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Application-driven computers for Lattice Gauge Theory simulations have often been based on 
system-on-chip designs, but the development costs can be prohibitive for academic project 
budgets. An alternative approach uses compute nodes based on a commercial processor tightly 
coupled to a custom-designed network processor. Preliminary analysis shows that this solution 
offers good performance, but it also entails several challenges, including those arising from 
the processor’s multicore structure and from implementing the network processor on a field-
programmable gate array. 

Q uantum chromodynamics (QCD) is 
a well-established theoretical frame-
work to describe the properties and 
interactions of quarks and gluons, 

which are the building blocks of protons, neutrons, 
and other particles. In some physically interesting 
dynamical regions, researchers can study QCD 
perturbatively—that is, they can work out physi-
cal observables as a systematic expansion in the 
strong coupling constant. In other (often more 
interesting) regions, such an expansion isn’t pos-
sible, so researchers must find other approaches.

The most systematic and widely used nonper-
turbative approach is lattice QCD (LQCD), a 
discretized, computer-friendly version of the 
theory Kenneth Wilson proposed more than 
30 years ago.1 In this framework, QCD is refor-
mulated as a statistical mechanics problem that 
we can study using Monte Carlo techniques. 
Many physicists have performed LQCD Monte 
Carlo simulations over the years and have de-
veloped efficient simulation algorithms and so-
phisticated analysis techniques. Since the early 
1980s, LQCD researchers have pioneered the 
use of massively parallel computers in large sci-
entific applications, using virtually all available 
computing systems including traditional main-
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frames, large PC clusters, and high-performance 
systems.

We’re interested in parallel architectures on 
which LQCD codes scale to thousands of nodes 
and on which we can achieve good price-perfor-
mance and power-performance ratios. In this re-
spect, highly competitive systems are QCD On 
a Chip (QCDOC)2 and apeNEXT,3 two custom-
designed LQCD architectures that have been 
operating since 2004 and 2005, respectively, and 
IBM’s BlueGene4 series. These architectures 
are based on system-on-chip designs. In modern 
technologies, however, VLSI chip development 
costs are so high that an SoC approach is no lon-
ger possible for academic projects.

To address this problem, our QCD Parallel 
Computing on the Cell (QPACE) project uses 
a compute node based on IBM’s PowerXCell 8i 
multicore processor and tightly couples it to a 
custom-designed network processor in which we 
connect each node to its nearest neighbors in a 
3D toroidal mesh. To facilitate the network pro-
cessor’s implementation, we use a Xilinx Virtex-5 
field-programmable gate array (FPGA). In both 
price and power performance, our approach is 
competitive with BlueGene and has a much lower 
development cost. Here, we describe our perfor-
mance analysis and hardware benchmarks for the 
PowerXCell 8i processor, which show that it’s a 
powerful option for LQCD. We then describe 
our architecture in detail and how we’re address-
ing the various challenges it poses.

Lattice Gauge Theory Computing
LQCD simulations are among scientific comput-
ing’s grand challenges. Today, a group active in 
high-end LQCD simulations must have access to 
computing resources on the order of tens of sus-
tained Tflops-years.

Accurately describing LQCD theory and al-
gorithms is beyond this article’s scope. LQCD 
simulations have an algorithmic structure exhib-
iting high parallelism and several features that 
make it easy to exploit much of this parallelism. 
LQCD replaces continuous 4D space–time with a 
discrete and finite lattice (containing N = L4 sites 
for a linear size L). All compute-intensive tasks in-
volve repeated execution of just one basic step: the 
product of the lattice Dirac operator and a quark 
field ψ. In LQCD, a quark field ψx

ia  is defined at 
lattice sites x = 1, . . . , N and carries color indices 
a = 1, . . . , 3 and spinor indices i = 1, . . . , 4. Thus, 
ψ is a vector with 12N complex entries. 

