
46	 This article has been peer-reviewed.� Computing in Science & Engineering

N o v e l
A r c h i t e c t u r e s

QPACE: Quantum Chromodynamics
Parallel Computing on the
Cell Broadband Engine

Gottfried Goldrian, Thomas Huth, Benjamin Krill,
Jack Lauritsen, and Heiko Schick
IBM Research and Development Lab, Böblingen, Germany
Ibrahim Ouda
IBM Systems and Technology Group, Rochester, Minnesota
Simon Heybrock, Dieter Hierl, Thilo Maurer, Nils Meyer,
Andreas Schäfer, Stefan Solbrig, Thomas Streuer,
and Tilo Wettig
University of Regensburg, Germany
Dirk Pleiter, Karl-Heinz Sulanke, and Frank Winter
Deutsches Elektronen Synchrotron, Zeuthen, Germany
Hubert Simma
University of Milano-Bicocca, Italy
Sebastiano Fabio Schifano and Raffaele Tripiccione
University of Ferrara, Italy
Andrea Nobile
European Center for Theoretical Studies, Trento, Italy
Matthias Drochner and Thomas Lippert
Research Center Jülich, Germany
Zoltan Fodor
University of Wuppertal, Germany

Application-driven computers for Lattice Gauge Theory simulations have often been based on
system-on-chip designs, but the development costs can be prohibitive for academic project
budgets. An alternative approach uses compute nodes based on a commercial processor tightly
coupled to a custom-designed network processor. Preliminary analysis shows that this solution
offers good performance, but it also entails several challenges, including those arising from
the processor’s multicore structure and from implementing the network processor on a field-
programmable gate array.

Q uantum chromodynamics (QCD) is
a well-established theoretical frame-
work to describe the properties and
interactions of quarks and gluons,

which are the building blocks of protons, neutrons,
and other particles. In some physically interesting
dynamical regions, researchers can study QCD
perturbatively—that is, they can work out physi-
cal observables as a systematic expansion in the
strong coupling constant. In other (often more
interesting) regions, such an expansion isn’t pos-
sible, so researchers must find other approaches.

The most systematic and widely used nonper-
turbative approach is lattice QCD (LQCD), a
discretized, computer-friendly version of the
theory Kenneth Wilson proposed more than
30 years ago.1 In this framework, QCD is refor-
mulated as a statistical mechanics problem that
we can study using Monte Carlo techniques.
Many physicists have performed LQCD Monte
Carlo simulations over the years and have de-
veloped efficient simulation algorithms and so-
phisticated analysis techniques. Since the early
1980s, LQCD researchers have pioneered the
use of massively parallel computers in large sci-
entific applications, using virtually all available
computing systems including traditional main-

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

November/December 2008 � 47

frames, large PC clusters, and high-performance
systems.

We’re interested in parallel architectures on
which LQCD codes scale to thousands of nodes
and on which we can achieve good price-perfor-
mance and power-performance ratios. In this re-
spect, highly competitive systems are QCD On
a Chip (QCDOC)2 and apeNEXT,3 two custom-
designed LQCD architectures that have been
operating since 2004 and 2005, respectively, and
IBM’s BlueGene4 series. These architectures
are based on system-on-chip designs. In modern
technologies, however, VLSI chip development
costs are so high that an SoC approach is no lon-
ger possible for academic projects.

To address this problem, our QCD Parallel
Computing on the Cell (QPACE) project uses
a compute node based on IBM’s PowerXCell 8i
multicore processor and tightly couples it to a
custom-designed network processor in which we
connect each node to its nearest neighbors in a
3D toroidal mesh. To facilitate the network pro-
cessor’s implementation, we use a Xilinx Virtex-5
field-programmable gate array (FPGA). In both
price and power performance, our approach is
competitive with BlueGene and has a much lower
development cost. Here, we describe our perfor-
mance analysis and hardware benchmarks for the
PowerXCell 8i processor, which show that it’s a
powerful option for LQCD. We then describe
our architecture in detail and how we’re address-
ing the various challenges it poses.

Lattice Gauge Theory Computing
LQCD simulations are among scientific comput-
ing’s grand challenges. Today, a group active in
high-end LQCD simulations must have access to
computing resources on the order of tens of sus-
tained Tflops-years.

Accurately describing LQCD theory and al-
gorithms is beyond this article’s scope. LQCD
simulations have an algorithmic structure exhib-
iting high parallelism and several features that
make it easy to exploit much of this parallelism.
LQCD replaces continuous 4D space–time with a
discrete and finite lattice (containing N = L4 sites
for a linear size L). All compute-intensive tasks in-
volve repeated execution of just one basic step: the
product of the lattice Dirac operator and a quark
field ψ. In LQCD, a quark field ψx

ia is defined at
lattice sites x = 1, . . . , N and carries color indices
a = 1, . . . , 3 and spinor indices i = 1, . . . , 4. Thus,
ψ is a vector with 12N complex entries.

