
The Event Heap: A Coordination Infrastructure for
Interactive Workspaces

Brad Johanson and Armando Fox

Stanford University
Gates 3B-376

Serra Mall
Stanford, CA 94305-9035

bjohanso@graphics.stanford.edu, fox@cs.stanford.edu

Abstract. Coordinating the interactions of applications running on the diversity of
devices that will be common in ubiquitous computing environments is still a difficult
and not completely solved problem. We look at one such environment, an interactive
workspace, where groups come together to collaborate on solving problems. Such a
space will contain a heterogeneous collection of both new and legacy applications and
devices. We propose that a tuplespace model with several extensions is ideal for
coordination in this environment. We present a prototype implementation of such a
model called the Event Heap. Finally, we show that the system has performed well in
actual use over the last year and a half in our prototype interactive workspace, the
iRoom.

1 Introduction

Improvements in device technologies and falling costs are rapidly enabling the
original vision of ubiquitous computing [23]. Devices from large wall-sized displays
to small PDAs can easily (and wirelessly) be networked together in localized areas,
forming the hardware side of the ubiquitous computing environment. Once connected
together, however, the problem becomes how to allow software programs running on
the devices to coordinate with one another in a flexible and intuitive manner. Such
devices do not generally integrate easily with one another or with existing software
unless they were designed to do so a priori.

Many programming models and systems have been proposed for coordinating these
devices. Based on our experience with a prototype room-based ubiquitous computing
environment (interactive workspace) that we have deployed, the realities of these
environments make the existing models incomplete or inadequate. Interactive
workspaces systems must be able to tolerate a dynamic environment, as portable
devices come and go, as well as maintain a high degree of robustness and availability
despite inevitable software and hardware failures. Further, both because this research
area is still young and growing rapidly and because of the implicit ad-hoc nature of
ubiquitous computing interactions, it is important that any coordination model allow
the rapid integration of new devices and systems.

mailto:bjohanso@graphics.stanford.edu

 2

Our own project, Interactive Workspaces, investigates the systems and HCI issues
that arise in room-based ubiquitous computing environments that are technology-rich
and consist of interconnected large and small displays and multi-modal I/O devices,
where people gather to do naturally collaborative activities such as design reviews,
brainstorming, etc.. Compared to other projects, which we review more thoroughly
toward the end of the paper, we are focusing on providing infrastructure for dynamic,
heterogeneous and ad hoc collections of devices, applications and operating systems,
all of which may be either new or legacy.

From our observations of usage and application development in our prototype
interactive workspace, the iRoom, we identified the following desirable features:

• Applicable to many different types of ubiquitous computing applications.
• Portable across installations, provided some infrastructure for determining

workspace-specific information is also provided.
• Friendly to existing languages and environments, and portable to new ones, making

it straightforward to support a wide range of devices and leverage their existing
application bases.

• Robust to transient failures, so that experimentation with new devices does not
destabilize an existing system.

In light of the above observations and requirements, we make the following
contributions:

First, we identify the need for a general-purpose coordination system, in the spirit
of [9], in an interactive workspace. Further, we propose that a tuplespace system is
well suited for this role. We will show why a desire to integrate legacy devices in an
interactive workspace and other “engineering” constraints lead to a tuplespace
coordination model.

Second, we explain the extensions to the basic tuplespace model that we have
found necessary in an interactive workspace, and why they are needed. Specifically,
the extensions are self-describing tuples, flexible typing, typed tuples, tuple
sequencing and tuple expiration.

Finally, to we present the Event Heap, an implemented and deployed tuplespace
based coordination substrate for a real interactive workspace, and discuss our
experience with applications using the infrastructure across a wide variety of devices
and software platforms over the past year and a half. The abstraction and API has
proven to be well suited for this domain, and the current implementation has been able
to provide for all but low-latency direct feedback communication..

1.1 Interactive Workspaces

An interactive workspace is a localized ubiquitous computing environment where
people come together for collaborations. To explore this space, we built a prototype
interactive workspace, the iRoom, which features three rear projected SmartBoard
[19] touch screens along one wall, a bottom projected table, and a custom 12 projector
tiled front display driven by a workstation cluster. Except for the front display, all of
the machines driving displays are Windows machines in order to facilitate running
legacy applications. In addition, the room has wireless LAN coverage, which allows

 3

laptops or PDA’s to communicate with the other machines in the room. Figure 1a
shows the layout of the iRoom.

multi-headed computer

laptop drop

front

smartboard 1 smartboard 3smartboard 2

table

room controller

computer

laptop
sourcecluster

(a) iRoom Layout
(b) Construction Management in the iRoom

Fig. 1. The iRoom

We now provide a scenario set in the iRoom that reflects how research groups
collaborating with us hope to use interactive workspaces. Consider a group of
construction management engineers and contractors using the iRoom to plan a major
construction project. (We are working with the civil engineering department on just
such a project [12], but similar scenarios apply for many domains requiring multi-
person collaborations and interaction with large amounts of data.) Upon entering the
workspace, one group member uses a touch sensitive tablet at the room entrance to
turn on the lights and the three projectors for the touch screens on the side wall.

