
ar
X

iv
:p

hy
si

cs
/0

60
81

62
v1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
6

A
ug

 2
00

6

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

International Journal of Modern Physics C
c© World Scientific Publishing Company

A GENERIC APPROACH TO ELECTRONIC STRUCTURE

CALCULATIONS IN NANOSCOPIC SYSTEMS

JORDAN KYRIAKIDIS

Department of Physics and Atmospheric Science,
Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5

http://soliton.phys.dal.ca

February 26, 2017

We outline a generic, flexible, modular, yet efficient framework to the computation of en-
ergies and states for general nanoscopic systems with a focus on semiconductor quantum
dots. The approach utilizes the configuration interaction method, in principal obtaining
all many-body correlations in the system. The approach exploits the powerful abstract-
ing mechanisms of C++’s template facility to produce efficient yet general code. The
primary utility of the present approach is not in the resulting raw computational speed,
but rather in minimizing the time from initial idea to final results.

Keywords: Quantum dots; Configuration Interaction; Generic programming; C++

PACS Nos.: 07.05.Bx, 89.20.Ff, 73.21.La

1. Introduction

The configuration interaction (CI) approach to electronic structure calculations has

the benefit of being conceptually simple and the capability of being potentially

exact—exact in the sense that all eigenstates and energies of the given model system

can be exactly computed given sufficient computational resources. The detriment

of the CI method is the great resources it requires. Generally speaking, state of

the art calculations perform at 8–10 particles. The reason is that the CI method

is essentially a direct diagonalization of the system’s Hamiltonian matrix, and the

size of this matrix grows (at least) exponentially with the number of particles.

Because of this, other techniques, such as quantum Monte Carlo (QMC) and

density functional theory, in all their various guises, are often employed (and often

required) in place of CI calculations. Of these, QMC and CI methods are the two

primary tools in cases where correlations are strong, where excited states in addition

to ground states are required, and especially where the many-body states themselves

(as opposed to the energies) are required. QMC has great potential for being far

more efficient than CI, yet is also far more complex both in concept and in practical

aspects of coding. Thus, QMC may be viewed as being well suited for problems

where a large number of particles is required, or for stable production code which

will be applied to a specific fixed set of systems over a prolonged period of time.

1

http://arxiv.org/abs/physics/0608162v1
http://soliton.phys.dal.ca

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

2 Jordan Kyriakidis

One may distinguish, however, between fast code written slowly—that is, taking

a long time to code, test, debug, and maintain—and slow code written quickly. QMC

belongs in the former category, while CI belongs in the latter. Particularly for basic

research, and perhaps less so for applied research, a more useful interpretation of

“efficiency” than the actual computation time is to include development time as

well. Often, the most relevant time is that between initial idea and final result, and

by no means is this duration necessarily dominated by raw computation time. In

this sense, a properly structured CI base can be an important piece of a research

framework, particularly when flexibility is highly desired.

2. The need for a flexible computing environment

Flexibility is particularly required for computations involving the basic physics of

synthetic nanostructures such as semiconductor quantum dots.1 There are four

main reasons for this: the nonuniversality of synthetic structures, the insufficiency

of ab initio methods for large systems, the many different environmental couplings in

heterogeneous solid-state devices, and the highly tunable symmetries experimentally

attainable. In this section, we explore these issues by comparing them to atomic

systems, where very robust and highly efficient code is available.

In semiconductor quantum dots—for example, artificial atoms2 defined by elec-

trostatic (lateral) confinement of electrons in a two-dimensional electron gas—each

manufactured device is unique and, for example, the confining potential of two de-

vices with ostensibly identical gate geometries and identical numbers of confined

particles, will nevertheless have unique confining potentials, tunneling barriers, and

other parameters significantly affecting the transport, electronic, and spin proper-

ties of the device. Contrast this with atoms, where every distinct atomic species is

an indistinguishable particle; a large-scale, robust, sophisticated, and efficient code

base3 eventually pays off since the resulting application is indefinitely applicable to

all future problems of the same atomic species.

