CPU
consumption as afunction of fidelity, we could combinethis
with CPU load information to predict latency. This lets us
characterize the tradeoff between fidelity and latency, and to
pick good operating points: for good interactive response,
we might always pick the highest fidelity that keeps the la-
tency below 200 ms.

In this paper we show how history-based prediction en-
ables the system to learn an application’s behavior and
predict its resource consumption. We have augmented
Odyssey [11], an operating system platform for adaptation,
with a history-based prediction system that monitors, logs,
and predicts application resource consumption as afunction
of the fidelity. Our initial experience suggests that history-
based prediction is feasible. We can predict to within 20%
the CPU consumption of a 3-D graphics computation —
typical of those found at the heart of augmented reality ap-
plications. We can aso predict the energy consumption of
fetching lossily compressed web images to within 15%. Our
current prototype has a CPU overhead of 0.22% for a typi-
cal application; we expect the overhead to be even lower in
a production version of the code.

2. Design Rationale

Our approach to predicting resource consumption as a
function of fidelity is an empirical one: we sample the fi-
delity space by runningthe application at different fidelities;
then we record the resource consumption at each sample
point; finally we use machine learning algorithms to make
predictions based on the set of samples.

One could imagine an analytic approach to the same
problem. Algorithmic complexity analysis [4] gives CPU
consumption as an asymptotic function of the input param-
eters. Intherea world, however, constants matter, and these



constants vary from one hardware platform to another. We
could attempt a more detailed analysis, based on proces-
sor spec sheets. With modern processors, thisis virtualy
impossible: we would need to account for super-scalar ex-
ecution, branch misprediction, TLB misses, and other com-
plicating factors. Further, thiswill only give us CPU con-
sumption, and not memory, network bandwidth, or battery
energy consumption.

In our system, we use algorithmic complexity as a start-
ing point: to providehintsthat guide thelearning algorithms
that process history logs. This alows us to specidize a
general asymptotic functional form to the specific hardware
on which the application runs. We can also specialize our
predictions to the specific input data on which the applica-
tion operates, instead of always predicting a worst-case or
average-case scenario.

By building and evaluating alogging and learning infras-
tructure, we hope to answer two questions:

¢ Isthe overhead of logging and prediction acceptable?

e What isthe accuracy of prediction?

Our approach is based on two assumptions. We expect
the application programmer or domain expert to specify all
thefidelity metrics on which application resource consump-
tion depends. We believe this is a reasonable assumption:
at the heart of most resource-hungry computationsis awell-
understood algorithmic core, with a small number of param-
eters that affect its resource consumption.

We aso expect the resource consumption to vary
smoothly with the fidelity. Thisis because we sample thefi-
delity space uniformly, and try to learn the fidelity-resource
function from these samples. This assumes that the func-
tion is well-behaved between any two nearby samples. To
relax this assumption, we would need more sophisticated
learning techniques that increase the density of sampling
wherever thelocal behavior of the function is anomalous or
highly variable.

Our current prototype has three distinct phases:

¢ A logging/training phase, where we repeatedly runthe
application at various fidelities and log the resultsin a
history log.

¢ A learning phase, where we feed the history log to
offline learning algorithms. These agorithms use
application-specific hintsto convert the history log into
predictors that compactly represent the mapping be-
tween fidelity and resource consumption.

¢ Anonline phase, where we run the application and use
the fidelity-resource functions that we have learned, to
guide adaptation. Odyssey uses the predictors gener-
ated by the learning phase to pick fidelities that will

better match user latency requirements, desired battery
life, and other resource constraints.

Ideally, we would combine all three phases, so that there
is no need for a separate logging/training phase: the sys-
tem learns as the user runs the application. However, it
is difficult to explore the fidelity space completely without
annoying the user. During actual use, we cannot simply
choose fiddlities to provide us with more history — the fi-
delity values must al so match the user’slatency, battery life,
and other resource constraints.