They begin the meeting by following a web-page outline the meeting leader has
prepared which he displays on the left most touch screen. Each topic is a hyperlink
that brings up related data for that topic on the other displays in the room. Some of
that data is in the form of web pages, while other data is brought up in specific
construction site modeling and planning applications, some of which are not
specifically designed to run in the iRoom. Figure 1b shows a photograph of the
iRoom in use for a prototype of such a scenario.

Later in the meeting, it becomes clear that there is a problem with completing part
of the construction on schedule. They bring up a top down map of the construction
site on the table, a 3D model of the construction site which shows the project state for
any given date on one touch screen, some financial information on another touch
screen, and the project scheduling software on the third. All of these are separate
stand-alone applications, but the data being displayed across the applications is
automatically associated. Thus when the users select or make changes in one view,
the other views immediately reflect the new state. When they have solved the
problem and the meeting is over, the users store the updates on their laptops, and shut
down the room using a simple web based room control page they load on their laptop
using the wireless network in the room.

The goal of the coordination infrastructure is to facilitate the kind of fluid
application association and linking, and the multiple pathways of control presented in
this scenario.

 4

The rest of the paper proceeds as follows. We begin by clarifying interactive
workspace, and the types of interactions we have observed to be common in them.
We then discuss the model of coordination languages, and our choice of the
tuplespace model. In order we next present the Event Heap itself, and then
applications implemented using the Event Heap. We conclude with some future
research directions and a review of similar projects.

2 A Tuplespace Coordination Model For Interactive Workspaces

We assert that most room wide applications will consist of traditional applications
and devices composed into an ensemble. The problem is therefore determining which
coordination model best facilitates this composition, such that the user has the
impression of using one distributed application.

2.1 Coordination-Based Programming Background

In [9], Gelernter and Carriero proposed that computation languages and coordination
languages should be thought of as orthogonal. Computation languages express how
calculations proceed, and coordination languages express the interaction between
autonomous processes. By choosing a computation language, say C++, and a
coordination language, say a set of message passing primitives, you can entirely
express an autonomous process and its interaction with other processes. They further
argue that general-purpose coordination languages which can express any type of
coordination are superior to task specific languages that may be useful, for example,
only for fine-grained parallel computing.

Gelernter and Carriero position the Linda [1] tuplespace model as an example of
such a general-purpose coordination language. The tuplespace model consists of just
three key operations, out(), in(), read() and one data type, a tuple. Tuples are a set of
ordered typed fields, where each field may either contain a value, or be undefined.
The primitive ‘out’ puts a tuple into an abstract space, the tuplespace, which is visible
to all processes. The ‘in’ and ‘read’ processes remove or copy a tuple, respectively,
from the space that matches a template tuple where explicit values are used for some
fields, and wild cards for others.

Gelernter and Carriero assert that providing a coordination mechanism separate
from the computational language provides two key features: portability, by providing
a computation language independent mechanism of coordination, and support for
heterogeneity by allowing devices and applications to coordinate with one another
even if they are based on different hardware or languages. Further, providing a
general-purpose coordination language like Linda, as opposed to many specialized
ones, is economical, because programmers need learn only one coordination language,
and provides flexibility, since it can be used to express any style of coordination.

 5

2.2 Tuplespace Advantages for Interactive Workspaces

These same features of tuplespaces, portability, heterogeneity, economy and
flexibility, are the same as ones we identified as being important for an interactive
workspaces coordination model. This makes the tuplespace model a good starting
point for such a model. Simplicity, ease of coordination, and good robustness and
failure isolation properties are other important features for an interactive workspace
coordination model, and characteristics of the tuplespace model.

First, tuplespaces are simple and flexible, and are therefore easy to deploy on many
devices and platforms. Since there are only three primitives, it is fairly simple to port
the interface to new platforms. This also makes it easy to add support for tuplespaces
into the code base for existing applications, or to make wrappers to programmatic
interfaces for applications that have no source code. With tuplespaces, coordination
state is stored in the infrastructure instead of in individual clients. This property is
another one that makes client code small and straightforward to implement for new
platforms and devices, even relatively impoverished ones. Since tuplespaces are
general-purpose, other coordination types can be implemented on top of it if they are
more appropriate for some task. For example RPC can be implemented as two
tuplespaces calls on the calling process, and two on the callee. Finally, while
marshalling and un-marshalling are required, the tuplespace code running on the
client need only implement marshaling into and un-marshaling from the basic tuple
format.

Tuplespaces also support easy coordination among multiple applications, including
the ability to adapt applications not originally designed to work together. Multicast
communication between disparate groups of devices and applications is easy since
multiple applications can get a copy of the same tuple if they all match for it. The
rendezvous mechanics for applications are also straightforward, and are aided by the
following three key features:

• Anonymous communication: There is no need to explicitly rendezvous
applications—as long as two applications understand the same event types they
will automatically coordinate with each other. Users can bring up applications on
the display they want in an interactive workspace and they should coordinate
correctly.

• Interposability: Since tuples are public and indirectly sent between applications,
an intermediary can pick up a tuple from a source and put back one or more tuples
of different types which will cause the appropriate action in a receiver or receivers
[14]. This allows applications not originally intended to work together to
coordinate.

• Snooping: The tuplespace model allows one component to snoop on tuples being
sent among other components without impinging on their behavior. Information in
that tuple can then be used to affect the local behavior of the snooping application.