As Equation 1 shows, the hopping term of the 
Wilson Dirac operator Dh acts on ψ as follows 

(other discretization schemes exist, but the imple-
mentation details are all similar):
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Here, μ labels the four space–time directions, and 
the Ux,μ are the SU(3) gauge matrices associated 
with the links between nearest-neighbor lattice 
sites. The gauge matrices are themselves dynami-
cal degrees of freedom and carry color indices 
(each of the 4N different Ux,μ has 3 × 3 complex 
entries). The γμ are the (constant) Dirac matrices, 
carrying spinor indices. Today, state-of-the-art 
simulations use lattices with a linear size L of at 
least 32 sites.

Roughly speaking, the ideal LQCD simulation 
engine is a system that can keep the previously de-
fined degrees of freedom in local storage and re-
peatedly apply the Dirac operator with very high 
efficiency. Explicit parallelism is straightforward. 
As Equation 1 shows, Dh couples only nearest-
neighbor lattice sites, which suggests an obvious 
parallel structure for an LQCD computer: a d-
dimensional grid of processing nodes. Each node 
contains local data storage and a compute engine. 
We need only to map the physical lattice onto the 
processor grid as regular tiles (if d < 4, we fully 
map 4 − d dimensions of the physical lattice onto 
each processing node).

In the conceptually simple case of a 4D hyper-
cubic grid of p4 processors, each processing node 
would store and process a 4D subset of (L/p)4 lat-
tice sites. Each processing node handles its sublat-
tice using local data. The nodes also access data 
corresponding to lattice sites that are just outside 
the sublattice’s surface and are stored on near-
est-neighbor processors. Processing proceeds in 
parallel for two reasons: there are no direct data 
dependencies for lattice sites that aren’t nearest 
neighbor, and the same operations sequence runs 
on all processing nodes in lockstep mode.

Parallel performance will be linear in the num-
ber of nodes, as long as

the programmer can evenly partition the lattice 
on the processor grid, and
the interconnection bandwidth is large enough 
to sustain each node’s performance.

We meet the first constraint easily for up to thou-
sands of processors while the latter is less trivial 

•

•
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because the required inter-node bandwidth in-
creases linearly with p (we provide figures on 
bandwidth requirements later).

Conceptually, this case favors an implementa-
tion in which the most powerful processor avail-
able provides the total desired processing power 
and thus reduces processor count and node-to-
node bandwidth requirements. IBM’s Cell/B.E. 
(www.ibm.com/developerworks/power/cell) is 
therefore an obvious choice.

The PowerXCell 8i  
Processor’s Performance
The Cell/B.E. processor contains one PowerPC 
processor element and eight synergistic proces-
sor elements.5 Each SPE runs a single thread and 
has its own 256 Kbytes on-chip local store (LS) 
memory, which is accessible by direct memory 
access or local load/store operations to and from 
128 general-purpose 128-bit registers. An SPE can 
execute two instructions per cycle, performing up 
to eight single-precision floating-point operations. 
Thus, the total single-precision peak performance 
of all eight SPEs on a Cell/B.E. is 204.8 Gflops at 
3.2 GHz.

The PowerXCell 8i is an enhanced version of the 
Cell/B.E., with the same single-precision perfor-
mance and a peak double-precision performance 
of 102.4 Gflops with IEEE-compliant rounding. 
It has an on-chip memory controller supporting 
a memory bandwidth of 25.6 Gbytes/s and a con-
figurable Rambus FlexIO I/O interface that sup-
ports coherent and noncoherent protocols with a 
total bidirectional bandwidth of 25.6 Gbytes/s. 
Internally, all processor units are connected to the 
coherent element interconnect bus (EIB) by direct 
memory access (DMA) controllers. 

Although it was developed for the PlayStation 

3, the Cell/B.E. is obviously attractive for sci-
entific applications as well.6–8 This is even truer 
for the PowerXCell 8i. As we reported at the 
Lattice 2007 Conference,8 we investigated this 
processor’s performance extending a recently 
proposed theoretical model.9 We now summa-
rize our findings.