In addition to the non-uniqueness of synthetic structures, many are also large

in size, and can contain, for example, several millions of different atomic species

arranged in heterogeneous geometries. Not only are current ab initio methods in-

sufficient to deal with nonperiodic systems of such size, but often they are also

undesirable; numerical results on simpler effective Hamiltonians many times yield

more insightful, more intuitive results, particularly when studying experimentally

observed effects (decoherence, for example) whose underlying physical mechanisms

are unknown. In such cases, numerical results are more properly viewed as aids to

theoretical analysis rather than pure simulation.

In quantum nanoelectronic systems, and mesoscopic systems more generally, the

relevant length scale of the constituent particles—for example, their de Broglie wave-

length, or their mean free path—extends over the dimensions of the confinement

potential. In such cases, boundary effects or other couplings to various environ-

ments often drive the observed physics. These couplings generally destroy quantum

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

A generic approach to electronic structure calculations in nanoscopic systems 3

coherence and lead the system to more classical-like behavior. Experiments can

now probe this boundary between classical and quantum physics and the relevant

physics can often times be explored only numerically. A numerical approach must

be flexible enough to investigate these quantum statistical systems, neither periodic

nor isolated, coupled to a heterogeneous and fluctuating environment, and driven

far from equilibrium. Such a purely quantum numerical framework does not cur-

rently exist. Indeed even the basic physical theory is often poorly understood. In

such cases, particularly when only a few interacting electron are present (but infi-

nite bath degrees of freedom), flexibility usually (not always) trumps raw processing

power.

3. The choice of programming language

In terms of raw speed, simpler languages are usually superior. This, along with

simple inertia, likely explains the dominance, or at least the preponderance, of

fortran for numerical code. But, generally speaking, simpler implies less expressive

which in turn implies less flexible. If flexibility is to be put at a premium, then a

more expressive language is required. This will generally come at a cost of slower

speed, but quicker development.

A practical compromise is a language where the programmer can decide how

much of an abstraction penalty to pay. This pay-only-for-what-you-use approach is

well represented in the C++ programming language, and this is the language in

which we have developed the Diagon
4 framework we describe below.

More important than efficiency, more important than flexibility, correctness is

the single most important requirement of all numerical code. An aid, but by no

means a savior, to correctness is C++’s type safety. A constant can really be a

constant without recourse to preprocessor macros. Pointers can point to (various)

constant objects or can be constant pointers themselves. Parameters to functions

can be passed by value, by reference, or, most efficiently, by constant reference.

These often obviate the need for raw pointers to memory and all their error prone

complexity. Authors of a class have at their disposal (and their discretion) a great

deal of control over how memory is precisely allocated, and how objects are created,

assigned, copied, or converted to other types. These language features are great tools

in producing flexible yet robust numerical frameworks.

3.1. Generic programming

None of the above has anything to do with object-oriented programming—the

paradigm most frequently associated with C++. Indeed C++ supports several pro-

gramming styles, including procedural and functional, as well as object-oriented.

However, in our opinion, the single most useful feature of C++ in regards to nu-

merical computation is its generic programming facilities. These can be seen as a

bridge between expressiveness on the one hand, and efficiency on the other. Particu-

larly for scientific programming, recent developments5 in generic programming have

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

4 Jordan Kyriakidis

clearly shown that flexibility and abstraction need not necessarily incur a run-time

penalty and have moved the state of the art far beyond simple parametrized types.

At its most basic level, generic programming separates data types from

algorithms.6 Thus, for example, a single sort algorithm can be written that can sort

objects of arbitrary type, including user-defined classes, so long as the expression

A < B is defined for objects of those types. And because of operator overloading,

the less-than operator can be defined by the author of the data type. Because of

this, generic programming can be said to make code forwards compatible in time,

rather than simply backwards compatible with previous versions. If a specific type

requires a more efficient algorithm, that particular type can be made into a special

case through partial template specialization.