Failure isolation in tuplespaces is naturally achieved since receivers and senders don’t
directly interact. As long as the tuplespace infrastructure can tolerate failure in
clients, a client should not cause others to fail. Tuples also persist, decoupling
applications in time as well as space. Applications can therefore retrieve
communications even if they were transmitted while they were down. This

 6

persistence also makes it more difficult to create application ensembles that are
dependent on start up order since all tuples will remain in the tuplespace until the
appropriate party starts and picks it up.

Tuplespaces do, however, have some well known drawbacks. Scaling is an issue
since all participants communicate through a shared medium. For the interactive
workspace domain this is not a big problem since workspaces will only contain on the
order of 10s of users and 100s of individual processes. The decoupled nature of the
tuplespace means that all communication takes two hops. Our intent to provide
coordination between applications over human-scale latencies and the speed of
current computers and networks combined have meant that this is not a problem for
us. Also, in [7] it has been shown that a properly implemented tuplespace will adapt
over time to have the same number of hops (one) over time as a message-passing
system, and a similar analogy could be made for RMI/RPC, so we don’t believe the
latter is a fundamental problem with the tuplespace model.

2.3 Adapting Tuplespaces for Interactive Workspaces

While the tuple space model is a good general-purpose system for coordination, we
found that certain extensions were necessary for the interactive workspaces domain:

Self-describing Tuples: Since ensemble components aren’t necessarily designed
to work together, it is important to have tuples be self-describing so users can figure
out the intent of tuples by browsing through the tuplespace. This specifically means
that every field has a name in addition to the standard type, and data.

Flexible Typing: In the standard model, the number of fields in a tuple and the
order of fields is significant. For flexibly typed tuples, both field order and event size
are ignored and matching is done by name instead. This allows applications to create
extensions to standard event types that include extra information without breaking
older applications. This is important since the collection of hardware and software in
use is continually evolving. We have used it in the iRoom to add flags to tuples to
support devices with new capabilities without breaking compatibility with deployed
applications.

Typed Tuples: In part as a side effect of using flexible typing, and in part because
application writers won’t necessarily coordinate tuple structure, tuple fields with the
same name will not always have the same semantic meaning. For example, ‘xPos’
may be a screen offset in one application and a position in a 3D model for another.
This problem can be avoided by including in all tuples a ‘TupleType’ integer field
which implies the presence of certain fields and the semantics of those fields. This
provides a useful compromise between strong and weak typing. A problem still exists
when application writers choose the same ‘TupleType’ value for tuples with
dissimilar semantics, but having type greatly reduces the problem of name collision.

Tuple Sequencing: Traditionally, if multiple tuples exist that match the template
tuple on a ‘read’ or ‘in’ operation, any of the matching tuples can be returned. Tuple
sequencing means that receivers always get the earliest matching tuple they haven’t
seen yet. Sequencing insures that applications requesting state change tuples will get
tuples exactly once, and in order, rather than fetching the same tuple repeatedly.

 7

Since applications may sometimes want to peek at tuples, a ‘snoop’ method is needed
to return copies of all matching tuples without effecting sequencing.

Expiration of Tuples: Since sources and receivers are decoupled, a source need
not have a receiver to continue running. This may cause tuples to build up in the
tuplespace, and for a real world system this means that the performance steadily
decreases. To ameliorate this problem, all tuples should be given a ‘TimeToLive’
field that specifies how long they will persist in the tuplespace before being “garbage
collected.” The expiration also facilitates human time-scale inter-application
coordination by preventing action upon a submitted tuples long after the triggering
occurrence. Thus, tuples should expire after a human would no longer expect the
causal action to take place. For example, a light should turn on within a few seconds,
or not at all—turning on hours or days later when some key component comes back
on line but users have forgotten about the request is not acceptable.

For an interactive workspace, we want users to be able to dynamically compose the
application components they are using into an ensemble, which differs from the
original intended use of tuplespaces: to construct a set of applications designed from
the ground up to act as an ensemble. In our case, the programmer doesn’t know in
advance with which other applications their component will be coordinating. By
adding typed, self-describing events, and using intermediation and snooping, the
tuplespace model is adapted to help support this sort of dynamic composition.

2.4 Design Alternatives

The tradeoffs between tuplespaces and other coordination mechanisms are well
known, and our main contribution is to identify tuplespaces as well suited to
interactive workspaces. We also considered publish-subscribe, RMI/RPC, and
message passing systems.

Publish-subscribe provides many of the same advantages as tuplespaces. One
difference is that events in publish-subscribe systems have no persistence, so there is
no inherent way for restarting applications to pick up recent events. This makes it
more difficult to keep things running through a failure. In some publish-subscribe
systems, receivers also need to track new senders to decide whether or not to
subscribe, while for a tuplespace blocking on a match will get you the appropriate
tuple, be it from an old or new source. Finally, for efficiency most publish-subscribe
systems only broadcast events when there are receivers. This makes it more difficult
to snoop on what sorts of tuples are currently, or have recently been sent.

