
Computing Models for FPGA-Based Accelerators

Martin C. Herbordt, Yongfeng Gu, Tom VanCourt, Josh Model, Bharat Sukhwani, and Matt
Chiu
Boston University

Abstract
Field-programmable gate arrays are widely considered as accelerators for compute-intensive
applications. A critical phase of FPGA application development is finding and mapping to the
appropriate computing model. FPGA computing enables models with highly flexible fine-grained
parallelism and associative operations such as broadcast and collective response. Several case
studies demonstrate the effectiveness of using these computing models in developing FPGA
applications for molecular modeling.

For many years, computational scientists could depend on continual access to ever faster
computers. In the past few years, however, power concerns have caused microprocessor
operating frequencies to stagnate. Moreover, while advances in process technology continue
to provide ever more features per chip, these are no longer used primarily to augment
individual microprocessors; rather, they’re commonly used to replicate the CPUs.
Production chips with hundreds of CPU cores are projected to be delivered in the next
several years. Replicating cores, however, is only one of several viable strategies for
developing next-generation high-performance computing (HPC) architectures.

Some promising alternatives use field-programmable gate arrays.1 FPGAs are commodity
integrated circuits whose logic can be determined, or programmed, in the field. This is in
contrast to other classes of ICs (such as application-specific ICs, or ASICs), whose logic is
fixed at fabrication time. FPGAs are less dense and slower than ASICs, but their flexibility
often more than makes up for these drawbacks. Applications accelerated with FPGAs often
deliver 100-fold speedups per node over microprocessor-based systems. This, combined
with the current ferment in computer architecture activity, has resulted in such systems
moving toward the mainstream, with the largest vendors providing integration support.

Even so, few developers of HPC applications have thus far test-driven FPGA-based systems.
Developers commonly view FPGAs as hardware devices requiring the use of alien
development tools. New users might also disregard the hardware altogether by translating
serial codes directly into FPGA configurations (using one of many available tools).
Although this results in rapid development, it can also result in unacceptable performance
loss.

Successful development of FPGA-based HPC applications (that is, high-performance
reconfigurable computing, or HPRC) requires a middle path. Developers must avoid getting
caught up in logic details while keeping in mind an appropriate FPGA-oriented computing
model. Several such models for HPRC exist, but they differ significantly from models
generally used in HPC programming. For example, whereas parallel computing models are
often based on thread execution and interaction, FPGA computing can exploit more degrees
of freedom than are available in software. This enables models based on the fundamental
characteristics from which FPGAs get their capability, including highly flexible fine-grained
parallelism and associative operations such as broadcast and collective response. Andre
DeHon and his colleagues discuss these issues from a design pattern viewpoint.2 To make
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their presentation concrete, we describe several case studies from our work in molecular
modeling.

FPGA Computing Models
Models are vital to many areas of computer science and engineering and range from formal
models used in complexity theory and simulation to intuitive models sometimes used in
computer architecture and software engineering. Here we consider the latter. By computing
model, we mean an abstraction of a target machine used to facilitate application
development. This abstraction lets the developer separate an application’s design, including
the algorithms, from its coding and compilation. In other words, a computing model lets us
put into a black box the hardware capabilities and software support common to the class of
target machines, and thus concentrate on what we don’t yet know how to do. In this sense,
computing models are sometimes similar to programming models, which can mean “the
conceptualization of the machine that the programmer uses.”3

With complex applications, there’s often a trade-off between programmer effort, program
portability and reusability, and program performance. The more degrees of freedom in the
target architecture, the more variable the algorithm selection, and the less likely that a single
computing model will let application developers achieve all three simultaneously.

A common computing model for single-threaded computers is the RAM.4 There, the target
machine is abstracted into a few components: input and output streams (I/O), sequential
program execution, and a uniform random access memory (RAM). Although the RAM
model has often been criticized as being unnecessarily restrictive (see, for example, John
Backus’s famous paper advocating functional programming5), it’s also how many
programmers often conceptualize single-threaded programs. Using this model simply means
assuming that the program performs computing tasks in sequence and that all data references
have equal cost. Programs so designed, when combined with software libraries, compilers,
and good programming skills, often run efficiently and portably on most machines in this
class. For high performance, programmers might need to consider more machine details,
especially in the memory hierarchy.