As Equation 1 shows, the hopping term of the
Wilson Dirac operator Dh acts on ψ as follows

(other discretization schemes exist, but the imple-
mentation details are all similar):

ψ ψ

γ ψ

γ ψ

µ µ µ

µ µ µ

x x

x x

x x

D

U

U

′ =

=
+()

+ −()
+

− −

h

,

,
†

1

1



 µµ













=

∑
1

4

.
�

(1)

Here, μ labels the four space–time directions, and
the Ux,μ are the SU(3) gauge matrices associated
with the links between nearest-neighbor lattice
sites. The gauge matrices are themselves dynami-
cal degrees of freedom and carry color indices
(each of the 4N different Ux,μ has 3 × 3 complex
entries). The γμ are the (constant) Dirac matrices,
carrying spinor indices. Today, state-of-the-art
simulations use lattices with a linear size L of at
least 32 sites.

Roughly speaking, the ideal LQCD simulation
engine is a system that can keep the previously de-
fined degrees of freedom in local storage and re-
peatedly apply the Dirac operator with very high
efficiency. Explicit parallelism is straightforward.
As Equation 1 shows, Dh couples only nearest-
neighbor lattice sites, which suggests an obvious
parallel structure for an LQCD computer: a d-
dimensional grid of processing nodes. Each node
contains local data storage and a compute engine.
We need only to map the physical lattice onto the
processor grid as regular tiles (if d < 4, we fully
map 4 − d dimensions of the physical lattice onto
each processing node).

In the conceptually simple case of a 4D hyper-
cubic grid of p4 processors, each processing node
would store and process a 4D subset of (L/p)4 lat-
tice sites. Each processing node handles its sublat-
tice using local data. The nodes also access data
corresponding to lattice sites that are just outside
the sublattice’s surface and are stored on near-
est-neighbor processors. Processing proceeds in
parallel for two reasons: there are no direct data
dependencies for lattice sites that aren’t nearest
neighbor, and the same operations sequence runs
on all processing nodes in lockstep mode.

Parallel performance will be linear in the num-
ber of nodes, as long as

the programmer can evenly partition the lattice
on the processor grid, and
the interconnection bandwidth is large enough
to sustain each node’s performance.

We meet the first constraint easily for up to thou-
sands of processors while the latter is less trivial

•

•

48� Computing in Science & Engineering

because the required inter-node bandwidth in-
creases linearly with p (we provide figures on
bandwidth requirements later).

Conceptually, this case favors an implementa-
tion in which the most powerful processor avail-
able provides the total desired processing power
and thus reduces processor count and node-to-
node bandwidth requirements. IBM’s Cell/B.E.
(www.ibm.com/developerworks/power/cell) is
therefore an obvious choice.

The PowerXCell 8i
Processor’s Performance
The Cell/B.E. processor contains one PowerPC
processor element and eight synergistic proces-
sor elements.5 Each SPE runs a single thread and
has its own 256 Kbytes on-chip local store (LS)
memory, which is accessible by direct memory
access or local load/store operations to and from
128 general-purpose 128-bit registers. An SPE can
execute two instructions per cycle, performing up
to eight single-precision floating-point operations.
Thus, the total single-precision peak performance
of all eight SPEs on a Cell/B.E. is 204.8 Gflops at
3.2 GHz.

The PowerXCell 8i is an enhanced version of the
Cell/B.E., with the same single-precision perfor-
mance and a peak double-precision performance
of 102.4 Gflops with IEEE-compliant rounding.
It has an on-chip memory controller supporting
a memory bandwidth of 25.6 Gbytes/s and a con-
figurable Rambus FlexIO I/O interface that sup-
ports coherent and noncoherent protocols with a
total bidirectional bandwidth of 25.6 Gbytes/s.
Internally, all processor units are connected to the
coherent element interconnect bus (EIB) by direct
memory access (DMA) controllers.

Although it was developed for the PlayStation

3, the Cell/B.E. is obviously attractive for sci-
entific applications as well.6–8 This is even truer
for the PowerXCell 8i. As we reported at the
Lattice 2007 Conference,8 we investigated this
processor’s performance extending a recently
proposed theoretical model.9 We now summa-
rize our findings.

Performance Model
We consider two classes of hardware devices:

storage devices, such as registers or LSs, that
store data and instructions and are character-
ized by their storage size and
processing devices that act on data or trans-
fer data/instructions from one storage device
to another. Such devices can be floating-point
(FP) units, DMA controllers, or buses and are
characterized by their bandwidths βi and start-
up latencies λi.