Importantly, this great flexibility can come with little or no performance

penalty—a crucial difference compared to dynamically typed languages such as

Python or Ruby. The C++ generic facilities produce statically typed compiled code.

In effect, a generic template function is a program that writes programs and is essen-

tially a type-safe meta-programming facility. Upon compilation, the compiler takes

a template function, and instantiates a specific version for whatever data type is

required. Thus, a single sort template function can produce several custom-made

(by the compiler) versions in the executable; one each for, say, integers, doubles,

complex numbers, or many-body state vectors sorted by energy. The important fact

is that this happens at compile time, not run time, and so the produced code can be

very efficient. The compiler can turn this single function into an unbounded number

of functions operating on types which the original author could not have conceived.

The Diagon framework we describe below really only scratches the surface of

what generic programming can do. For example, templates can be used to keep track

of dimensional quantities,7 so that, for example, the system knows that length/time

is a velocity and can give a (compile-time) error when a length is assigned to a

velocity, even though all quantities are, say doubles. In fact, scientific programmers

recognized quite early on8 the benefits of generic programming.

As an example of the flexibility of generic programming coupled with function

overloading, we give here an example of their use in the Diagon framework which

we discuss more fully below. Specifically, we can consider the inner product of var-

ious state vectors describing electrons in a quantum dot. There are at least three

types of states that are generally required. At the single-particle level, there are

the base single-particle orbital states |α〉, where α denotes a full set of quantum

numbers, which we label generically as SPState. A many-body Fermion system

is described by antisymmetrised vectors |α0, α1, α2, . . .〉 (Slater determinants, la-

beled AntiSymmState) in accordance with the Pauli exclusion principle. Thirdly,

correlated states |ψ〉 =
∑

i ci|α
i
0, α

i
1, α

i
2, . . .〉 (induced by Coulomb interactions or

spin symmetry9) require a description in terms of coherent superpositions of Slater

determinants, LinCombState.

The inner product of SPState’s clearly depends on the the particular system

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

A generic approach to electronic structure calculations in nanoscopic systems 5

under consideration. However, the algorithmic computation of inner products of

either LinCombState’s or AntiSymmState’s is essentially identical and independent

of the underlying SPState. Thus, once supplied with an inner product function for

the particular SPState, the calculation for inner products involving more complex

state vectors can proceed automatically, without a need for rewriting the functions.

The object-oriented solution to this problem is to define a class hierarchy and

to pass pointers (or references) to the functions. At run time, the appropriate inner

product will be called. Besides the extra (run-time) cost involved in dereferenc-

ing objects for dynamic polymorphism, this approach will almost certainly lead to

an ever-growing hierarchy of states, with commensurate costs in maintenance and

testing. In addition, the core code base requires altering with every new SPState

introduced to the system; as the number of states known to the system grows,

maintenance, and continued testing for correctness, becomes more and more of a

burden.

In a generic approach, the code base remains small. Here, one defines generic

containers AntiSymmState<SPState> and LinCombState<State>a which can hold

any type of state. Provided the user implements a set of SPState’s and defines

single-particle inner-product functions, then inner products involving many-body

states need not be (re)written; the compiler will write a custom version of the

appropriate inner product function. The template functions themselves indicate the

algorithm, not the data types.

Because generic components can be combined as required, a small set of generic

components are capable of producing combinatorially many functions. Thus, with

a small set of components, a large array of composite objects can be defined, max-

imizing the flexibility of the numerical approach. This flexibility need not incur a

run-time penalty; all template instantiations are implemented at compile-time. This

is a tremendous advantage both in the speed of developing a custom application

from a set of generic components, as well as in maintaining efficient code at run

time.