Both RMI/RPC and message passing suffer from a similar set of drawbacks in the
interactive workspaces domain when compared to each other. Like publish-subscribe,
there is no temporal persistence to coordination. In RMI/RPC, language
independence is more difficult since different languages have differing method call
protocols. For both RMI/RPC and message passing, either the method interface or
message format, respectively, needs to be agreed upon ahead of time by all parties,
and working around this requires explicit adaptor processes. Since communication is
direct, getting programs not designed to work with each other to rendezvous is more
difficult. In particular snooping and intermediation are not very well facilitated by the
basic coordination model. Finally, for both of these models it is easier for ensemble

 8

writers to create start up order dependencies if calling processes or a message-
generators are not programmed to retry if the target process is not yet started to
receive the call or message.

3 The Event Heap Implementation

The Event Heap is our implementation of a tuplespace based coordination system for
interactive workspaces. It is built on top of TSpaces from IBM [24], a Java based
tuplespace system that includes many extensions to the basic tuplespace model. One
feature of TSpaces tuples is that they can be self-describing—one of the key
extensions we identified for using a tuplespace in an interactive workspace in section
2.3. The TSpaces system is client-server based with the actual state of the tuplespace
stored on the server machine. While the TSpaces server is a single point of failure,
individual Event Heap client applications automatically reconnect if the server goes
down and is restarted. This combined with a dedicated web server that handles
requests to restart the TSpaces server and other Event Heap server applications
minimizes the problems with server failure.

In the Event Heap, therefore, tuples are called events. This reflects their intended
use as a means of notifying other applications in the workspace of an occurrence, or
of requesting that other applications update their state or perform some task, and
emphasizes that, as described in section 2.3, the semantics are somewhat different
than that of classic tuples. In the remainder of the paper the term event will be used
when referring to tuples in the Event Heap, and tuple will be used to refer to the
standard Linda-style tuple.

Due to the relatively high latencies (100 ms to 1 s) we see from the TSpaces
system, the current version of the Event Heap is used primarily for coarse high-
latency coordination between applications running in the iRoom. Nonetheless, there
is a need for coordination within the workspace on a finer scale, for example to route
mouse/pointer events between different devices. We have written a system for fast
routing of events in these cases and in fact use it for a flexible mouse and pointer re-
routing system we use in the iRoom. We contend that the Event Heap could be
combined with this fast path to create a single system that would be able to handle
both the current coarse-coordination, and the lower latency domains.

3.1 Event Format Description

The basic event used by the Event Heap is a TSpaces tuple with certain mandatory
fields. As mentioned in section 2.3, flexible typing provides several advantages in the
interactive workspace domain, so we ignore field order and tuple size in performing
matching. This means that fields are always referred to by name and type rather than
their index in the tuple.

 9

Table 1. Standard Event Heap Fields

Field Name Field Type Meaning
EventType Mandatory A string that uniquely identifies an intended

event type, and is associated with the declaration
of extra fields associated with this type.

SourceID Mandatory The unique identifier of the sender of this event.
TimeToLive Mandatory Milliseconds after submission when the event

will be removed.
EventName Optional A plain-english description of this event type.
PersonID Optional An identifier for the human who generated or is

associated with this event.
GroupID Optional The application group for which this event is

intended.
TargetID Optional The ID of the desired target of this event. May

or may not be the SourceID of the target.
EventHeap
Version

Internal The version type of this event. Used to
differentiate fields used and semantics between
versions.

SessionID Internal Used for sequencing events.
SequenceNum Internal Used for sequencing events.

In addition to EventType (previously referred to as ‘TupleType’) and TimeToLive
which were mentioned in section 2.3, there are several other standard fields. These
fall into the categories of mandatory, internally used and optional. Table 1 lists these
fields, and briefly describes their use.

3.2 Event Retrieval

The Event Heap provides additional operations to retrieve events beyond the basic
operations of ‘out’ and ‘read.’ There are non-blocking versions of the basic calls, and
all of the calls will accept an array of template events and return an event that matches
one or more of these. Finally, there is a ‘snoopEvents’ call which retrieves events
without effecting sequencing.

 10

Table 2. Event Heap Communication Types

Comm. Type Effect Fields to Set
Dedicated-Receiver Receives from specific

source(s)
SourceID of receiver

Dedicated-Source Sends to specific receiver(s) TargetID of source
Dedicated-Link Send between specific source

and receiver
SourceID of receiver
and TargetID of source

Constrained to Group Events only seen within app
group

GroupID of all apps in
group

Restricted by Person Receive only events created
by one person

PersonID of receiver

Control over which applications receive certain events can be accomplished by having
event sources set the SourceID, TargetID, GroupID and PersonID to specific values,
and having clients match on specific values for those fields. For example, a client can
receive from a specific source by setting the SourceID field in their template event to
a value corresponding to the source from which they desire to receive the event. A
variety of communication modes are possible depending on how the fields are set, as
shown in Table 2.

3.3 Event Sequencing

To perform sequencing, each source tags every generated event with a SourceID, a
SessionID, and a SequenceNum (sequence number). The SourceID needs to be
unique among all sources participating in the Event Heap, and may be either specified
by the application, or assigned automatically.1 The SessionID is chosen randomly
every time a source is instantiated, and is used to differentiate between events from
before and after an application restart. SequenceNum starts at one and is incremented
for each new event of a given type submitted during a given session.