Hence our current prototype requires some amount of
logging and learning to be done offline. In fact, logging and
learning also continue during the online phase. The offline
learning provides the system with a good starting point, and
the online learning modifies this starting point to track the
dynamic behavior of the application. In this paper we only
focus on the offline logging and learning mechanisms.

3. Design and I mplementation

This section describes how we create ahistory log of ap-
plication behavior, and how we use it to generate predictors
of resource consumption. The history log is a collection
of log entries. each entry associates a set of fidelity values
with a set of resource consumption values. We feed these
log entriesto learning algorithmsthat learn the relationship
between the fidelity metrics and the resource consumption.

3.1. Application-specific logging

We have implemented a single generic mechanism for
logging application fidelity and resource consumption.
However, each application has its own notion of what fi-
delity is, and how many dimensionsit has. To bridgethe gap
between application-specific fidelity metrics and a generic
logging mechanism, we use application-specific configu-
ration files or ACFs. An ACF captures the salient fea-
tures of an application with respect to resource consump-
tion. Specifically, the ACF lists the fidelity metrics and in-
put parameters for the application. Aninput parameter is a
feature of the input data that affects the resource consump-
tion— the size of theinput datais frequently a useful input
parameter. Both fidelity metrics and input parameters affect
resource consumption— the difference isthat we can adjust
the fidelity, whereas we have no control over input param-
eters. The fidelity metrics and input parameters together
form the input to a resource predictor function, whose out-
put is the expected resource consumption.

Once we have generated a resource predictor using of-
fline analysis, we encode this in the ACF as aresource hint
function. During the online phase, Odyssey uses this hint
as an initial guess, and updates it as fresh log entries are
generated.



Resource Units of consumption

Loca CPU millions of instructions executed
Energy Joules

Latency seconds

Network 1/0O bytes transmitted/received
Remote CPU millions of instructions executed
Physical memory | bytes

Disk I/0 bytes read/written

Figure 1. Resources consumed by multi-
fidelity operations

3.1.1 Multi-fidelity operations

All resource consumption is measured with respect to a
multi-fidelity operation [12]. A multi-fidelity operation, or
just “operation” for brevity, is the unit of computation for
which we can define fidelity metrics, input parameters, and
resource constraints. It is an application-specific notion —
for an interactive application, it is the computation done be-
tween a user request and the response. For a web browser,
an operation is fetching and rendering a single page.

At the beginning of each operation, the application
makes an Odyssey system cal (begin_ fidelity_op), and
passes in the values of the input parameters. Odyssey com-
putes and returns the appropriate fidelity values to use dur-
ing the operation. This step uses the predictive ability of
Odyssey to map fidelity val uesto the expected resource con-
sumption.

When the operation completes, the application sig-
nals this to Odyssey by making another system call
(end_fidelity_op). Odyssey then logs the fidelities, input
parameters, and resource consumption of that operation.
This datais also used to update the predictor functions and
improve future predictions.

3.1.2 Data-specific logging

Sometimes, it is not possible to capture all the relevant fea

tures of an input data object — there may be effects that are
too complex for us to express or even to understand. Hence
we require the application to provide a unique label for

the input data object, as an argument to begin_fidelity_op.

This label could be the name of the file containing the in-

put data. By logging this unique label aong with the in-

put parameters, we can make a more accurate, data-specific
prediction when we see the same object again.

3.1.3 Resource monitors

The task of measuring resource consumption is done by a
set of resource monitors in Odyssey. Each monitor is re-

sponsible for measuring a particular resource, and comput-
ing the amount consumed by each multi-fidelity operation.

Our current prototype monitors CPU and energy con-
sumption. Figure 1 lists the complete set of resources that
we envision supporting. To measure CPU consumption, we
use the Linux /proc file system, which reports the amount
of CPU time consumed by each process. We scale the CPU
time by the speed of the processor *. This scaling makes the
measurement somewhat independent of the specific CPU on
which we take the measurements, though of course we can
never have a single number that exactly represents the CPU
consumption across diverse processors. In this paper, all
measurements were done on a single machine, and so we
report CPU consumption directly in seconds.