We can divide an algorithm implemented
on a specific architecture into microtasks per-
formed by our model’s processing devices. The
execution time Ti of each task i is estimated by
a linear ansatz,

T I Oi i i i / β λ+ () ,� (2)

where Ii is the amount of processed data. In the
following, we assume that all tasks can be run
concurrently at maximal throughput and that
suitable scheduling can hide all dependencies
and latencies. Given this, the total execution
time is

T T
i iexe max .� (3)

If Tpeak is the minimal achievable compute time
for an application’s FP operations in an “ideal im-
plementation,” we define the FP efficiency εFP as
εFP = Tpeak/Texe.

Figure 1 shows the dataflow paths and associ-
ated execution times Ti that enter our analysis:

floating-point operations, TFP;
load/store operations between register file (RF)
and LS, TRF;
off-chip memory access, Tmem;
internal communications between SPEs on the
same processor, Tint;
external communications between different
processors, Text = max(TNIF, Tlink); and
transfers via the EIB (memory access, internal,
and external communications), TEIB.

•

•

•
•

•
•

•

•

ILB RF

Local store (LS)

Network
interface
Network
interface

Main
memory

(MM)

EIB

TFP

TILB TRF

Tlink

TNIFTmem

TEIB

Figure 1. Dataflow paths for a single synergistic processor element
and corresponding execution times (Ti). The model assumes a
communication network with a 3D torus topology in which 12 links
(six inbound and six outbound) simultaneously transfer data.

November/December 2008 � 49

We consider a communication network with a
3D torus topology in which the six inbound and
six outbound links can simultaneously transfer
data, each using a link bandwidth of 1 Gbyte/s.
We also assume a balanced network interface pro-
viding a bandwidth of 6 Gbytes/s simultaneously
in each direction between the Cell/B.E. and the
network. (Current FPGA capabilities strongly
constrain both the torus network’s dimensional-
ity and the bandwidth—specifically, the number
of high-speed serial transceivers and the total pin
count.) We take all other hardware parameters
βi from the Cell/B.E. manuals (www.ibm.com/
developerworks/power/cell). We now describe the
results of our performance analysis for different
optimizations of the main LQCD kernel.

Lattice QCD Kernel
Computing Equation 1 on a single lattice site
amounts to 1,320 (double-precision) FP instruc-
tions (not counting sign flips and complex conju-
gation) and thus yields a Tpeak of 330 cycles per
site. However, executing Equation 1 requires at
least 840 multiply-add operations and TFP = 420
cycles per lattice site. Thus, any implementation
of Equation 1 on an SPE can’t perform better
than 78 percent of peak.

The lattice data layout greatly influences the
cost of load/store operation for the operands of
Equation 1 (9 × 12 + 8 × 9 complex numbers), as
well as the time spent on remote communica-
tions. We assign to each Cell/B.E. a local lattice
with VCell = L1 × L2 × L3 × L4 sites and arrange the
eight SPEs logically as s1 × s2 × s3 × s4 = 8. A single
SPE thus holds a subvolume of VSPE = (L1/s1) ×
(L2/s2) × (L3/s3) × (L4/s4) = VCell/8 sites. On aver-
age, each SPE has Aint neighboring sites on other
SPEs within a Cell/B.E. and Aext neighboring sites
outside a Cell/B.E. We investigated two data lay-
out strategies: In the first, all data are stored in
the SPEs’ on-chip LS; in the second, the data are
stored in off-chip main memory (MM).

Data in on-chip memory (LS). In this case, we re-
quire that all data for a repeated compute task are
held in the SPEs’ LS. The LS must also hold a
minimal program kernel, the runtime environ-
ment, and intermediate results. Therefore, the
storage requirements strongly constrain the local
lattice volumes VSPE and VCell.

A spinor field ψx needs 24 real words—or 192
bytes in DP—per site, while a gauge field Ux,μ
needs 18 words (144 bytes) per link. If we as-
sume that a solver requires storage of roughly 400
words/site (for eight spinors and 12 gauge links, for

example), a single SPE’s subvolume is restricted to
about VSPE = 79 sites. (We assume here a mini-
mal code size of 4 Kbytes for the Dirac kernel;
a more realistic assumption of 32 Kbytes for the
solver code and runtime environment decreases
our estimate to VSPE = 70.) In a 3D network, the
fourth lattice dimension must be distributed lo-
cally within the same Cell/B.E. across the SPEs
(logically arranged as a 13 × 8 grid). L4 is then a
global lattice extension and could be as large as
L4 = 64. This yields a very asymmetric local lat-
tice, with VCell = 23 × 64 and VSPE = 23 × 8. (When
distributed over 4,096 nodes, this gives a global
lattice size of 323 × 64.)