On the receiver side, sequencing is accomplished using the query syntax of
TSpaces, which allows database-like queries to find matching tuples. For every
source and event type, receivers keep track of the session ID and sequence number of
the most recently retrieved event. In addition to querying to match the application
specified field values, when an event is retrieved the client code queries for events of
the given type that are either from new sources, from current sources with a new
session (which have presumably restarted), or are from a current source and session,
but have a higher sequence number than the last seen event of this type from the given
source. This combined with TSpaces FIFO option insures that applications will
always receive the earliest event that is newer than the last event of the given type that
was retrieved.

1 Automatic assignment is done by choosing a random integer value between 1 and 2 billion,

which is assumed to be virtually unique.

 11

3.4 Integrating Diverse Programming Environments and Devices

A key design goal is supporting a heterogeneous collection of machines and legacy
applications. To do so, we have implemented a variety of ways for applications to
access the Event Heap as shown in figure 3:

TSpaces (server)

TSpaces (cli)

TSpaces (cli)

EventHeap EventHeap C++
Wrapper

Java EventHeap

Java servlet

ProxiWeb

ProxiWare
Gateway

Netscape/IE

ProxiNet

IBM Almaden

UCB Ninja

Stanford iRoom

PDA app
(Web-based)

Desktop app
(Web-based)

Desktop app
(Java)

Desktop app
(C/C++)

HTTP

JavaRMI

Other

Java EventHeap

TSpaces (client)

TSpaces (cli)

EventHeap Python
Wrapper

Java EventHeap

Desktop app
(Python)

The Event Heap

Fig. 2. Methods of Accessing the Event Heap

The main implementation of the Event Heap is in Java, which is also the native
language for TSpaces. Other pathways are implemented as wrappers of the Java
version in the native language, thus there is only one code base where actual client
logic is maintained. The total size of the Event Heap extension set to TSpaces is
about 15KB, so it is deployable to most devices. We also provide a web pathway that
lets users encode event submission in URLs on web pages. This works via HTTP
form submission to a Java servlet, and has allowed many basic interactions to be
easily prototyped by simply creating a web page with the appropriate event
submission URLs. In particular this path has proven useful in allowing PDAs to
participate in controlling the iRoom, since even Palm-type devices have web browsers
available today (for example the ProxiWeb [15] browser).

Using the currently available paths and software API’s, the Event Heap is currently
supported in some form on Windows, Linux, Palm OS, and Windows CE.

4 The Event Heap In Practice

In this section we present some applications built on the Event Heap that we use in the
iRoom and relate some of our experiences with the robustness, extensibility, and
portability of the Event Heap over the year and a half or so it has been in service.

 12

4.1 Applications

Ten to twenty applications have been written which use they Event Heap since we
deployed the first version. In this section we share some exemplary applications—
Multibrowsing, SmartPresenter and the CIFE Suite—that demonstrate how the Event
Heap is able to facilitate coordination and provides the desirable features we outlined
in the introduction.

Multibrowsing
Multibrowsing is a system that allows one to call up web pages or other data on any
machine in the iRoom by submitting a multibrowse event. Each machine that is a
valid target for multibrowsing runs a multibrowse daemon that waits for events with
its TargetID, and then executes the command embedded within. Since the daemon
uses Windows shell extensions to execute commands, URLs are brought up in the
default web browser and any other file based data is opened in the appropriate
application. Executable applications can also be submitted, in which case they are run
by the multibrowse daemon.2

Using the web path to the Event Heap, users are able to encode requests as links on
web pages to pull up other web pages, data, or applications on the other machines in
the iRoom. We also have a script/plug-in that works with Internet Explorer and
allows users to redirect the current page, or the target of a hyperlink to any display in
the iRoom using the right-click menu. Finally, there is a Java applet that allows users
to drag content from any machine running a web browser to an iconic representation
of the displays in the room, causing the information to brought up on that display.

Currently most multibrowse content and applications are designed only for the
iRoom, so URLs and other hard-coded triggers for multibrowse event submission are
not portable to other environments. Due to the ability to intermediate, however, we
were able to construct mbforward, a simple application that picks up multibrowse
events with a certain set of TargetIDs and automatically routes them to different
machines. Using this mechanism the CIFE group [12] has been able to demonstrate
multibrowse scenarios tailored for the iRoom on a set of laptops for demonstrations in
other locations.

SmartPresenter
SmartPresenter is a multi-display, multi-object presentation program for interactive
workspaces. While traditional presentation programs coordinate the display of slides
across time, SmartPresenter coordinates the display of information across both time
and display surfaces. For example, a presentation might specify that at time-step 4,
slide 17 from a Power Point presentation be shown on the left touch screen, a 3-d
model be displayed on the high-resolution front screen, and web pages be displayed
on the other two touch screens.

The presenter application proper is written in Java and can be run anywhere in the
iRoom. It reads a stored script that specifies which events are to be sent at any point
during the presentation. It waits for presentation control events telling it to advance,

2 This is a security hole, but we minimize the risk by fire-walling the iRoom sub-net.

 13

step backward, or jump to some specific point in the presentation, and then sends the
events appropriate for that point in the presentation.

Each machine with a display in the room runs a viewer daemon which responds to
viewer control events by loading the specified information. There is special support
for PowerPoint which has been wrapped using Microsoft Office Automation [4], a
programmatic interface to control applications in the Microsoft Office suite. The
wrapper allows the viewer to explicitly call forward, backward and build commands.