To measure energy consumption, we use Power-
Scope [6]. PowerScope allows us to sample the power con-
sumption of a laptop and attribute it to one of the many
processes running on the machine. We extended Power-
Scope to include a timestamp with each sample. In post-
processing, we use these timestamps to correlate power
samples with the operations logged by Odyssey. We com-
pute the total energy consumed during an operation, sub-
tract out the known background power consumption, and
attribute the remaining energy consumption to that opera-
tion.

Our current prototype maps each application to asingle
operation at atime: we do not yet support multiple concur-
rent operations by the same application. We also map each
application to a unique set of processes. If there are mul-
tiple applications that use a shared service (such as the X
server), we do not yet compute what fraction of its resource
consumption should be attributed to each application.

3.1.4 Training mode

In order to acquire data about an application’sbehavior over
the entire range of operating parameters, we run Odyssey in
aspecial training mode. Normally, Odyssey would pick the
fidelity for each operation to satisfy latency, battery life, or
other congstraints. In training mode, we disregard these con-
straints, and choose fidelities randomly in order to sample
the entire fidelity space. By running the multi-fidelity op-
eration many times, we acquire sample points al over the
fidelity space. In order to explorethe input parameter space
as well, we conduct experiments with multiple input data
objects.

3.2. Linear-fit predictors
For our initial prototype, we wished to build a prediction

mechanism that was easy to understand, easy toimplement,
and computationally cheap. The simplest such predictorisa

1We use the “ bogomips’ value provided by Linux in /proc/cpuinfo



linear one; given a set of n inputsand 1 output, we can runa
linear regression on all our samples to predict the output as
some linear combination of the inputs. Currently, choosing
the inputs to the linear regression is left to the application
programmer. For example, if the application programmer
suspects that the CPU consumption of her algorithm is of
the form co + ciprlog(pr) + cap®r?, where p and r are
fidelities or input parameters, then she would specify the
inputs pr log(pr) and p?rZ.

The coefficients cg, ¢1, ... computed during the learning
phase are maintai ned as appli cation-specific state duringthe
online phase. Every time we wish to make a prediction, the
application-specific predictor computes the function repre-
sented by these coefficients. Every time we get a new log
entry, Odyssey updates the coefficients using incremental
gradient descent [10]. Thus the system improves its pre-
diction accuracy as more operations are performed, while
keeping the computational expense of each updaterelatively
small.

3.3. The solver

Once we have a prediction mechanism, we need to use it
to make fidelity decisions. Given a predictor for CPU con-
sumption and a CPU consumption constraint, we need to
pick the values of fidelity for which we will satisfy the con-
straint while maximizing the fidelity. We have implemented
— but not yet evaluated — a simpl e gradient-descent sol ver
which does this optimization. If there are multiple fidelity
metrics, then the solver maximizes an application-specific
utility function that maps a multi-dimensional fidelity to a
single number representing user satisfaction.

The predictorsgenerated by offlinelearning are provided
to the solver asresource hint functionsin the ACF. The ACF
also contains the utility function and an update function.
The update function is called every time we log a new op-
eration, and can update the internal state of the hint func-
tion. In our prototype these functions are implemented as
entry points into an object file that is dynamically loaded
into Odyssey when the application is started.

3.4. Applications

This section describes the applications that we have
modified so far to use the Odyssey API extensions.

34.1 Radiosity

A radiosity [3] computation colors and shades a 3-D scene
according to the light sources present in the scene. A 3-D
scene or model is a collection of 3-D objects, each repre-
sented as a set of polygons which make up the surface of
the object. Every time we edit the model, we need to run a

radiosity computationin order to capture thelighting effects
that we would see in the real world.