Data in off-chip memory (MM). When we store all
data in the MM, there are no a-priori restrictions
on VCell. However, we want to avoid redundant
loads of Equation 1’s operands from MM into LS
when sweeping through the lattice. To accomplish
this and also permit concurrent computation and
data transfers (to/from MM or remote SPEs), we
consider a multiple buffering scheme.

Multiple buffering schemes alternate several
buffers to either process or load/store data. This
permits concurrent computation and data trans-
fer at the price of additional storage (here, in the
LS). One way to implement such a scheme is to
compute Equation 1’s hopping term on a 3D slice
of the local lattice and then move the slice along
the fourth direction. Each SPE processes all sites
along the fourth direction, and the SPEs are logi-
cally arranged as a 23 × 1 grid both to minimize
internal SPE communications and to balance ex-
ternal ones. To have all of Equation 1’s operands
available in the LS, we must be able to keep in the
LS the U- and ψ-fields associated with all sites of
three 3D slices at the same time. This optimiza-
tion requirement again constrains the local lattice
size, now to VCell ≈ 800 × L4 sites.

Table 1 shows the predicted microtask execu-
tion times for the two data layouts and reasonable
local lattice size choices. In the LS case, the theo-
retical efficiency of roughly 27 percent is limited
by the communication bandwidth (Texe ≈ Text).
This is also the limiting factor for the MM case’s
smallest local lattice; for larger local lattices, the
memory bandwidth is the limiting factor (Texe ≈
Tmem).

We have applied our performance model to
various linear algebra kernels and verified it by
hardware benchmarks. It’s not strictly neces-
sary to benchmark the full implementation of
a representative QCD kernel such as Equation
1 because, in all relevant cases, TFP is far from

50� Computing in Science & Engineering

being the limiting factor. Instead, we’ve per-
formed hardware benchmarks with the same
memory access pattern as in Equation 1, us-
ing the above-mentioned multiple buffering
scheme for the MM case. We found that ex-
ecution times were at most 20 percent higher
than the theoretical predictions for Tmem. (The
freely available full-system simulator is not
useful in this respect because it doesn’t model
memory transfers accurately.) Other research-
ers have reported on benchmarks that use a lat-
tice layout similar to the LS case but that keep
only the gauge fields in LS, while spinor fields
are accessed in MM.10 They found efficiencies
above εFP = 20 percent.

Local Store DMA Transfers
Because DMA transfer speeds determine Tmem,
Tint, and Text, it’s crucial that we optimize them
to exploit the Cell/B.E. performance. Our analy-
sis of detailed micro-benchmarks for LS-to-LS
transfers shows that Equation 2’s linear model
doesn’t accurately describe execution time for
DMA operations with arbitrary size I and arbi-
trary address alignment. We therefore refined our
model to account for data transfer fragmentation
and the buffers’ source and destination addresses
(As and Ad, respectively):

T I A A

N I A A N I A

s d

a
a s d b s

DMA (, ,)

(, ,) (,)= + ⋅ + ⋅λ λ0 1288 bytes
β

. � (4)

Our hardware benchmarks, fitted to Equation
4, indicate that each LS-to-LS DMA transfer has
a (zero-size transfer) latency of λ0 ≈ 200 cycles.
The DMA controllers fragment all transfers into

Nb 128-byte blocks aligned at LS lines (and cor-
responding to single EIB transactions). When δA
= As − Ad is a multiple of 128 bytes, the source LS
lines can be directly mapped onto the destina-
tion lines. Then, we have Na = 0, and the effective
bandwidth βeff = I/(TDMA − λ0) is the approximate
peak value. Otherwise, if the alignments don’t
match (δA isn’t a multiple of 128), we encounter an
additional latency of λa ≈ 16 cycles for each trans-
ferred 128-byte block, reducing βeff by roughly a
factor of two.

Figure 2 shows how clearly these effects are
observed in our benchmarks and how accurately
Equation 4 describes them.

Discussion
Our performance model and hardware bench-
marks identified the PowerXCell 8i processor as
a promising option for LQCD. We expect that a
sustained performance above 20 percent is pos-
sible on large machines. Parallel systems with
O(2000) PowerXCell 8i processors add up to ap-
proximately 200 Tflops (DP peak), which corre-
sponds to roughly 50 Tflops sustained for typical
LQCD applications. As we discussed earlier, a
simple nearest-neighbor d-dimensional intercon-
nection among these processors is all we need to
support our algorithms’ data exchange patterns.
This simple structure allows for a fast and cost-
effective design and construction of our forth-
coming QCD-oriented number cruncher.