Performance Model
We consider two classes of hardware devices:

storage devices, such as registers or LSs, that 
store data and instructions and are character-
ized by their storage size and
processing devices that act on data or trans-
fer data/instructions from one storage device 
to another. Such devices can be floating-point 
(FP) units, DMA controllers, or buses and are 
characterized by their bandwidths βi and start-
up latencies λi.

We can divide an algorithm implemented 
on a specific architecture into microtasks per-
formed by our model’s processing devices. The 
execution time Ti of each task i is estimated by 
a linear ansatz,

T I Oi i i i / β λ+ ( ) ,� (2)

where Ii is the amount of processed data. In the 
following, we assume that all tasks can be run 
concurrently at maximal throughput and that 
suitable scheduling can hide all dependencies 
and latencies. Given this, the total execution 
time is

T T
i iexe max .� (3)

If Tpeak is the minimal achievable compute time 
for an application’s FP operations in an “ideal im-
plementation,” we define the FP efficiency εFP as 
εFP = Tpeak/Texe.

Figure 1 shows the dataflow paths and associ-
ated execution times Ti that enter our analysis: 

floating-point operations, TFP;
load/store operations between register file (RF) 
and LS, TRF;
off-chip memory access, Tmem;
internal communications between SPEs on the 
same processor, Tint;
external communications between different 
processors, Text = max(TNIF, Tlink); and
transfers via the EIB (memory access, internal, 
and external communications), TEIB.
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Figure 1. Dataflow paths for a single synergistic processor element 
and corresponding execution times (Ti). The model assumes a 
communication network with a 3D torus topology in which 12 links 
(six inbound and six outbound) simultaneously transfer data.
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We consider a communication network with a 
3D torus topology in which the six inbound and 
six outbound links can simultaneously transfer 
data, each using a link bandwidth of 1 Gbyte/s. 
We also assume a balanced network interface pro-
viding a bandwidth of 6 Gbytes/s simultaneously 
in each direction between the Cell/B.E. and the 
network. (Current FPGA capabilities strongly 
constrain both the torus network’s dimensional-
ity and the bandwidth—specifically, the number 
of high-speed serial transceivers and the total pin 
count.) We take all other hardware parameters 
βi from the Cell/B.E. manuals (www.ibm.com/ 
developerworks/power/cell). We now describe the 
results of our performance analysis for different 
optimizations of the main LQCD kernel.

Lattice QCD Kernel
Computing Equation 1 on a single lattice site 
amounts to 1,320 (double-precision) FP instruc-
tions (not counting sign flips and complex conju-
gation) and thus yields a Tpeak of 330 cycles per 
site. However, executing Equation 1 requires at 
least 840 multiply-add operations and TFP = 420 
cycles per lattice site. Thus, any implementation 
of Equation 1 on an SPE can’t perform better 
than 78 percent of peak.

The lattice data layout greatly influences the 
cost of load/store operation for the operands of 
Equation 1 (9 × 12 + 8 × 9 complex numbers), as 
well as the time spent on remote communica-
tions. We assign to each Cell/B.E. a local lattice 
with VCell = L1 × L2 × L3 × L4 sites and arrange the 
eight SPEs logically as s1 × s2 × s3 × s4 = 8. A single 
SPE thus holds a subvolume of VSPE = (L1/s1) × 
(L2/s2) × (L3/s3) × (L4/s4) = VCell/8 sites. On aver-
age, each SPE has Aint neighboring sites on other 
SPEs within a Cell/B.E. and Aext neighboring sites 
outside a Cell/B.E. We investigated two data lay-
out strategies: In the first, all data are stored in 
the SPEs’ on-chip LS; in the second, the data are 
stored in off-chip main memory (MM).