Radiosity and other 3-D graphics algorithms are key to
building realistic augmented reality environments. Imagine
an architect who is commissioned to renovate an old build-
ing, and wishes to show her proposed design to the client.
With a mobile computer, a heads-up display, and augmented
reality software, a client can walk around the building, and
interactively view and edit the proposed renovations. To
provide a redlistic experience of this environment, we need
sophisticated (and resource-hungry) algorithms such as ra-
diosity.

Two of the most commonly used radiosity algorithms
are hierarchical and progressive radiosity. Both of these
are computationally quite expensive. The computational re-
guirement growswith the number of polygons» intheinput
data— as O(n log n) for hierarchical and as O(n?) for pro-
gressive radiosity. Thus, it often makes sense to ssimplify
the model before running the algorithm. This reduces the
number of polygonsin the model at the cost of losing some
detail — we get a cheaper and quicker radiosity result at a
lower fidelity. Thus, before running radiosity on any scene,
we need to choose an algorithm— either progressive or hi-
erarchical — and a resolution — a real number between 0
and 1, which specifies what fraction of the input polygons
to retain. Figure 2 shows the ACF for the radiosity applica
tion.

Radiator is an implementation of severa common ra-
diosity algorithms with a GUI front end. It allows us to
load a 3-D scene containing one or more 3-D objects and
light sources, select a radiosity algorithm and a resolution,
and run the agorithm. We have modified radiator to call
Odyssey before each radiosity computation, passing in the
number of polygonsin the input data. Odyssey selects and
returnsthe algorithm and resol ution to be used for that com-
putation.

3.4.2 Web browser

Our second application is a web browser that degrades the
fidelity of GIF images fetched over the web by converting
them to lossily compressed JPEG [13]. Previous research
has shown that such degradation is effective in reducing the
consumption of network bandwidth [7, 11] and energy [5].
In this paper we focus on energy: we predict the energy
consumed to fetch an image over a wireless network and
render it.

Web images have one feature or input parameter — the
size of the original image — and one fidelity metric — the
JPEG Quality Factor [2, 13], which represents the quality
of the compressed image. The JPEG Quality Factor can
take an integer value from 0-100; in our experiments we
use only the range 5-80 since the compression agorithm



description radiator:radiosity # <applications>:<computations
logfile /usr/odyssey/etc/radiator.radiosity.log

mode training # sample fidelity space
param polygons O-infinity # number of polygons in scene
fidelity resolution 0-1 # how much to scale down the scene complexity

fidelity algorithm progressive hierarchical # choice of algorithm

constraint lcpu 27721.8
hintfile /usr/odyssey/lib/rad hints.so
hint lcpu rad lcpu hint
utility rad utility
update rad update

# no more than 60 CPU seconds on a TP560X

# hint function
# utility function
# update function

The ACF for the radiosity computation. The computation has one input parameter — the number of polygonsin the input data— and two
fidelity metrics — the choice of radiosity algorithm, and the resolution. The number of polyggnsand resol ution are ordered and real-valued.

The “agorithm” fidelity is unordered, and can take one of the two values “progressive” an

‘hierarchical”. rad lcpu hint, rad wtility,

and rad_update arethe namesof entry pointsinto the module“rad hints.so”.

Figure 2. The configuration file (ACF) for the radiosity application.

behaves unreliably outside this range.

Our web browser application is made up of an unmodi-
fied Netscape browser and an HTTP proxy running on the
same machine. The proxy intercepts all web requests and
transforms them into Odyssey system calls. Odyssey then
fetches a degraded version of the image from a distilling
proxy located on the other side of the wireless link.

4. Validation

To validate our prototype, there are two questions that
we need to answer:

¢ Isthe overhead of logging and prediction acceptable?

e What isthe accuracy of prediction?