The QPACE Project
QPACE is a collaborative development effort
among several academic institutions and the
IBM development lab in Böblingen, Germany,
to design, implement, and deploy a next genera-

Table 1. Theoretical time estimates Ti (in units of 1,000 clock cycles) for some microtasks needed to compute
Equation 1.*

Data in on-chip local store Data in off-chip main memory

VCell 23 × 64 L1 × L2 × L3 83 43 23

Aint
Aext

16
192

Aint / L4
Aext / L4

48
48

12
12

3
3

Tpeak 21 Tpeak / L4 21 2.6 0.33

TFP
TRF
Tmem
Tint
Text
TEIB

27
12
—
2
79
20

TFP / L4
TRF / L4
Tmem / L4
Tint / L4
Text / L4
TEIB / L4

27
12
61
5
20
40

3.4
1.5
7.7
1.2
4.9
6.1

0.42
0.19
0.96
0.29
1.23
1.06

εFP 27% εFP 34% 34% 27%

*Boldface indicates performance bottlenecks.

November/December 2008 � 51

tion of massively parallel and scalable computer
architectures optimized for LQCD. Our project’s
primary goal is to make a vast amount of comput-
ing power available for LQCD research. On the
technical side, our goals are to

use commodity processors, tightly inter
connected by a custom network;
leverage the potential of FPGAs for network
implementation; and
aim for an unprecedentedly small ratio of
power consumption versus floating-point
performance.

In the following, we describe the key elements of
the QPACE architecture.

Node Card
The main building blocks of QPACE are the
node cards. These processing nodes, which run
independently of each other, include two main
components:

a PowerXCell 8i processor, which provides the
computing power; and
a network processor (NWP), which imple-
ments a dedicated interface to connect the pro-
cessor to a 3D high-speed torus network used
for communications between the nodes and to
an Ethernet network for I/O.

We keep additional logic—to boot and control
the machine—to the bare minimum. Further-
more, the node card contains 4 Gbytes of private
memory, which is sufficient for all the data struc-
tures (and auxiliary variables) of present-day local
lattice sizes.

We implemented the NWP using an FPGA
(Xilinx Virtex-5 LX110T), which lets us develop
and test logic reasonably fast and keep develop-
ment costs low. However, the devices themselves
tend to be expensive (in our case, Xilinx’s support
of QPACE makes this issue less critical). The
NWP’s main task is to route data between the
Cell/B.E. processor, the torus network links, and
the Ethernet I/O interface. A torus network link’s
bandwidth is approximately 1 Gbyte/s each for
transmit and receive. In balance with the overall
bandwidth of the six torus links attached to each
NWP, the interface between the NWP and the
Cell/B.E. processor has a bandwidth of 6 Gbytes/
s. (Because existing southbridges don’t provide
this bandwidth to the Cell/B.E., a commodity
network solution is ruled out.)

Unlike other Cell/B.E.-based parallel machines,

•

•

•

•

•

in QPACE, node-to-node communications pro-
ceed directly from the LS of a processor’s SPE to
the LS of a nearest-neighbor processor’s SPE. For
communication, we don’t move the data through
the MM, and thus we reduce the performance-
critical data traffic through the MM interface.
Instead, we route them, via the EIB, from an LS
directly to the Cell/B.E. processor’s I/O interface.
The PowerPC processor element isn’t needed to
control such communications. We expect the LS-
to-LS copy operations latency to be on the order
of 1 μs.

Communication Network
To start a communication, the sending SPE must

0 512 1,024 1,536 2,048

I (bytes)

200

400

600

800

T
(c

yc
le

s)

0 512 1,024 1,536 2,048

I (bytes)

200

400

600

800

T
(c

yc
le

s)

Linear model (2)
Re�ned model (4)
QS20 benchmarks

Linear model (2)
Re�ned model (4)
QS20 benchmarks

As = Ad = 0 (mod 128)

As = 32, Ad = 16 (mod 128)

(a)

(b)

Figure 2. LS-to-LS DMA transfers on an IBM QS20 system. Execution
time is measured as a function of the transfer size with (a) aligned
and (b) misaligned source and destination addresses. The dashed and
solid lines correspond to the theoretical predictions of Equations 2
and 4, respectively.

52� Computing in Science & Engineering

initiate a DMA data transfer from its LS to a buf-
fer attached to any link module. Once the data ar-
rives in the buffer, the NWP will move the data
across the network without the processor’s inter-
vention. On the other end, the receiving device
must post a receive request to trigger the DMA
data transfer from the NWP’s receive buffer to
the final destination.