For multithreaded machines, with their additional degrees of freedom, selecting a computing
model is more complex. What features can we abstract and still achieve performance and
portability goals? Is a single model feasible? What application and hardware restrictions
must we work under? The issue is utility: does the computing model enable good application
design? Does the best algorithm emerge? Several classes of parallel machines exist—shared
memory, networks of PCs, networks of shared-memory processors, and multicore—and the
preferred mapping of a complex application might vary significantly among the classes.

Three computing models (and their combinations) span much of the multithreaded
architecture space. According to David Culler and his colleagues,3 these models, each based
on the threaded model, are

• shared address, in which multiple threads communicate by accessing shared
locations;

• message passing, in which multiple threads communicate by explicitly sending and
receiving messages; and

• data parallel, which retains the single thread but lets operations manipulate larger
structures in possibly complex ways.

The programmer’s choice of computing model depends on the application and target
hardware. For example, the appropriate model for a large computer system comprised of a
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network of shared-memory processors might be message passing among multiple shared
address spaces.

Low-Level FPGA Models
Historically, the computing model for FPGAs was a “bag of gates” that designers could
configure into logic designs. In the past few years, embedded components such as
multipliers, independently addressable memories (block RAMs, or BRAMs), and high-speed
I/O links have begun to dominate high-end FPGAs. Aligned with these changes, a new low-
level computing model has emerged: FPGAs as a “bag of computer parts.” A designer using
this model would likely consider the following FPGA features when designing an
application:

• reconfigurable in milliseconds;

• hundreds of hardwired memories and arithmetic units;

• millions of gate-equivalents;

• millions of communication paths, both local and global;

• hundreds of gigabit I/O ports and tens of multigigabit I/O ports; and

• libraries of existing designs analogous to the various system and application
libraries commonly used by programmers.

As with microprocessors, making FPGAs appropriate for HPC requires added support. This
too is part of the low-level model. A sample system is Annapolis Microsystems’ Wildstar
board. Although now dated, this design is particularly well balanced. The design’s seven
independently addressable memory banks per FPGA (SRAMs and SDRAM) are critical (see
Figure 1a). Because HPRC applications manage memory explicitly, they offer no hardware
caching support. Communication with the host takes place over an I/O bus (PCI).

In the past few years, HPRC systems have tended toward tighter integration of the FPGA
board into the host system—for example, by making FPGA boards plug-compatible with
Intel front-side bus slots (see Figure 1b). The effect is to give FPGAs access to main
memory (and other system components) equal to that of the microprocessors.

Why FPGAs for HPC?
A first step in defining higher-level FPGA-based computing models is to consider how
FPGAs get their performance for HPC. Microprocessors owe much of their tremendous
success to their flexibility. This generality has a cost, however, because a several orders-of-
magnitude gap exists between microprocessor performance and the computational potential
of the underlying substrate.6 Whereas fabrication costs limit ASICs mostly to high-volume
applications, FPGAs offer a compromise. They can often achieve much of an ASIC’s
performance but are available off the shelf.

Practically, the enormous potential performance derivable with FPGAs comes from two
sources:

• Parallelism. A factor of 10,000× parallelism is possible for low-precision
computations.

• Payload per computation. Because most control is configured into the logic itself,
designers don’t need to emulate overhead instructions (such as array indexing and
loop computations).
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On the other hand, significant inherent challenges exist. One is the low operating frequency,
usually less than 1/10th that of a high-end microprocessor. Another is Amdahl’s law: to
achieve the speedup factors required for user acceptance of a new technology (preferably
50×),7 almost 99 percent of the target application must lend itself to substantial
acceleration.8 As a result, the performance of HPC applications accelerated with FPGA
coprocessors is unusually sensitive to the implementation’s quality.