Event Heap

Presenter
Application

Presentation Control
Events

Viewer Control
Events,

Multibrowse Events

Multibrowse
Servlet

Presentation Control Events

Presentation Control Events

Browser

HTTP Post

Multibrowse Daemon

Browser
Machine

2

Viewer Daemon

PowerPoint
Machine

1

Multibrowse
Events

Viewer Control
Events

Wireless
Buttons

Audience
Applet

Snoop Viewer Control
Events

Fig. 3. Application Paths into the Event Heap

We can also construct an audience applet which allows users on a laptop to snoop on
the presentation control events and display presentation content on their laptop.
Figure 4 shows how all the pieces fit together. Note that view control and
multibrowse are the only type of event shown, but theoretically any event can be
emitted by the presenter application.

The SmartPresenter application demonstrates several of the important features of
the Event Heap:

• Composability: By creating one presenter application any number of Event Heap
enabled applications can be coordinated to create a presentation—this includes
applications that have not yet been created.

• Fault Isolation: A presentation may continue even if one of the data viewers or
event receivers is down, although clearly that specific desired action will not take
place.

• Snooping: Without the master presenter or any of the specific data viewers even
being aware, the audience applet will allow users to follow the presentation from
their laptops.

• Adaptability: PowerPoint was enabled as an Event Heap target by wrapping it
with a simple Event Heap program that translated events to actions in PowerPoint.

 14

While SmartPresenter was only recently completed, the ease of coupling applications
and devices through the Event Heap has already allowed us to extend it. We have a
set of wireless buttons in the iRoom that can be bound to any event, and we found that
we were able to make a presenter control by simply binding the advance presentation
event to one button, and reverse to another. Now presenters can walk around the
iRoom as they present, returning to the main web-based controls only if they need to
jump to a specific point in the presentation.

The CIFE Suite
The CIFE group [12], who inspired our scenario from section 1.1, are a group of civil
engineers working on construction management. They designed a set of viewers for
their data that could be run on the various displays in the room:

• A construction site map that allows the selection of various view points in the
construction site and then emits an appropriate view change event.

• A “4D” viewer that shows a 3D model of projected state of the construction site for
any date during construction. It responds to events that change the view, select
objects and zones (e.g. building 3), and change the date for the current model view.

• Another map viewer that highlights zones based on zone selection events.
• A web based viewer that displays tables of construction site information and emits

zone and date selection events as table information is selected and listens for the
same events to select information in the table.

All of the applications are essentially stand-alone, but communicate through the Event
Heap. The 4D viewer was designed for use on a single-PC and was modified to use
the Event Heap by adding around 100 lines of code. Since they use common event
types, the various components of the suite retain their ability to coordinate while still
being able to be brought up on any screen in the room. Since the components are
loosely coupled, if no event source is running, or there is no event sink, it does not
affect any of the application components currently in use. Much of the CIFE
application is essentially plain HTML using the web event submission path; only the
custom 4D viewer and the zone map viewer were coded specifically to communicate
with the Event Heap, using the C++ and Java versions of the Event Heap,
respectively. To implement the top-down map mentioned in the scenario in section
1.1, the map and previews of the desired views were created in Macromedia Flash
[13] with embedded URLs triggered by selecting a region of the map. This made it
possible to create this new application with a minimum of development time.

Using the components they have constructed they have created a demonstration
scenario that works almost exactly like the one presented in section 1.1.

4.2 Experience With Robustness, Extensibility and Portability

Three of our goals for our coordination infrastructure were robustness, extensibility
and portability. Since both TSpaces and Java are still rapidly evolving products, they
are not as inherently robust as would be ideal. Still the system has been remarkably
stable. While individual machines or the interactive workspace daemons on the

 15

machines have failed on many occasions, the rest of the infrastructure has continued
to function correctly. TSpaces can become unstable under high tuple loads and after
certain transaction sequences. The automatic client-reconnect and quick web path to
restart the TSpaces server and Event Heap servlets have meant that it seldom has
taken more than a few minutes to get the infrastructure back up and running after a
problem. We have recently done some work on modular re-startability [6] that we
hope to apply to the iRoom to make the system even more robust.

The Event Heap system has also worked out well for us in terms of extensibility
and adaptability to new platforms and legacy applications. The Python port took only
a week or so for one graduate student to complete. The Event Heap servlets were
similarly straightforward, although they took slightly longer to complete due to a lack
of familiarity with Java servlets. We were able to create a wrapper for PowerPoint
using Microsoft Office Automation that took less than a day once we figured out
Office Automation. Now that we have standard template code for integrating OLE
applications it should be easy to make most Windows applications valid interactive
workspace components.

So far we have the least experience with portability since there are not many
interactive workspaces in existence. The CIFE group has been able to take the CIFE
suite on the road with the aid of the mbforward tool for rerouting multibrowse events.
The Stanford Learning Lab (SLL) has done a preliminary deployment of the Event
Heap and has the multibrowsing system up and running in their interactive workspace.
We have just completed and successfully tested a set of three Windows installers, one
for developers, one for interactive workspace client machines, and one for an
interactive workspace server machine. The latter two can be used to set up an
interactive workspace with multibrowsing and projector control, and the former
allows a programmer to create an ‘interactive workspace on a machine’ to use for
development. We plan on deploying this to select groups inside and outside Stanford
in the coming months, and eventually plan on providing the system as Open Source
for anybody to download and use.