For the torus network links, we implement a
lightweight protocol, which handles automatic
data resend in case of CRC errors. The physical
layer uses well-tested and cost-efficient commer-
cial hardware components, which let us move the
most timing-critical logic out of the FPGA. Spe-
cifically, we use the 10 Gbits/s XAUI transceiver
PMC Sierra PM8358, which provides redundant
link interfaces that we can use to select among
several torus network topologies (as we describe
in more detail later).

Implementing the link to the Cell/B.E. proces-
sor’s I/O interface (a Rambus FlexIO bus) is much
more challenging. At this point, we’ve connected
an NWP prototype and a Cell/B.E. processor at
a speed of 3 Gbytes/s per link and direction by us-
ing special features available in the Xilinx Virtex-
5 FPGAs RocketIO transceivers. (So far, we’ve
tested only a single 8-bit link; we’ll use two links
in the final design.)

Overall Machine Structure
We attach the node cards to a backplane through
which we route all network signals. One back-
plane hosts 32 node cards and two root cards, each
of which controls 16 node cards via an Ethernet-
accessible microprocessor. One QPACE cabinet
can accommodate eight backplanes, or 256 node
cards. Each cabinet therefore has a peak double-
precision performance of roughly 25 Tflops.

On the backplane, subsets of nodes are inter-
connected in a one-dimensional ring topology. If
we select the primary or redundant XAUI links,
we can select a ring size of 2, 4, or 8 nodes. Like-
wise, we can configure the number of nodes in
the second dimension, in which the nodes are
connected by a combination of backplane connec-
tions and cables. In the third dimension, we use
cables. It’s also possible to operate a large QPACE
system of N cabinets as a single partition with 2 ·
N × 16 × 8 nodes.

I/O Network
We implement input and output operations us-
ing a Gigabit Ethernet tree network. Each node
card is a tree endpoint connected to one of six
cabinet-level switches, each of which has a vari-

able number of Gigabit Ethernet uplinks, depend-
ing on bandwidth requirements. When we deploy
QPACE, we expect typical lattice sizes of 483 ×
96, which require a gauge field configuration of
roughly 6 Gbytes. The available I/O bandwidth
should thus allow us to read or write the database
in O(10) seconds.

Power and Cooling
We expect a single node card’s power consump-
tion to be less than 150 watts. A single QPACE
cabinet will therefore consume roughly 35 kilo-
watts, which translates into a power efficiency of
approximately 1.5 watts/Gflops. We’re developing
a liquid cooling system to reach the planned pack-
aging density.

QPACE Software
To operate the QPACE nodes, we’ll use Linux
running on the PowerPC processor element. As
on most other processor platforms, we can’t start
the operating system directly after system start—
instead, we first use a host firmware to initialize
the hardware. The QPACE firmware will be based
on Slimline Open Firmware (www-128.ibm.com/
developerworks/power/pa-slof); system startup is
controlled by the root card microprocessor.

Efficiently implementing applications on the
Cell/B.E. processor is more difficult compared to
standard processors. To optimize large applica-
tion codes on a Cell/B.E. processor, programmers
face several challenges—they must, for example,
carefully choose the data layout to maximize
memory-interface utilization. Optimizing on-
chip memory use to minimize external memory
accesses is mandatory. The program’s overall per-
formance also depends on how much code can be
parallelized on-chip.

We apply two strategies to relieve the program-
mers’ porting burdens. First, in typical LQCD
applications, almost all cycles are spent in a few
kernel routines (such as Equation 1). We’ll there-
fore provide highly optimized assembly imple-
mentations for such kernels, possibly also making
use of an assembly generator. Second, we’ll le-
verage the work of the USQCD (US Quantum
Chromodynamics) collaboration (www.usqcd.
org/software.html), which has pioneered efforts
to define and implement software layers to hide
hardware details. Such a framework will let pro-
grammers build LQCD applications in a portable
way on top of these software layers.

With QPACE, our goal is to implement the
QCD message-passing (QMP) API, as well as (at
least parts of) the QCD data-parallel (QDP) API,

November/December 2008 � 53

which includes operations on distributed data ob-
jects. QMP comprises all communication opera-
tions required for LQCD applications. It relies
on the fact that these applications typically have
regular and repetitive communication patterns,
with data being sent between adjacent nodes in a
torus grid (and therefore we don’t need an API as
general as MPI). We’ll implement QMP on top
of a few low-level communication primitives that
might, for example, trigger data transmission via
one particular link, initiate the receive operation,
and allow the program to wait for completion of
communications.