FPGA Computation Basics
The next step in defining higher-level FPGA-based computing models is to examine FPGA
attributes for how they translate into the capability just described. If we view FPGAs as a
configurable bag of computer parts, we must lay these parts out in two dimensions and in
finite space. This puts a premium on connecting computational blocks with short paths,
exploiting long paths with high fan out (namely, broadcast), and low-precision computation.
As with microprocessors, HPRC systems must support various working set sizes and the
bandwidth available to swap those working sets. The HPRC memory hierarchy typically has
several distinct levels. Most have analogs in conventional PCs, but with somewhat different
properties, especially with regard to supporting fine-grained parallelism:

• On-chip registers and lookup tables. The FPGA substrate consists of registers and
LUTs through which logic is generated. These components can be configured into
computational logic or storage, with most designs having a mix. Although all
register contents can potentially be accessed every cycle, LUTs can only be
accessed one or two bits at a time. For example, the Xilinx Virtex-5 LX330T has
26 Kbytes of registers and 427 Kbytes of LUT RAM; the aggregate potential
bandwidth at 200 MHz is 12 terabits per second (Tbps).

• On-chip BRAMs. High-end FPGAs have several hundred independently
addressable multiported BRAMs. For example, the Xilinx Virtex-5 LX330T has
324 BRAMs with 1.5 Mbytes total storage and each accessible with a word size of
up to 72 bits; the aggregate potential bandwidth at 200 MHz is 1.2 Tbps.

• Onboard SRAM. High-end FPGAs have hundreds of signal pins that can be used
for off-chip memory. Typical boards, however, have between two and six 32-bit
independent SRAM banks; recent boards, such as the SGI RASC, have almost 100
Mbytes. As with the on-chip BRAMs, off-chip access is completely random and
per cycle. The maximum possible such bandwidth for the Xilinx Virtex-5 LX330T
is 49 gigabits per second, but between 1.6 Gbps and 5 Gbps is more common.

• Onboard DRAM. Many boards either have both SRAM and DRAM or replace
SRAM completely with DRAM. Recent boards support multiple Gbytes of DRAM.
The bandwidth is similar to that with SRAM but has higher access latency.

• Host memory. Several recent boards support high-speed access to host memory
through, for example, SGI’s NumaLink, Intel’s Front Side Bus, and
Hypertransport, used by AMD systems. Bandwidth of these links ranges from 5 to
20 Gbps or more.

• High-speed I/O links. FPGA applications often involve high-speed communication.
High-end Xilinx FPGAs have up to 24 3-Gbps ports.

The actual performance naturally depends on the existence of configurations that can use
this bandwidth. In our work, we frequently use the entire available BRAM bandwidth and
almost as often use most of the available off-chip bandwidth as well. In fact, we interpret
this achievement for any particular application as an indication that we’re on target with our
mapping.
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The more degrees of freedom in the target architecture, the less likely that a single
computing model will let application developers achieve all three simultaneously.

Putting these ideas together, we can say that a good FPGA computing model lets us create
mappings that make maximal use of one or more levels of the FPGA memory hierarchy.
These mappings commonly contain large amounts of fine-grained parallelism. The
processing elements are often connected as either a few long pipelines (some-times with 50
stages or more) or broadside with up to a few hundred short pipelines.

Another critical factor of a good FPGA model is that code size translates into FPGA area.
We achieve the best performance, of course, if we use the entire FPGA, usually through
fine-grained parallelism. Conversely, if a single pipeline doesn’t fit on the chip, performance
might be poor. Poor performance can also occur with applications that have many
conditional computations. For example, consider a molecular simulation in which the main
computation is determining the potential between pairs of particles. Moreover, let the choice
of function to compute the potential depend on the particles’ separation. For a
microprocessor, invoking each different function probably involves little over-head. For an
FPGA, however, this can be problematic because each function takes up part of the chip,
whether it’s being used or not. In the worst case, only a fraction of the FPGA is ever in use.
All might not be lost, however: designers might still be able to maintain high utilization by
scheduling tasks among the functions and reconfiguring the FPGA as needed.