5 Lessons and Suggestions For Future Work

5.1 Alternative Implementations

TSpaces provides a powerful tuplespace framework, but has a relatively high latency,
particularly when using querying (which we use for sequencing). It has been
suggested to us [17] that using a high-performance, off-the-shelf commercial database
would likely solve the performance problem, and give us persistence for free. We are
investigating this option, but we note that fast restart is an important property for high
availability in our system; most moderately-priced commercial systems do not
necessarily afford this property. We are also considering adding event streams to the
Event Heap API, and using our event-fast path system under the covers to insure these
streams have low latency.

 16

5.2 Open Research Issues

We plan to investigate the effects of flexible typing in this system, with the ultimate
goal of producing a systematic framework for event intermediation to enable ad-hoc
interactions as described in [14]. Clearly we also have a problem with collision on the
EventType field between application writers that do not coordinate. For a single
interactive workspace with a tight knit community this hasn’t been a problem, but it
needs to be addressed before our infrastructure can be widely deployed.

We also plan to construct a set of flexible Event Heap managers to control
application composition and coordination, both automatically and via human
intervention, for arbitrary ensembles of Event Heap enabled applications.

Security is an unaddressed problem, in part because we lack a social model to
indicate what security mechanisms would be appropriate in collaborative settings:
There is a tradeoff between user convenience and authentication as is typical in
security systems. To complicate matters, our legacy-OS building blocks have
differing security models. Currently our security model is to firewall off the room,
and keep it physically secured, while giving users in the iRoom, who are assumed to
be trusted, full access.

We are starting to investigate tele-connection of interactive workspaces—in fact,
the Stanford Learning Laboratory [20] is already starting experiments connecting their
prototype interactive workspace to our own. We envision that each connected
workspace will have its own separate Event Heap, with selective communication of
certain events across heaps. We suspect that some sort of ‘meta-Event Heap’ might
be a useful abstraction, with coordination between Event Heaps in different
interactive workspaces being analogous to coordination between processes running on
machines.

6 Related Work

A large number of interesting and complex, yet non-interoperable, projects ([2][3][5]
[8][21]) are investigating room or work-area based ubiquitous computing. Each has
uncovered important insights in ubiquitous computing but have yet to propagate and
deploy them significantly beyond the project’s boundaries.

Two such project are the MIT Intelligent Room project and Microsoft Research’s
Easy Living project [5]. They are both looking primarily at how to incorporate
intelligence into ubiquitous computing rooms. For example, networks of observers
should be able to track where you are in a room, and do the appropriate thing based on
voice commands and gestures. MIT’s infrastructure framework is called metaglue [8]
and is based on agents written in Java. Coordination between agents is done using
RMI, but standard interfaces and automatic mechanisms for composing agents
together are provided. The Easy Living project currently only provides ad hoc
mechanisms for extending the capabilities of their environment. Neither project
focuses on addressing dynamic heterogeneous environments, and our project is not
attempting to build intelligence into the environment.

 17

The i-Land project [21] at Darmstadt is investigating a physical environment that is
almost identical to the one we have set up in the iRoom. They are focused more on
design and human computer interaction concerns for room and building based
ubiquitous computing. They use a Smalltalk based framework called COAST [16],
which was originally designed for computer supported collaborative work (CSCW)
among geographically distributed users each at their own computer. As far as we
know applications must be written from scratch using this framework in order to run
in their room, and applications must be designed to coordinate with one another.

The Portolano project at the University of Washington is exploring how to enable
working environments with computer infrastructure. Their current work is on an
instrumented and enhanced biology lab workbench [3]. Their One.world [10] world
infrastructure aims to enable pervasive computing in general, and it may be possible
to build a future version of the Event Heap on top of their system.

Jini [22] provides a rendezvous mechanism for Java-based entities to begin
coordinating with one another when they connect to a new network. It plus Java RMI
could serve as a coordination model for an interactive workspace, but would have the
drawbacks of RMI mentioned in section 2.4. A related technology is JavaSpaces [18],
which is similar to TSpaces, but with simpler semantics. Like TSpaces, JavaSpaces
implements a tuplespace in the Java environment. We chose to use TSpaces since we
needed its querying semantics for sequencing, but we believe the Event Heap could
also be easily built on top of the JavaSpaces system.

In [11], Hasha describes some of the requirements for a distributed object OS,
mostly in his case for controlling homes filled with smart appliances, sensors and
input/output devices. His proposal to use publish-subscribe meshes well with the
function of the Event Heap, although we believe the temporal persistence of
tuplespaces make them slightly more useful than publish-subscribe.

7 Conclusions

Ubiquitous computing is fast becoming a reality as portable and embedded hardware
along with wireless networking become more common. Unfortunately the software
platforms for coordinating interaction across devices are not as mature. We looked
specifically at an interactive workspace, which is a room or similar environment with
embedded computational capabilities, and a heterogeneous collection of applications
and devices. We chose the tuplespace model as an appropriate general-purpose
coordination system for interactive workspaces due to its portability, extensibility,
flexibility, and ability to deal with heterogeneous environments. We identified
several key extensions to the basic tuplespace model for this domain: self-describing
tuples, flexible typing, typed tuples, tuple sequencing, and tuple expiration. To
validate our choice we have implemented the Event Heap, a system built on IBM
TSpaces that adds the aforementioned extensions. The system has been in use in our
prototype environment, the iRoom, for over a year and a half, and many application
ensembles have been created and successfully run in the space. Our experience
suggests that the loosely-coupled nature of a tuplespace model makes it ideal for an

 18

interactive workspace, and we propose that it would work well for many other
ubiquitous computing situations.