Q PACE is an innovative approach to
use a commodity multicore processor
together with a custom network for
building a scalable massively parallel

machine for LQCD simulations. Directly con-
necting a custom network to a high-end com-
mercial processor’s I/O interface is a significant
technological challenge. For QPACE, we were
able to achieve this using an FPGA, but it might
be highly nontrivial for other (multicore) proces-
sors. It also remains to be seen whether FPGAs
will be able to cope with increasing bandwidth
requirements in future developments.

The QPACE project’s ambitious goal is to com-
plete hardware development by the end of 2008
and to begin manufacturing and deploying larger
systems beginning in 2009. We expect the ma-
chines to be fully available for lattice QCD re-
search by mid-2009.�

Acknowledgments
QPACE is funded by the Deutsche Forschungsge-
meinschaft (DFG) through the SFB/TR-55 frame-
work and by IBM. We gratefully acknowledge
important contributions to QPACE by Eurotech
(Italy) and Knürr (Germany).

References
K.G. Wilson, “Confinement of Quarks,” Physical Rev. D, vol.
10, no. 8, 1974, pp. 2445–2459.

P.A. Boyle et al., “Overview of the QCDSP and QCDOC
Computers,” IBM J. Research & Development, vol. 49, nos.
2-3, 2005, pp. 351–366.

F. Belletti et al., “Computing for LQCD: apeNEXT,” Comput-
ing in Science & Eng., vol. 8, no. 1, 2006, pp. 18–29.

A. Gara et al., “Overview of the Blue Gene/L System Archi-
tecture,” IBM J. Research & Development, vol. 49, nos. 2-3,
2005, pp. 195–212.

H.P. Hofstee et al., “Cell Broadband Engine Technology and
Systems,” IBM J. Research & Development, vol. 51, no. 5,
2007, pp. 501–502.

S. Williams et al., “The Potential of the Cell Processor for

1.

2.

3.

4.

5.

6.

Scientific Computing,” Proc. 3rd Conf. Computing Frontiers,
ACM Press, 2006, pp. 9–20.

A. Nakamura, “Development of QCD-Code on a Cell Ma-
chine,” Proc. Int’l Symp. Lattice Field Theory (LAT 07), Proc. of
Science, 2007; http://pos.sissa.it//archive/conferences/
042/040/LATTICE%202007_040.pdf.

F. Belletti et al., “QCD on the Cell Broadband Engine,” Proc.
Int’l Symp. Lattice Field Theory (LAT 07), Proc. of Science,
2007; http://pos.sissa.it//archive/conferences/042/039/
LATTICE%202007_039.pdf.

G. Bilardi et al., “The Potential of On-Chip Multiprocessing
for QCD Machines,” Proc. Int’l Conf. High-Performance Com-
puting, LNCS 3769, Springer Verlag, 2005, pp. 386–397.

J. Spray, J. Hill, and A. Trew, “Performance of a Lattice Quan-
tum Chromodynamics Kernel on the Cell Processor,” 2008;
http://arxiv.org/abs/0804.3654.

Gottfried Goldrian is a Distinguished Engineer in
the IBM Lab in Böblingen, Germany. Contact him at
goldrian@ibm.de.

Thomas Huth is a developer at the IBM Lab in Böblin-
gen. Contact him at thuth@de.ibm.com.

Benjamin Krill is a research engineer at the IBM Lab
in Böblingen. Contact him at krill@codiert.org.

Jack Lauritsen is a developer at the IBM Lab in Bö-
blingen. Contact him at laurits@de.ibm.com.

Heiko Schick is a developer at the IBM Lab in Böblin-
gen. Contact him at schickhj@de.ibm.com.

Ibrahim Ouda is a senior engineer at the IBM Lab
in Rochester, Minnesota. Contact him at ouda@us.
ibm.com.

Simon Heybrock is an undergraduate student of phys-
ics at the University of Regensburg, Germany. Contact
him at simon.heybrock@physik.uni-regensburg.de.

Dieter Hierl is a research associate at the Universi-
ty of Regensburg, Germany. Contact him at dieter.
hierl@physik.uni-regensburg.de.

Thilo Maurer is a PhD student in physics at the Uni-
versity of Regensburg, Germany. Contact him at thilo.
maurer@physik.uni-regensburg.de.

Nils Meyer is a PhD student in physics at the Univer-
sity of Regensburg, Germany. Contact him at nils.
meyer@physik.uni-regensburg.de.

Andreas Schäfer is a professor of physics at the Uni-
versity of Regensburg, Germany. Contact him at
andreas.schaefer@physik.uni-regensburg.de.

Stefan Solbrig is a research associate at the Univer-

7.

8.

9.

10.

54� Computing in Science & Engineering

sity of Regensburg, Germany. Contact him at stefan.
solbrig@physik.uni-regensburg.de.

Thomas Streuer is a postdoctoral researcher at the
University of Regensburg, Germany. Contact him at
thomas.streuer@desy.de.