FPGA Computing Models
Concepts such as “high utilization” and “deep pipelines” are certainly critical, but are still
far removed from the application conceptualization with which most programmers begin the
design process. We found several computing models to be useful during this initial stage.
That is, we’re on our way to a plausible design if we can map our application into one of
these models. Please note that the models overlap and are far from exhaustive.2

Streaming—The streaming model is well-known in computer science and engineering. It’s
characterized, as its name suggests, by streams of data passing through arithmetic units.
Streams can source/sink at any level of the memory hierarchy. The FPGA streaming model
differs from the serial computer model in the number and complexity of streams supported
and the seamless concatenation of computation with the I/O ports. Streaming is basic to the
most popular HPRC domains: signal, image, and communication processing. Many FPGA
languages, such as Streams C,9 ASC,10 and Score11; IP libraries; and higher-level tools such
as Xilinx’s Sysgen for digital signal processing explicitly support streaming.

The use of streams is obvious in the 1D case—for example, when a signal passes through a
series of filters and transforms. But with FPGAs, streaming geometrically—that is,
considering the substrate’s dimensionality—can also be effective. For example, we can
make a 1D stream long by snaking computing elements through the chip. Other ways
involve changing the aspect ratio (for example, with broadside sourcing/sinking through the
hundreds of BRAMs) or using stream replication, which is analogous to mapping to parallel
vector units. Less obvious, but still well-known, is the 2D streaming array used for matrix
multiplication. In our work, we use 2D streams for performing ungapped sequence
alignment. We use the first dimension to perform initial scoring at streaming rate and the
second dimension to reduce each alignment to a single maximal local score.

Associative computing—Associative (or content-addressable) computing is
characterized by its basic operations:12
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• broadcast,

• parallel tag checking,

• tag-dependent conditional computing,

• collective response, and

• reduction of responses.

This model is basic to computing with massively parallel SIMD arrays and with artificial
neural networks.

CPU internals, such as reorder buffers and translation look-aside buffers, also use this
model. Although analogous software operations are ubiq-uitous, they don’t approach the
inherent performance offered by an FPGA’s support of hardware broadcast and reduction.
Instead of accessing data structures through O(logN) operations or complex hashing
functions, FPGAs can often process associative data structures in a single cycle.

Highly parallel, possibly complex, memory access—We already mentioned that
using the full bandwidth at any level of the memory hierarchy will likely make the
application highly efficient. In addition, on an FPGA, you can configure complex parallel
memory-access patterns. Much study in the early days of array processors focused on this
problem.13 The objective was to enable parallel conflict-free access to slices of data, such as
array rows or columns, and then align that data with the correct processing elements. With
the FPGA, the programmable connections let designers tailor this capability to application-
specific reference patterns.14

Standard hardware structures—In a way, this model is trivial—it uses preexisting
components. The value added here is with their use. Standard data structures such as FIFOs,
stacks, and priority queues are common in software but often have much higher relative
efficiencies in hardware. The model’s power is twofold:

• to use such structures when called for, and

• to steer the mapping toward the structures with the highest relative efficiency.

One such hardware structure—the systolic array used for convolutions15 and correlations—
is perhaps the most commonly used in all of HPRC.

Functional parallelism—Although having function units lying idle is the bane of HPRC,
functional parallelism can also be one of its strengths. Again, the opportunity has to do with
FPGA chip area versus compute time. Functions that take a long time in software but
relatively little space in hard-ware are best. For example, a simulator might require frequent
generation of high-quality random numbers. Such a function takes relatively little space on
an FPGA, can be fully pipelined, and can thus provide random numbers with the latency
completely hidden.

Case Studies in Molecular Modeling
Methods for simulating molecules lie at the core of computational chemistry and are central
to computational biology. Applications of molecular modeling range from the practical (for
example, drug design) to basic research in understanding disease processes. Molecular
modeling is also compute bound. Whereas studies conducted in a few minutes on a small
desktop system are often useful, the reality is that the computing demand is virtually
insatiable. Simulating a larger physical system for a longer physical time with a more
detailed model will improve almost any molecular simulation. Large-scale computational
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experiments run for months at a time. Even so, the gap between the largest published
simulations and cell-level processes is at least 10 orders of magnitude, making their
acceleration all the more critical. We describe several case studies that demonstrate the
effectiveness of FPGA-based accelerators in molecular modeling.