This section describes a set of experiments that answer
these questions. All our experiments were run on an |IBM
ThinkPad 560X with a233 MHz M obile Pentium processor
and 96 MB of RAM, running a Linux 2.2 kernel. The ma-
chine was equipped with a2 Mbps, 2.4 GHz Lucent Wave-
LAN wireless interface.

4.1. Overhead of logging

In order to measure the overhead of logging application
behavior, we measured the performance of a null operation
— acall to begin_fidelity_op followed immediately by acall
to end_fidelity_op.

The CPU overhead of Odyssey is 2.0ms for each pair
of calls. The increase in application latency is 2.2ms per
pair of cals. This overhead is higher than we would like,
but we are confident that it can be substantialy lower in a
production version of Odyssey. Even a2.2ms overhead is

often acceptabl e for an interactive operation such astheweb
image fetch — for a fetch that takes 1 sec, the increase in
latency isonly 0.22%. The 2.2 ms latency can be attributed
to:

e 0.2ms for logging, including the cost (averaged over
many calls) of asynchronously flushing log entries to
disk.

e 1.4ms to measure application CPU consumption by
reading and parsing files from /proc. We could reduce
this substantially by adding a more efficient interface
to read CPU statistics from the Linux kernel.

e 0.5ms for two calls to the Odyssey user-space im-
plementation. A kernel implementation of Odyssey
would have a much smaller overhead.

e 0.1 ms of other overhead.
4.2. Accuracy of prediction

421 CPU usage of radiosity

To measure the accuracy of history-based prediction of
CPU consumption, we used the radiosity application (Sec-
tion 3.4.1). We ran it on 7 different data objects, rang-
ing roughly in size from 30,000 polygonsto 200,000 poly-
gons. We collected atotal of 1578 samplesin training mode.
There were 3556 training runs; 1978 of them failed because
they exceeded our resource limits. To prevent experiments
that ran forever, we set a CPU limit of 300sec on each ra
diosity computation. To avoid paging, which would distort
our measurements, we limited the application to 64 MB of
the available 96 MB of RAM.

Given our application-specific hints (Section 3.4.1), we
ran linear regression with the inputs pr log pr and p?r? —



Dataobject | Polygons Hierarchical radiosity Progressive radiosity
Samples | % error | RMSerror | Samples | % error | RMS error
Enterprise 203880 75 10% 10.7sec 17 5% 0.3sec
Dragon 108590 106 17% 6.1sec 47 11% 0.5sec
Whale 101814 159 4% 1.8sec 68 5% 0.2sec
Bunny 69543 153 11% 4.3sec 87 6% 0.3sec
Car 56972 164 1% 12sec 0 n.a n.a
Polar bear 48963 147 8% 3.1sec 152 17% 0.7 sec
Sherman 29450 170 7% l4sec 233 14% 0.4sec
All objects 974 80% 36.7 sec 604 31% 1.8sec

‘RMS error” measures the absolute prediction error in CPU seconds. “% error” is the 90th percentile of relative error — a % error of 4%
means that 90% of the samples had arelative error of less than 4%. When running progressive radiosity on the “car” object, al 295 training

runs exceeded our CPU and/or memory limits and had to be discarded.
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The x-axisis the reduced number of polygons(pr). They-axisisthe CPU consumptionin seconds. The points represent measured samples;

thelineis abest fit on these points of theform co + c1 pr log pr 4+ cop?r2. Theleft-hand graph shows the fit when samplesfrom all 7 data
objects are combined; the right-hand graph shows thefit for the object “ Enterprise” alone.