We have implemented such a generic framework, Diagon, for computing eigen-

states and eigenvalues of semiconductor quantum dots for arbitrary potentials, with

arbitrary numbers of particles, and arbitrary Hamiltonians. This is a framework,

meant for developing applications rather than a tool for end users. We describe

the framework below and show that it can be used to build flexible and extensible

applications without undue sacrifice on run-time efficiency.

4. The Diagon Framework

The Diagon4 framework consists of a set of generic components useful in the manip-

ulation of many-body quantum states and computations involving them. There are

aNote that a LinCombState can describe linear combinations of AntiSymmState’s with different
sizes. This would be required when particle number is not conserved, as, for example, when studying
transport through a quantum dot.10

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

6 Jordan Kyriakidis

currently components for dealing with various types of Fermion states, components

for computing matrix elements of one and two-body operators, generators return-

ing proper spin eigenstates given a set of singly and doubly occupied single-particle

orbitals, and components for computing eigenstates and eigenvalues of Hermitian

operators. These components are all generic and the single-particle states themselves

need to be provided. We give in this section an overview of the Diagon components.

In the following section, we provide an example calculation for calculating spectra

and states of two-dimensional parabolic dots with spin-orbit interactions.

4.1. Generic quantum many-body states

There are three classes of many-body states: AntiSymmState<SPState> is the pri-

mary class for antisymmetrised product states. In real space, these are Slater de-

terminants. Upon instantiation, the (generic) parameter SPState must name an

existing class encapsulating a known single-particle state. For example, in two di-

mensional parabolically-confined quantum dots, the single particle states may be

the well-known Fock-Darwin11 states |mns〉. Typically, the inner product between

these two single-particle states will also be provided. In the Fock-Darwin case, we

simply have 〈n′m′s′|nms〉 = δss′δnn′δmm′ . Operations are provided for creating and

destroying particles in these states, as well as computing inner products if supplied

with the inner product for the underlying single-particle states.

In addition to the (user provided) single-particle states and the (Diagon pro-

vided) AntiSymmState’s, a generic class LinCombState<State, Coeff> is provided

for encoding linear superpositions of states, |LinCombState〉 =
∑

α cα|α〉. Here, the

template parameter State is the type of component states (which can be, for exam-

ple, SPState’s or AntiSymmState’s) and Coeff is a template parameter encoding

the type of the coefficients, which will usually be real or complex numbers, but,

since the class is generic, could be of more exotic type. Operations are provided for

adding and removing terms from the sum, for checking and setting normalization

of the state as a whole, for indexing a particular term, and for iterating over all

terms. If class State defines an inner product, then 〈LinCombState|LinCombState〉

and 〈LinCombState|State〉 are both defined.

The final class of many-body states is the StateSet<State, Coeff> class. This

class encapsulates a set of LinCombState<State, Coeff>’s which all share a com-

mon basis. It is used, for example, as a return type from a diagonalization routine

where each LinCombState is an eigenstate. It can also be used to describe a set

of spin eigenstates. (See Sec. 4.3.) Operations are provided, for example, to add or

remove a basis vector to the StateSet, or to add or remove a LinCombState.

With the above three generic components, one need only define a particular

single-particle state and an inner product, and many-body states and linear super-

positions of them are made available, and a full suite of inner products and other

manipulations and computations are made available.

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

A generic approach to electronic structure calculations in nanoscopic systems 7

4.2. Generic operator functions

A general quantum operator Ô can be given a matrix form with elements 〈ψi|Ô|ψj〉,

with i, j running over all basis vectors which can be SPState’s, AntiSymmState’s,

or LinCombState’s. The Diagon framework provides generic operators for both one

and two body operators.

A general one-body operator can be written in second quantized form as

Ô =
∑

p,q

Opqc
†
pcq (1)

where c†p creates a particle in state |p〉. In the Diagon framework, matrix elements

of the operator Ô are implemented generically as

oneBodyOp(bra, ket, matelem).