Data in on-chip memory (LS). In this case, we re-
quire that all data for a repeated compute task are 
held in the SPEs’ LS. The LS must also hold a 
minimal program kernel, the runtime environ-
ment, and intermediate results. Therefore, the 
storage requirements strongly constrain the local 
lattice volumes VSPE and VCell.

A spinor field ψx needs 24 real words—or 192 
bytes in DP—per site, while a gauge field Ux,μ 
needs 18 words (144 bytes) per link. If we as-
sume that a solver requires storage of roughly 400 
words/site (for eight spinors and 12 gauge links, for 

example), a single SPE’s subvolume is restricted to 
about VSPE = 79 sites. (We assume here a mini-
mal code size of 4 Kbytes for the Dirac kernel; 
a more realistic assumption of 32 Kbytes for the 
solver code and runtime environment decreases 
our estimate to VSPE = 70.) In a 3D network, the 
fourth lattice dimension must be distributed lo-
cally within the same Cell/B.E. across the SPEs 
(logically arranged as a 13 × 8 grid). L4 is then a 
global lattice extension and could be as large as 
L4 = 64. This yields a very asymmetric local lat-
tice, with VCell = 23 × 64 and VSPE = 23 × 8. (When 
distributed over 4,096 nodes, this gives a global 
lattice size of 323 × 64.)

Data in off-chip memory (MM). When we store all 
data in the MM, there are no a-priori restrictions 
on VCell. However, we want to avoid redundant 
loads of Equation 1’s operands from MM into LS 
when sweeping through the lattice. To accomplish 
this and also permit concurrent computation and 
data transfers (to/from MM or remote SPEs), we 
consider a multiple buffering scheme.

Multiple buffering schemes alternate several 
buffers to either process or load/store data. This 
permits concurrent computation and data trans-
fer at the price of additional storage (here, in the 
LS). One way to implement such a scheme is to 
compute Equation 1’s hopping term on a 3D slice 
of the local lattice and then move the slice along 
the fourth direction. Each SPE processes all sites 
along the fourth direction, and the SPEs are logi-
cally arranged as a 23 × 1 grid both to minimize 
internal SPE communications and to balance ex-
ternal ones. To have all of Equation 1’s operands 
available in the LS, we must be able to keep in the 
LS the U- and ψ-fields associated with all sites of 
three 3D slices at the same time. This optimiza-
tion requirement again constrains the local lattice 
size, now to VCell ≈ 800 × L4 sites.

Table 1 shows the predicted microtask execu-
tion times for the two data layouts and reasonable 
local lattice size choices. In the LS case, the theo-
retical efficiency of roughly 27 percent is limited 
by the communication bandwidth (Texe ≈ Text). 
This is also the limiting factor for the MM case’s 
smallest local lattice; for larger local lattices, the 
memory bandwidth is the limiting factor (Texe ≈ 
Tmem).

We have applied our performance model to 
various linear algebra kernels and verified it by 
hardware benchmarks. It’s not strictly neces-
sary to benchmark the full implementation of 
a representative QCD kernel such as Equation 
1 because, in all relevant cases, TFP is far from 
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being the limiting factor. Instead, we’ve per-
formed hardware benchmarks with the same 
memory access pattern as in Equation 1, us-
ing the above-mentioned multiple buffering 
scheme for the MM case. We found that ex-
ecution times were at most 20 percent higher 
than the theoretical predictions for Tmem. (The 
freely available full-system simulator is not 
useful in this respect because it doesn’t model 
memory transfers accurately.) Other research-
ers have reported on benchmarks that use a lat-
tice layout similar to the LS case but that keep 
only the gauge fields in LS, while spinor fields 
are accessed in MM.10 They found efficiencies 
above εFP = 20 percent.