Short-Range Force Computation
Molecular dynamics is an iterative application of Newtonian mechanics to ensembles of
atoms and molecules. Time steps alternate between force computation and motion
integration. The non-bonded force computation’s short- and long-range components
dominate execution. Because these components have different characters, especially when
mapped to FPGAs, we consider them separately. The short-range force part, especially, has
been well-studied for FPGA-based systems.16–20

Molecular dynamics forces might include van der Waals attraction and Pauli repulsion
(approximated together as the Lennard-Jones, or LJ, force), Coulomb, hydrogen bond, and
various covalent bond terms:

(1)

Because the hydrogen bond and covalent terms (bond, angle, and torsion) affect only
neighboring atoms, computing their effect is O(N) in the number of particles N being
simulated. The motion integration computation is also O(N). Although some of these O(N)
terms are easily computed on an FPGA, their low complexity makes them likely candidates
for host processing, which is what we assume here.

We express the LJ force for particle i as

(2)

where the ∈ab and σab are parameters related to the particle types—that is, particle i is type
a and particle j is type b.

We express the Coulombic force as

(3)

In general, we must compute the forces between all particle pairs, leading to an undesirable
O(N2) complexity. The common solution is to split the nonbonded forces into two parts:

• a fast-converging short-range part consisting of the LJ force and the nearby
Coulombic component, and

• the remaining long-range Coulombic part (which we describe later).

This solution reduces the short-range force computation’s complexity to O(N) by only
processing forces among nearby particles.
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Figure 2 shows the short-range computation kernel, using the streaming computational
model.21 Particle positions and types are the input, and accelerations are the output. Streams
source and sink in the BRAMs. The number of streams is a function of FPGA hardware
resources and the computation parameters, with the usual range being from two to eight.

We also implement the wrapper around this kernel in the FPGA. The wrapper ensures that
particles in neighborhoods are available together in the BRAMs. The wrapper logic swaps
these neighbor-hoods in the background as the computation progresses. The force
computation has three parts:

• Part 1 (shaded blue in Figure 2) checks for validity, adjusts for boundary
conditions, and computes r2.

• Part 2 (purple) computes the exponentials in r. As is typical even in serial
molecular dynamics codes, we don’t compute these terms directly, but rather with
table lookup followed by interpolation. Figure 2 shows third-order interpolation.

• Part 3 (orange) combines the r−n terms with the particle type coefficients to
generate the force.

Most current high-end FPGAs are well-balanced with respect to this computation. Designs
simul-taneously use the entire BRAM bandwidth and most of the computation fabric. If the
balance is disturbed, we can restore it by adjusting the in-terpolation. This allows for a trade-
off of BRAM (table size) and computational fabric (interpolation order).

Using Multigrid for Long-Range Force Computation
Numerous methods reduce the complexity of the long-range force computation from O(N2)
to O(N logN), often using the fast Fourier transform (FFT). Because these have so far proven
difficult to map efficiently to FPGAs, however, the multigrid method might be preferable22

(a description of its application to electrostatics is available elsewhere23).

The difficulty with the Coulombic force is that it converges too slowly to restrict
computation solely to proximate particle pairs. The solution begins by splitting the force into
two components, a fast converging part that can be solved locally without loss of accuracy,
and the remainder. This splitting appears to create an even more difficult problem: the
remainder converges more slowly than the original. The key idea is to continue this splitting
process, each time passing the remainder to the next coarser level, where it’s split again.
This continues until a level is reached where the problem size (N) is small enough for the
direct all-to-all solution to be efficient.

Figure 3 shows the schematic of the overall multigrid algorithm. Starting at the upper left,
the algorithm partitions the per-particle potentials into short- and long-range components. It
computes the short-range components directly, as we described earlier, and applies the long-
range component to the finest grid. Here, it splits the force again, with the high-frequency
component solved directly and the low-frequency passed on to the next coarser grid. This
continues until it reaches the coarsest level, where it solves the problem directly. We then
successively combine this direct solution with the previously computed finer solutions
(corrections) until we reach the finest grid. Here, we apply the forces directly to the
particles.