Here, bra and ket can be any (combination) of the three basic types of states in

Sec. 4.1, and matelem is a user-defined function evaluating Opq in Eq. (1). That is,

matelem must have signature

ReturnType matelem(SPState bra, SPState ket),

where ReturnType is an arbitrary type. The generic function oneBodyOp returns

whatever matelem returns.

We see that once the user defines single-particle properties, which will be dif-

ferent from system to system, the Diagon framework implements the many-body

functionality, which is in a sense a universal function of the single-particle physics.

Two-body operators are implemented generically in a similar way. A difference

now is how spin is treated. In particular, any spin-independent two-body operator

(e.g., the Coulomb interaction) can be written as

Û =
∑

i,j,k,l
σ,σ′

Uijklc
†
iσc

†
jσ′clσ′ckσ, (2)

where the Uijkl = (ij|Û |kl) are the coefficients12 which must be provided by the

user, with all indices i, j, k, l denoting single-particle states. This is again imple-

mented as

twoBodyOp(bra, ket, matelem)

but the two states must now contain at least two particles (AntiSymmState’s or

LinCombState’s) and matelem must have signature

ReturnType matelem(SPState bra1, SPState bra2,

SPState ket1, SPState ket2).

The generic function twoBodyOp returns whatever matelem returns.

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

8 Jordan Kyriakidis

In Sec. 5, we describe a specific example using the above generic components.

Before we do, however, we discuss generic facilities Diagon provides for computing

eigenstates of total spin and other more general Hermitian operators.

4.3. Generic spin states

Because the CI technique is so computationally intensive, it is important to take

advantage of every significant symmetry in the system as this affords a possibil-

ity to block-diagonalize the Hamiltonian matrix, drastically reducing the computa-

tional load. Simple symmetries such as conservation of spin or angular-momentum

projection along a given axis (Sz
tot or Lz

tot, say) are simple to implement since

these symmetries do not produce correlations and their conservation can always

be encoded in a single Slater determinant. Other symmetries—total spin, S2
tot, be-

ing the most prominent—do induce correlations, and a single Slater determinant

(AntiSymmState) cannot in general be written down in which S2
tot is a good quan-

tum number.

In such cases, a correlated basis may be used which preserves the many-body

symmetry. This, in general, would require a prediagonalization step.13 However,

the SU(2) symmetry of spin, along with its higher-dimensional representations, al-

lows all eigenstates of spin to be written down for arbitrary orbital configuration,

essentially relying on the appropriate products of Clebsch-Gordon coefficients.14,15

Such a facility is provided in Diagon through the spinGen generic function,

spinGen(AntiSymmState<SPState> config, int twoS, int twoSz),

which returns a StateSet. (See Sec. 4.1.) Each element of the StateSet is a

LinCombState<AntiSymmState<SPState>> which is an eigenstate of S2
tot with the

appropriate spin quantum number. Input to spinGen is two times the spin S and

two times the projection Sz. (This is to keep the inputs integers.) Input is also the

orbital configuration as an AntiSymmState<SPState>.

4.4. Generic diagonalization

The CI method eventually requires a diagonalization. Currently, Diagon employs

the uBLAS linear algebra library of the Boostb project, along with a bindings

library allowing C++ to directly interface with the LAPACK algorithms. This can

be extended to other diagonalization routines without much trouble. The function

has signature

vector<double> diagon(Matrix H,

StateSet<State, Coeff> eigenVecs,

size_t numEigs),

bBoost (http://www.boost.org) provides a collection of free peer-reviewed C++ libraries with an
emphasis on generics and portability.

http://www.boost.org

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

A generic approach to electronic structure calculations in nanoscopic systems 9

where H is a uBLAS matrix. The final two arguments are optional. If the first

is provided, then the eigenvectors of H are calculated and placed in eigenVecs.

Otherwise, only eigenvalues are computed. The final argument numEigs indicates

how many eigenvectors and eigenvalues to compute. If omitted, all are computed.