Tilo Wettig is a professor of physics at the University
of Regensburg, Germany. Contact him at tilo.wettig@
physik.uni-regensburg.de.

Dirk Pleiter is a research scientist at Deutsches Elek-
tronen Synchrotron (DESY), Zeuthen, Germany.
Contact him at dirk.pleiter@desy.de.

Karl-Heinz Sulanke is an electronics engineer
at Deutsches Elektronen Synchrotron (DESY),
Zeuthen, Germany. Contact him at karl-heinz.
sulanke@desy.de.

Frank Winter is a PhD student in physics at Deutsches
Elektronen Synchrotron (DESY), Zeuthen, Germany.
Contact him at frank.winter@desy.de.

Hubert Simma is a research scientist at Deutsches
Elektronen Synchrotron (DESY), Zeuthen, Germany,
and a guest lecturer at the University of Milan. Con-
tact him at hubert.simma@desy.de.

Sebastiano Fabio Schifano is a research associate in
computer science at the University of Ferrara, Italy.
Contact him at schifano@fe.infn.it.

Raffaele Tripiccione is a professor of physics at
the University of Ferrara, Italy. Contact him at
tripiccione@fe.infn.it.

Andrea Nobile is a PhD student in physics at the Eu-
ropean Center for Theoretical Studies, Trento, and
the University of Milano-Bicocca, Italy. Contact him
at andrea.nobile@mib.infn.it.

Matthias Drochner is a research scientist at the
Research Center Jülich, Germany. Contact him at
M.Drochner@fz-juelich.de.

Thomas Lippert is the director of the Institute for
Advanced Simulation at the Research Centre Jülich,
head of the Jülich Supercomputing Centre, and a
professor of physics at the University of Wuppertal,
Germany. Contact him at th.lippert@fz-juelich.de.

Zoltan Fodor is a professor of physics at the Univer-
sity of Wuppertal, Germany. Contact him at fodor@
bodri.elte.hu.

w w w . a i p . o r g

The American Institute of Physics is a not-for-profit
membership corporation chartered in New York State in 1931
for the purpose of promoting the advancement and diffusion
of the knowledge of physics and its application to human
welfare. Leading societies in the fields of physics, astronomy,
and related sciences are its members.

In order to achieve its purpose, AIP serves physics and
related fields of science and technology by serving its
member societies, individual scientists, educators, students,
R&D leaders, and the general public with programs, services,
and publications—information that matters. The Institute
publishes its own scientific journals as well as those of
its member societies; provides abstracting and indexing
services; provides online database services; disseminates
reliable information on physics to the public; collects
and analyzes statistics on the profession and on physics
education; encourages and assists in the documentation and
study of the history and philosophy of physics; cooperates
with other organizations on educational projects at all levels;
and collects and analyzes information on federal programs
and budgets.

The scientists represented by the Institute through its
member societies number more than 134 000. In addition,
approximately 6000 students in more than 700 colleges and
universities are members of the Institute’s Society of Physics
Students, which includes the honor society Sigma Pi Sigma.
Industry is represented through the membership of 37
Corporate Associates.

Governing Board: Louis J. Lanzerotti (chair)*, Lila M. Adair,
David E. Aspnes, Anthony Atchley*, Arthur Bienenstock,
Charles W. Carter Jr*, Timothy A. Cohn*, Bruce H. Curran*,
Morton M. Denn*, Alexander Dickison, Michael D. Duncan,
H. Frederick Dylla (ex officio)*, Janet Fender, Judith Flippen-
Anderson, Judy R. Franz*, Brian J. Fraser, Jaime Fucugauchi,
John A. Graham, Timothy Grove, Mark Hamilton, Warren W.
Hein*, William Hendee, James Hollenhorst, Judy C. Holoviak,
Leo Kadanoff, Angela R. Keyser, Timothy L. Killeen, Harvey
Leff, Rudolf Ludeke*, Kevin B. Marvel*, Patricia Mooney,
Cherry Murray, Elizabeth A. Rogan*, Bahaa E. A. Saleh,
Charles E. Schmid, Joseph Serene, Benjamin B. Snavely (ex
officio)*, A. F. Spilhaus Jr, Gene Sprouse, Hervey (Peter)
Stockman, Quinton L. Williams.�*Members of the Executive Committee.

Management Committee: H. Frederick Dylla, Executive
Director and CEO; Richard Baccante, Treasurer and CFO;
Theresa C. Braun, Vice President, Human Resources;
Catherine O’Riordan, Vice President, Physics Resources;
Darlene A. Walters, Senior Vice President, Publishing;
Benjamin B. Snavely, Secretary.