Local Store DMA Transfers
Because DMA transfer speeds determine Tmem, 
Tint, and Text, it’s crucial that we optimize them 
to exploit the Cell/B.E. performance. Our analy-
sis of detailed micro-benchmarks for LS-to-LS 
transfers shows that Equation 2’s linear model 
doesn’t accurately describe execution time for 
DMA operations with arbitrary size I and arbi-
trary address alignment. We therefore refined our 
model to account for data transfer fragmentation 
and the buffers’ source and destination addresses 
(As and Ad, respectively):

T I A A

N I A A N I A

s d

a
a s d b s

DMA ( , , )

( , , ) ( , )= + ⋅ + ⋅λ λ0 1288 bytes
β

. � (4)

Our hardware benchmarks, fitted to Equation 
4, indicate that each LS-to-LS DMA transfer has 
a (zero-size transfer) latency of λ0 ≈ 200 cycles. 
The DMA controllers fragment all transfers into 

Nb 128-byte blocks aligned at LS lines (and cor-
responding to single EIB transactions). When δA 
= As − Ad is a multiple of 128 bytes, the source LS 
lines can be directly mapped onto the destina-
tion lines. Then, we have Na = 0, and the effective 
bandwidth βeff = I/(TDMA − λ0) is the approximate 
peak value. Otherwise, if the alignments don’t 
match (δA isn’t a multiple of 128), we encounter an 
additional latency of λa ≈ 16 cycles for each trans-
ferred 128-byte block, reducing βeff by roughly a 
factor of two. 

Figure 2 shows how clearly these effects are 
observed in our benchmarks and how accurately 
Equation 4 describes them.

Discussion
Our performance model and hardware bench-
marks identified the PowerXCell 8i processor as 
a promising option for LQCD. We expect that a 
sustained performance above 20 percent is pos-
sible on large machines. Parallel systems with 
O(2000) PowerXCell 8i processors add up to ap-
proximately 200 Tflops (DP peak), which corre-
sponds to roughly 50 Tflops sustained for typical 
LQCD applications. As we discussed earlier, a 
simple nearest-neighbor d-dimensional intercon-
nection among these processors is all we need to 
support our algorithms’ data exchange patterns. 
This simple structure allows for a fast and cost-
effective design and construction of our forth-
coming QCD-oriented number cruncher.

The QPACE Project
QPACE is a collaborative development effort 
among several academic institutions and the 
IBM development lab in Böblingen, Germany, 
to design, implement, and deploy a next genera-

Table 1. Theoretical time estimates Ti (in units of 1,000 clock cycles) for some microtasks needed to compute 
Equation 1.*

Data in on-chip local store Data in off-chip main memory

VCell 23 × 64 L1 × L2 × L3 83 43 23

Aint 
Aext

16 
192

Aint / L4 
Aext / L4

48 
48

12 
12

3 
3

Tpeak 21 Tpeak / L4 21 2.6 0.33

TFP 
TRF 
Tmem 
Tint 
Text 
TEIB 

27 
12 
— 
2 
79 
20

TFP / L4 
TRF / L4 
Tmem / L4 
Tint / L4 
Text / L4 
TEIB / L4

27 
12 
61 
5 
20 
40

3.4 
1.5 
7.7 
1.2 
4.9 
6.1

0.42 
0.19 
0.96 
0.29 
1.23 
1.06

εFP 27% εFP 34% 34% 27% 

*Boldface indicates performance bottlenecks.
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tion of massively parallel and scalable computer 
architectures optimized for LQCD. Our project’s 
primary goal is to make a vast amount of comput-
ing power available for LQCD research. On the 
technical side, our goals are to

use commodity processors, tightly inter
connected by a custom network;
leverage the potential of FPGAs for network 
implementation; and
aim for an unprecedentedly small ratio of 
power consumption versus floating-point 
performance.

In the following, we describe the key elements of 
the QPACE architecture.

Node Card 
The main building blocks of QPACE are the 
node cards. These processing nodes, which run 
independently of each other, include two main 
components:

a PowerXCell 8i processor, which provides the 
computing power; and
a network processor (NWP), which imple-
ments a dedicated interface to connect the pro-
cessor to a 3D high-speed torus network used 
for communications between the nodes and to 
an Ethernet network for I/O.