Figure 4. CPU prediction for hierarchical radiosity



Image Size Netscape XV

(bytes) | Samples | % error | RMSerror | Samples | % error | RMSerror
nsh 1394081 118 10% 0.8J 103 3% 0.8J
apple 174650 124 22% 0.7J 94 9% 0.3J
radio 114816 130 25% 0.7J 105 8% 0.3J
castle 58223 130 38% 0.6J 105 11% 0.2J
circuit 19685 124 73% 0.6J 107 8% 0.1J
laserdt 8802 120 71% 0.6J 104 10% 0.1J
artban 971 130 93% 0.6J 100 14% 0.1J
redgem 110 127 94% 0.6J 101 9% 0.1J
All objects 1003 | 115% 113 819 63% 1.0J

‘RMS error” measures the absolute prediction error in Joules. “% error” is the 90th percentile of relative error — a % error of 50% means
that 90% of the samples had arelative error of less than 50%.

Energy consumption in Joules

Figure 5. Energy prediction error for web image fetch
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Figure 6. Energy prediction for fetching image “castle”



for each algorithm, we computed a best fit of the form
cg + ciprlog pr + cop®r?. Figure 3 shows the prediction
errors of this linear-fit approach. For individual objects, we
find a good fit. On the other hand, when we try to fit a sin-
gle function to all the data objects, we have a bad fit. Fig-
ures 4(a) and 4(b) are avisua illustration of the difference
between data-specific and data-independent prediction. The
curve does not fit the points very well in Figure 4(a), which
includes al the data objects. Figure 4(b) shows the fit for
the “Enterprise” object alone, which has the highest root-
mean-square prediction error of any single object. Even in
thisworst case, we see that we have a good fit. Thisillus-
trates the importance of learning from recent history, and
specifically of data-specific prediction from history.

4.2.2 Energy usage of the web browser

We measured the accuracy of predicting the energy con-
sumption of fetching and rendering web images over awire-
less network (Section 3.4.2). We performed 935 trial runs,
each of which consisted of one operation — fetching and
rendering a single image. The 7 images we used ranged
in size from 110 bytes to 1.4MB, and for each operation
we picked a random fidelity (JPEG Quality Factor) in the
range 5-80. The images were fetched over the WaveL AN
wireless link from an IBM ThinkPad 570 with a 366 MHz
Mobile Pentium Il processor and 128 MB of RAM.

We measured the energy consumption of each operation
by sampling the power consumption during the operation
and subtracting out the background or baseline power con-
sumption. This baselineisthe power consumptionwhen the
CPU isidle, the screen is backlit, and the wireless interface
isup but not in use. Our test machine had a baseline power
consumption of 7.94 Watts.

We expect the energy cost of fetching an image to be
proportional to its compressed size, and the cost of render-
ing it to be proportiona to the uncompressed size. Thus
we expect the energy consumption to be of the form ¢q +
c1S + ¢35, where S is the uncompressed size and &' is
the compressed size. |f we further assume that the com-
pression ratio r = 2 islinearly related to the JPEG qual-
ity factor f, then we get a function for energy of the form
ey + A4S+ chfS.

The first 5 columns of Figure 5 shows the prediction
error of fitting such a functional form to the energy con-
sumption of Netscape. We see extremely large predic-
tion errors, especialy for smaller objects. We found that
this was caused by a large amount of noise in the energy
consumption of the Netscape process. We suspect that
scheduling effects in Netscape's threading package cause
the amount of CPU consumption (and hence energy) to be
non-deterministic.

How accurate would our predictionsbe if we had awell-

l T T T T T T T T T
nsh  +
apple  x K
| radio  * S
0.8 castle O 5
2 circuit = =
© laserdt o E
5 0.6 | X
%]
%]
o
g 04
Q.
o
o
0.2 |

0 10 20 30 40 50 60 70 80

JPEQ Quality Factor
For eachimage, the compressionratio » (y-axis) isalinear function
of the JPEG quality factor f in the range5-80. The graph does not
show theimages“artban” and “redgem”: these images are so small

that JPEG compression increases their size. In practice, we would
never compress these images, but always usethe original.