When mapping to an FPGA, we partition the computation into three functions:

• applying the charges to a 3D grid,

• performing multigrid to convert the 3D charge density grid to a 3D potential energy
grid, and
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• applying the 3D potential to the particles to compute the forces.

The two particle–grid functions are similar enough to be considered together, as are the
various phases of the grid–grid computations.

The particle–grid computations in our implementation involve one real-space point and its
64 grid neighbors. For the HPRC mapping, we use the third computing model: highly
parallel, possibly complex, memory access. We begin with judicious selection of
coordinates. We can then almost immediately convert the real-space position into the
BRAM indices and addresses of each of the 64 grid points. A standard initial distribution of
grid points guarantees that the BRAMs will be disjoint for every position in real space.
There follows the remarkable result that an entire tricubic interpolation can be computed in
just a few cycles: data are fetched in parallel and reduced to a single value.

In practice, getting the fetched grid points to their correct processing elements requires
additional routing, as Figure 4 shows in 2D. In Figure 4a, an index indicates 16 memory
banks, each with four elements. Any 4 × 4 square overlaying the grid will map to
independent memory banks, allowing fully parallel access, but is likely to be misaligned.
For example, the green overlay would be fetched in the position shown at the beginning of
Figure 4b, and then require two rotations to get into correct alignment. The 3D routing is
analogous.

For the 3D grid–grid convolutions, we use the fourth computational model: use of a standard
hardware structure. Here, the structure is the well-known systolic array.15 Figure 5 shows its
iterative application to build up 2D and 3D convolvers.

Discrete Event-Based Molecular Dynamics
Increasingly popular is molecular dynamics with simplified models, such as the
approximation of forces with step-wise potentials.24 This approximation results in
simulations that advance by discrete event rather than time step.

Discrete event-based molecular dynamics (DMD) is an intuitive, hypothesis-driven
modeling method based on tailoring simplified models to the physical systems of interest.25

Using intuitive models, simulation length and time scales can exceed those of time-step-
driven molecular dynamics by eight or more orders of magnitude.26 Even so, not only is
DMD still compute bound, causality concerns make it difficult to scale to a significant
number of processors.

Figure 6a gives an overview of discrete event simulation. The primary DES components are
the event queue, event processor, event predictor (which can also cancel previously
predicted events), and system state. DES parallelization generally follows one of two
approaches:

• conservative, which guarantees causal order, or

• optimistic, which allows some speculative violation of causality and corrects
violations with rollback.

Neither approach has worked well for DMD. The conservative approach, which relies on
there being a safe window, falters because DMD has no such window. Processed events
invalidate predicted events anywhere in the event queue with equal probability and
potentially anywhere in the simulated space. For similar reasons, the optimistic approach has
frequent rollbacks, resulting in poor scaling.
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We take a different approach, based primarily on the associative computing model.27 We
process the entire simulation as a single long pipeline (see Figure 6b). Although dozens of
events are processed simultaneously, at most one event is committed per cycle. To achieve
maximum throughput, we must accomplish several tasks within a single cycle:

• update the system state,

• process all causal event cancellations,

• process new event insertions, and

• advance the event-priority queue.

This process, in turn, uses the associative primitives of broadcast, tag check, and conditional
execution. When the event-processing pipeline commits an event, it broadcasts the relevant
particles’ IDs to the events in the priority queue. If an ID match exists, the predicted event is
cancelled. Similarly, when the pipeline predicts events, it broadcasts their time stamps
throughout the priority queue. Existing events compare their time stamps to that of the new
event, and the event-processing pipeline inserts it accordingly.

Docking rigid Molecules
Another case study involved applications of docking,28 in which computations approximate
molecules as rigid structures mapped to grids. Docking applications differ in central data
type, data structure, and algorithm, and so provide a good view of the richness of the space
of effective FPGA computational models.