Acknowledgments

The Interactive Workspaces project is the result of efforts by too many students to
name, both in our research group and in collaborator groups from other departments.
Susan Shepard deserves special thanks for maintaining the iRoom and keeping it
functional. See http://graphics.stanford.edu/projects/iwork for an exhaustive list of
participants and more complete project information. The work described here is
supported by DoE grant B504665, by NSF Graduate Fellowships, and by donations of
equipment and software from Intel Corp., InFocus, IBM Corp. and Microsoft Corp.

References

[1] Ahuja, S., Carriero, N., and Gelernter, D., Linda and Friends, IEEE Computer, August,
1986.

[2] G.Abowd,“Classroom 2000:An Experiment with the Instrmentation of a Living
Educational Environment,” IBM Systems J.,Vol.38,No.4,Oct.1999,pp.508-530.

[3] Larry Arnstein et al. Ubiquitous computing in the biology laboratory. Journal of
Laboratory Automation, March 2001.

[4] Automation programmer's reference : using ActiveX technology to create programmable
applications. Microsoft Press, Redmond, Wash., c1997.

[5] Brumitt, B., Meyers, B., Krumm, J., Kern, A. and Shafer, S.,. Easyliving: Technologies for
intelligent environments. In Handheld and Ubiquitous Computing 2000 (HUC2K),
September 2000.

[6] George Candea and Armando Fox, Recursive Restartability: Turning the Reboot
Sledgehammer Into a Scalpel, In Proc. Eighth Intl Workshop on Hot Topics in Operating
Systems (HotOS-VIII), Oberbayern, Germany, May 2001

[7] Carriero, N., Gelernter, D., Mattson, T., and Sherman, A., “The Linda alternative to
message-passing systems”, Parallel Computing, 20, 633-655, 1994.

[8] Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., and Finin, P. Meeting the
Computational Needs of Intelligent Environments: The Metaglue System, Managing
Interactions in Smart Environments,. Paddy Nixon, Gerard Lacey and Simon Dobson eds.
Dublin, Ireland, 1999

[9] Gelernter, D., and Carriero, N., Coordination Languages and their Significance,
Communications of the ACM, Vol. 32, Number 2, February, 1992.

[10] Robert Grimm, Tom Anderson, Brian Bershad, and David Wetherall. A system
architecture for pervasive computing (PDF, 128 KB). In Proceedings of the 9th ACM
SIGOPS European Workshop, pages 177-182, Kolding, Denmark, September 2000.

[11] Hasha, R., Needed: A common distributed object platform, IEEE Intelligent Systems.
March/April 1999.

http://graphics.stanford.edu/projects/iwork
http://one.cs.washington.edu/papers/sigops00.pdf
http://one.cs.washington.edu/papers/sigops00.pdf

 19

[12] Liston, K., Kunz, J., and Fischer, M., “Requirements and Benefits of Interactive
Information Workspaces in Construction,” The 8th International Conference on Computing
in Civil and Building Engineering, Stanford, USA, 2000.

[13] Macromedia Corporation, Macromedia Flash, http://www.macromedia.com.

[14] Michelle Munson and Armando Fox, "Dynamic Control in Tuple Spaces for Sustainable
Evolution in Pervasive Computing Applications". Unpublished abstract.

[15] ProxiNet Inc. ProxiWeb browser. See http://www.proxinet.com.

[16] Schuckmann, C., Kirchner, L., Schummer, J., and Haake, J.,. Designing object-oriented
synchronous groupware with COAST, ACM Computer Supported Collaborative Work,
November 1996.

[17] Shafer, .S., Personal communication. 2001.

[18] Sun Microsystems Labs, JavaSpaces Specification, http://www.sun.com/jini/specs/js.pdf.

[19] Smart Technologies SMART Board, http://www.smarttech.com/smartboard/.

[20] The Stanford Learning Laboratory, http://sll.stanford.edu/.

[21] N.A. Streitz et al., i-LAND: An interactive Landscape for Creativity and Innovation. In
Proc. ACM Conference on Human Factors in Computing Systems (CHI '99) , Pittsburgh,
Pennsylvania, U.S.A., May 15-20, 1999. ACM Press, New York, 1999, pp. 120-127.

[22] Waldo, Jim, Jini Technology Architectural Overview, Sun White Paper, 1999

[23] Weiser, M., The computer for the twenty-first century. Scientific American, pages 94–
100, September 1991.

[24] P. Wyckoff, S. W. McLaughry, T. J. Lehman and D. A. Ford. TSpaces. IBM Systems
Journal 37(3). Also available at http://www.almaden.ibm.com/cs/TSpaces.

http://www.proxinet.com/
http://www.sun.com/jini/specs/js.pdf
http://www.smarttech.com/smartboard/
http://sll.stanford.edu/
http://www.almaden.ibm.com/cs/TSpaces