We keep additional logic—to boot and control 
the machine—to the bare minimum. Further-
more, the node card contains 4 Gbytes of private 
memory, which is sufficient for all the data struc-
tures (and auxiliary variables) of present-day local 
lattice sizes.

We implemented the NWP using an FPGA 
(Xilinx Virtex-5 LX110T), which lets us develop 
and test logic reasonably fast and keep develop-
ment costs low. However, the devices themselves 
tend to be expensive (in our case, Xilinx’s support 
of QPACE makes this issue less critical). The 
NWP’s main task is to route data between the 
Cell/B.E. processor, the torus network links, and 
the Ethernet I/O interface. A torus network link’s 
bandwidth is approximately 1 Gbyte/s each for 
transmit and receive. In balance with the overall 
bandwidth of the six torus links attached to each 
NWP, the interface between the NWP and the 
Cell/B.E. processor has a bandwidth of 6 Gbytes/
s. (Because existing southbridges don’t provide 
this bandwidth to the Cell/B.E., a commodity 
network solution is ruled out.) 

Unlike other Cell/B.E.-based parallel machines, 

•

•

•

•

•

in QPACE, node-to-node communications pro-
ceed directly from the LS of a processor’s SPE to 
the LS of a nearest-neighbor processor’s SPE. For 
communication, we don’t move the data through 
the MM, and thus we reduce the performance-
critical data traffic through the MM interface. 
Instead, we route them, via the EIB, from an LS 
directly to the Cell/B.E. processor’s I/O interface. 
The PowerPC processor element isn’t needed to 
control such communications. We expect the LS-
to-LS copy operations latency to be on the order 
of 1 μs.

Communication Network
To start a communication, the sending SPE must 
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Figure 2. LS-to-LS DMA transfers on an IBM QS20 system. Execution 
time is measured as a function of the transfer size with (a) aligned 
and (b) misaligned source and destination addresses. The dashed and 
solid lines correspond to the theoretical predictions of Equations 2 
and 4, respectively.
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initiate a DMA data transfer from its LS to a buf-
fer attached to any link module. Once the data ar-
rives in the buffer, the NWP will move the data 
across the network without the processor’s inter-
vention. On the other end, the receiving device 
must post a receive request to trigger the DMA 
data transfer from the NWP’s receive buffer to 
the final destination.

For the torus network links, we implement a 
lightweight protocol, which handles automatic 
data resend in case of CRC errors. The physical 
layer uses well-tested and cost-efficient commer-
cial hardware components, which let us move the 
most timing-critical logic out of the FPGA. Spe-
cifically, we use the 10 Gbits/s XAUI transceiver 
PMC Sierra PM8358, which provides redundant 
link interfaces that we can use to select among 
several torus network topologies (as we describe 
in more detail later).

Implementing the link to the Cell/B.E. proces-
sor’s I/O interface (a Rambus FlexIO bus) is much 
more challenging. At this point, we’ve connected 
an NWP prototype and a Cell/B.E. processor at 
a speed of 3 Gbytes/s per link and direction by us-
ing special features available in the Xilinx Virtex-
5 FPGAs RocketIO transceivers. (So far, we’ve 
tested only a single 8-bit link; we’ll use two links 
in the final design.)

Overall Machine Structure
We attach the node cards to a backplane through 
which we route all network signals. One back-
plane hosts 32 node cards and two root cards, each 
of which controls 16 node cards via an Ethernet-
accessible microprocessor. One QPACE cabinet 
can accommodate eight backplanes, or 256 node 
cards. Each cabinet therefore has a peak double-
precision performance of roughly 25 Tflops.