Figure 7. JPEG Compression ratio as a func-
tion of fidelity

behaved browser? To answer this question, we constructed
a simple browser that sends HTTP requests, reads image
data, and displays the image using xv [1], a freely avail-
able image editor program for X. We repeated the experi-
ments using thisbrowser instead of Netscape. Thelast three
columns of Figure 5 show that we can actually predict en-
ergy consumption quite well (in the worst-case, our error is
14%). Figures 6(a) and 6(b) visually depict the difference
between using Netscape and using xv, for the “castle” ob-
ject.

Figure 7 shows us that the compression ratio for each
data object — and hence the energy usage — is a linear
function of fidelity in the range 5-80. Thisiswhy we have
accurate per-object prediction: however, there is no single
function that will fit all the data objects. Han et a. [8] have
shown that the input byte sizeis not a good predictor of out-
put bytes, but that that the output bytes seem to be a linear
function of the number of input pixels. Even in this case,
there is a lot of noise and prediction error across images:
again, this illustrates the importance of data-specific pre-
diction.

4.3. Overhead of learning

Since we currently do learning offline, the overhead of
thisphaseisnot critical. Our current implementationin Perl
took less than 10 seconds (on a 233MHz Pentium) to pro-
cess 16 different data sets from the radiosity application.
We expect that with an optimized C implementation, the
overhead will be even lower.



5. Hybrid learning algorithm

The resultsin the preceding sections clearly indicate the
value of data-specific prediction. However, we cannot an-
ticipate every possible data object that an application might
see. This suggests a hybrid learning approach. We use of -
fline learning to learn a generic function that serves as a
starting point. In the online phase, whenever we see a new
data object, we adjust the coefficients to match the behavior
of the new object. Thus at the cost of a few erroneous pre-
dictions during this calibration, we can accurately predict
the resource consumption of the new data object.

We envision using this hybrid approach in the following
way. When we have few samples for the input data object,
we pick fidelities conservatively. In most cases, this will
resultin a*“quick-and-dirty” version — the fidelity is lower
than the user wants, and the resource consumption less than
she was willing to spend. In such cases, the user simply
repeats the computation. This time, we have acquired one
more sample point, and can afford to be less conservative.
By being conservative initially, we have acquired sample
points cheaply, and improved our predictive capability at a
small cost in resource consumption.

We have not yet evaluated this hybrid approach, but we
expect the overhead of each update to be extremely low:
our incremental gradient descent code does about 6 float-
ing point operations per input on each update. Of course,
there is also the memory overhead of keeping per-object
state. If thereisalarge set of data objects, we might have to
use caching mechanisms that discard information on long-
unused objects, or save it to secondary storage. Alterna-
tively, we could store the digested per-object information
in the object itself, as an extension to the file format. An
Odyssey application would be able to read this extension,
and we would add a system call for the application to pro-
vide thisinformation as a hint to Odyssey.

6. Related wor k

Adaptation and history-based prediction are well-known
concepts; there are many examples of systems that use one
or both techniques. To the best of our knowledge, thisis
the first piece of work that learns and predicts application
resource consumption as a function of fidelity in order to
improve adaptation in mobile applications. We see our pre-
dictive mechanism as a service to be used by higher-level
adaptive systems.

We are aware of one other piece of work that triesto learn
resource consumption functions: PUNCH [9] is a system
for learning the CPU requirements of an application as a
function of the input parameters. The objective of PUNCH
isto use predictions of CPU usage to decide how and where

to execute the application in a distributed computing envi-
ronment.

The Odyssey predictor, on the other hand, predicts re-
source consumption as a function of both fidelity and in-
put parameters. We use it in combination with the solver to
pick the best possible values of fidelity for that computation.
Odyssey isintended to be used with interactive applications
in a mobile environment, where a“quick and dirty” answer
is often more valuable to the user than a high-fidelity result
that wastes time, battery energy, network bandwidth, and
other resources.