Noncovalent bonding between molecules, or docking, is basic to the processes of life and the
effectiveness of pharmaceuticals. Although researchers sometimes use detailed chemical
models, such techniques are computationally exorbitant and infeasible for answering the
first question: at what approximate offsets and orientations could the molecules possibly
interact at all? Many docking applications use less costly techniques to initially estimate the
docked pose and the relative offset and rotation that give the strongest interaction. They
might assume rigid structure as a simplifying approximation. Then 3D voxel grids represent
the interacting molecules and 3D correlation helps determine the best fit.29

We base our approach on a combination of standard hardware structures (in particular, the
systolic convolution array) and latency hiding with functional parallelism. This gives us a
three-stage algorithm.30

(Virtual) molecule rotation—We test the molecules against one another in rotated
orientations. FFT versions rotate molecules explicitly, but direct correlation lets us
implement the rotations by accessing elements of one of the molecules through a rotated
indexing sequence. Because explicitly storing these indices would require exorbitant
memory, we generate them on the fly. The index-generation logic (an 18-parameter
function) supplies the indices just in time, hiding the rotation’s latency entirely. This is also
a good example of how we can easily implement function-level parallelism on an FPGA.

Generalized correlation—We based the correlation array on the structure used in the
multigrid example (see Figure 5), generalized with respect to arbitrary scoring functions.

Data reduction filter—The correlation can generate millions of scores but only a few will
be interesting. The challenge is to return at least a few scores from every significant local
maximum (potential binding), rather than just the n highest scores. We address multiple
maxima by partitioning the result grid into subblocks and collecting the highest scores
reported in each.
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An open question is how computing models relate to programmer effort. A more basic
question is which tools support which models. In our lab, we use a hardware description
language (VHSIC Hardware Description Language [VHDL]) together with our own LAMP
tool suite,31 which supports reusability across variations in application and target hardware.
The latter, unfortunately, isn’t yet publicly available. Otherwise, we believe that important
characteristics include

• support for streams, which many HPRC languages have;

• support for embedding IP, again, supported by most HPRC languages;

• support for object-level parameterization, which is rarely fully supported; and

• access to essential FPGA components as virtual objects, which also is rarely fully
supported.

Although you can use a computational model’s characteristics only if you can access them,
you can still get good results with higher-level tools. Paradoxically, the more general the
development tools, the more care might be needed because their effects with respect to the
underlying substrate are harder to predict.

Returning to programmer effort, in our own experience, we rarely spend more than a few
months before getting working systems, although more time is usually needed for test,
validation, and system integration. The advantage of having a good computing model is
therefore not so much in saving effort, but rather in increasing design quality. In this respect,
the benefit is similar to that with using appropriate parallel computing models. It might not
take any longer to get a working system using an inappropriate model, but achieving good
performance might prove impossible.
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Figure 1.
Field-programmable gate arrays in high-performance computing. (a) In this coprocessor
board, the seven independently addressable memory banks per FPGA are critical. (b) The
diagram shows an Intel view of accelerator integration into a multiprocessor system.
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Figure 2.
Pipeline for short-range force computation. The three-part force computation includes
components for checking validity, adjusting for boundary conditions, and computing r2

(blue); computing the exponentials in r (purple); and combining these terms with the particle
type coefficients to generate the force (orange).
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Figure 3.
Schematic of the multigrid method for the Coulomb force. The left side shows the
successive splitting, the lowest level the direct solution, and the right side the successive
mergers with the previously computed corrections.

Herbordt et al. Page 16

Comput Sci Eng. Author manuscript; available in PMC 2011 May 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
An example of a 2D interleaved memory reference. The diagrams show (a) the grid points
(shaded) to be recovered, and (b) the two rotations needed to get the shaded points into
correct position.
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Figure 5.
Iterative application of the systolic array. We apply (a) a 1D systolic convolver array and its
extension to (b) 2D and (c) 3D.
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Figure 6.
Event-based molecular dynamics. The block diagrams show (a) a generic discrete event
simulation and (b) an FPGA mapping of discrete molecular dynamics.
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