On the backplane, subsets of nodes are inter-
connected in a one-dimensional ring topology. If 
we select the primary or redundant XAUI links, 
we can select a ring size of 2, 4, or 8 nodes. Like-
wise, we can configure the number of nodes in 
the second dimension, in which the nodes are 
connected by a combination of backplane connec-
tions and cables. In the third dimension, we use 
cables. It’s also possible to operate a large QPACE 
system of N cabinets as a single partition with 2 · 
N × 16 × 8 nodes.

I/O Network
We implement input and output operations us-
ing a Gigabit Ethernet tree network. Each node 
card is a tree endpoint connected to one of six 
cabinet-level switches, each of which has a vari-

able number of Gigabit Ethernet uplinks, depend-
ing on bandwidth requirements. When we deploy 
QPACE, we expect typical lattice sizes of 483 × 
96, which require a gauge field configuration of 
roughly 6 Gbytes. The available I/O bandwidth 
should thus allow us to read or write the database 
in O(10) seconds.

Power and Cooling
We expect a single node card’s power consump-
tion to be less than 150 watts. A single QPACE 
cabinet will therefore consume roughly 35 kilo-
watts, which translates into a power efficiency of 
approximately 1.5 watts/Gflops. We’re developing 
a liquid cooling system to reach the planned pack-
aging density.

QPACE Software
To operate the QPACE nodes, we’ll use Linux 
running on the PowerPC processor element. As 
on most other processor platforms, we can’t start 
the operating system directly after system start—
instead, we first use a host firmware to initialize 
the hardware. The QPACE firmware will be based 
on Slimline Open Firmware (www-128.ibm.com/ 
developerworks/power/pa-slof); system startup is 
controlled by the root card microprocessor.

Efficiently implementing applications on the 
Cell/B.E. processor is more difficult compared to 
standard processors. To optimize large applica-
tion codes on a Cell/B.E. processor, programmers 
face several challenges—they must, for example, 
carefully choose the data layout to maximize 
memory-interface utilization. Optimizing on-
chip memory use to minimize external memory 
accesses is mandatory. The program’s overall per-
formance also depends on how much code can be 
parallelized on-chip.

We apply two strategies to relieve the program-
mers’ porting burdens. First, in typical LQCD 
applications, almost all cycles are spent in a few 
kernel routines (such as Equation 1). We’ll there-
fore provide highly optimized assembly imple-
mentations for such kernels, possibly also making 
use of an assembly generator. Second, we’ll le-
verage the work of the USQCD (US Quantum 
Chromodynamics) collaboration (www.usqcd.
org/software.html), which has pioneered efforts 
to define and implement software layers to hide 
hardware details. Such a framework will let pro-
grammers build LQCD applications in a portable 
way on top of these software layers. 

With QPACE, our goal is to implement the 
QCD message-passing (QMP) API, as well as (at 
least parts of) the QCD data-parallel (QDP) API, 
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which includes operations on distributed data ob-
jects. QMP comprises all communication opera-
tions required for LQCD applications. It relies 
on the fact that these applications typically have 
regular and repetitive communication patterns, 
with data being sent between adjacent nodes in a 
torus grid (and therefore we don’t need an API as 
general as MPI). We’ll implement QMP on top 
of a few low-level communication primitives that 
might, for example, trigger data transmission via 
one particular link, initiate the receive operation, 
and allow the program to wait for completion of 
communications.

Q PACE is an innovative approach to 
use a commodity multicore processor 
together with a custom network for 
building a scalable massively parallel 

machine for LQCD simulations. Directly con-
necting a custom network to a high-end com-
mercial processor’s I/O interface is a significant 
technological challenge. For QPACE, we were 
able to achieve this using an FPGA, but it might 
be highly nontrivial for other (multicore) proces-
sors. It also remains to be seen whether FPGAs 
will be able to cope with increasing bandwidth 
requirements in future developments.

The QPACE project’s ambitious goal is to com-
plete hardware development by the end of 2008 
and to begin manufacturing and deploying larger 
systems beginning in 2009. We expect the ma-
chines to be fully available for lattice QCD re-
search by mid-2009.�
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