7. Future Work

There are several directionsin which we plan to extend
this work. Our immediate task will be to expand the set
of applications that use our APl extensions. This should
providevaluable experience withusingthe APl and indicate
how it can be extended or refined. We also intend to test our
adaptive applications under realistic scenarios, and measure
the benefit to the user of prediction-based adaptation. This
would also alow us to evaluate the hybrid online learning
mechanism described in Section 5.

We are working on expanding the number of resources
supported by our prototype, and especially on adding la-
tency (user wait time) and network 1/O. User wait time is
a critical resource for any interactive application, since it
directly impacts user satisfaction. Network 1/O is impor-
tant since it affects energy consumption as well as latency.
In fact we would expect energy consumption to be a func-
tion of CPU, network, and disk activity, because these affect
the power consumption of the CPU, network interface, and
disk respectively. Similarly, latency depends on CPU, net-
work and disk consumption. We are designing a prediction
mechanism that incorporates such “ resource dependencies’,
where predictionsfor one resource (CPU) could be used by
predictors for a higher-level resource (latency). We asoin-
tend to extend our system to allow multiple threads in an
application, which could be performing multi-fidelity oper-
ations simultaneously.

In the medium and long term, we would like to extend
our linear regression method to more sophisticated learning
algorithms, and evaluate these algorithms — how accurate
they are, how quickly they converge, how good the initial
guess must be (for online methods), and what the overheads
are. We would also liketo find a safer way to specify appli-
cation hint functions. our current approach of dynamically
loaded objectsis very efficient but not safe. We need a better
mechanism (possibly an interpreted language) that would
strike the right balance between flexibility, safety, and per-
formance.

Our prototype relies on the application programmer to
provide the utility function that maps fidelity to user satis-



faction. Thisis very hard to do, especialy with multiple
fidelity metrics and time-varying user preferences. We in-
tend to explore ways of using user feedback to update the
utility function. Thisis analogous to the way that feedback
on resource consumption updates our resource predictors.

Currently, the solver triesto find the best utility that sat-
isfiesaset of constraints. Often, we do not want to set ahard
constraint on aresource such as latency — the user might be
willing to wait a small amount of additional time, but only
if it resulted in a large increase in fidelity. In other words,
we want the highest fidelity that we can achieve cheaply.
This corresponds to finding a knee, or “sweet spot” on the
tradeoff curve between fidelity and resource consumption.
We would like to characterize these “sweet spots’ and have
the solver find them automatically.

Acquiring history logs for each hardware platform that
we might ever use is burdensome. Wewould liketo uselogs
acquired on one hardware platform to make predictions on
another. Our CPU measurement is already scaled to CPU
performance; however, a simple linear scaling usually will
not capture all the differences between processors. We will
need a mechanism that uses log entries acquired on other
platforms, but gives them a smaller weight than those ac-
quired on the host platform.

Ideally, we would like the system to start with little or no
log information and refine its predictions as it goes along.
This requires techniques that can explore the fidelity space
conservatively. For each operation, we need to pick a fi-
delity that isnot too far from the known portion of the space,
to avoid egregious mispredictions. At the same time we
wish to extend the known space, so that we eventually learn
about new desirable operating points. It would be interest-
ing to investigate techniques that strike a balance between
these two conflicting requirements.

8. Conclusion

Fidelity adaptation is essential for applicationsto main-
tain good interactive response and low battery drain in a
turbulent and resource-poor mobile environment. However,
for most applications, the exact effect of fidelity on resource
consumption is not known a priori: it depends on the hard-
ware platform and even on the input data to the application.

History-based prediction offers a way to measure, log,
and learn the fidelity-resource tradeoffs of any application.
This allows us to implement a variety of adaptation poli-
cies to pick good operating points on these tradeoff curves.
Our initial results show that we can log and predict resource
consumption with acceptable overhead and good accuracy.
There remain a number of issues to be addressed in making
history-based prediction easy to use and truly effective in
guiding adaptation.
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