The function itself returns the eigenvalues of H in a vector<double>.

To construct H, one would normally call oneBodyOp and/or twoBodyOp for each

of the elements. To aid in this, a function matrixOp is provided

Matrix matrixOp(basis, matelem)

which returns the uBLAS matrix obtained by applying matelem (Sec. 4.2) to each

of the basis vectors in basis. This function calls oneBodyOp and twoBodyOp as

appropriate.

As mentioned above, the primary purpose of the Diagon framework is to pro-

vide flexible, generic tools to aid development. This aspect was placed at a higher

premium than pure computational efficiency, although the generic nature of the

framework is very well suited to producing efficient code as well. In the following

penultimate section, we provide an example illuminating the strengths of the Diagon

framework.

5. Example: Parabolic dots with spin-orbit interactions

Using the generic framework Diagon, a complete diagonalization program can be

set up and run remarkably quickly. Once the basic (non-generic) components are

provided, the package, at compile-time, produces a custom-made set of classes and

functions dealing with linear superpositions of many-body states. These can be used

as a simple diagonalization to obtain spectra, or the eigenstates can be used for fur-

ther computations in, for example, problems of quantum dynamics and decoherence,

where the actual states are required, and where correlations in the system play an

important role. In this section, we outline a diagonalization procedure to illustrate

the use of the Diagon framework.

We look specifically with at a two-dimensional quantum dot in a GaAs/AlGaAs

heterojunction parabolically confined in the plane and in the presence of both spin-

orbit interactions and a magnetic field perpendicular to the plane of the dot.11 The

Hamiltonian may be written as

Ĥ = Ĥqd + Ĥso, (3)

where the quantum dot Hamiltonian is given by two harmonic oscillators plus a

Zeeman term

Ĥqd = ~Ω+

(

a†a+
1

2

)

+ ~Ω−

(

b†b+
1

2

)

+ gµBB
zSz, (4)

with Ω± = [(ω2
c + 4ω2

0)
1/2 ± 1]/2. Here, ω0 is the confinement frequency char-

acterizing the parabolic confinement,11 and ωc = eBz/(mc) is the cyclotron fre-

quency. The final term in Eq. (3) is the spin-orbit interaction. We take a lin-

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

10 Jordan Kyriakidis

Fig. 1. Example code4 showing minimal main() function for computing spin-orbit eigenvalues
and eigenvectors. There are only 21 lines of code.

earized model including both Dresselhaus and Rashba terms,16 respectively given

by Ĥso = β(−σxpx + σypy) +α(σypx − σxpy), where σk are the Pauli matrices, and

β and α are respectively the Dresselhaus and Rashba coefficients. In terms of the

Bose operators of Eq. (4), we can write

Ĥso = ΛS+

[

Ω−(αb
† + iβb)− Ω+(αa+ iβa†)

]

+ h.c., (5)

where h.c. is the Hermitian conjugate, S+ is the spin raising operator, and Λ2 =

(~m/2)/(ω2
c + 4ω2

0)
1/2.

The objective in this example is to diagonalize Eq. (3) in the basis of the eigen-

states of Eq. (4), given by the well-known11 Fock-Darwin states |nms〉.

Figure 1 shows a minimal function which does this using the Diagon framework.

The example is meant only for illustrative purposes; header files and additional

comments have been stripped for brevity. Section 1 of the code simply creates

parameters for Eq. (4); the genFDParamGaAs() function takes ω0 and the external

field and computes Ω± and the Zeeman energy in Eq. (4) using GaAs material

parameters. Section 2 performs a similar task for Eq. (5).

Section 3 generates the basis states with which to perform the diagonalization.

The object fdGen() is a function which is instantiated with the fdParam object;

successive calls of fdGen() return the Fock-Darwin state |nms〉 with the next-

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

A generic approach to electronic structure calculations in nanoscopic systems 11

highest energy. Thus calling fdGen() 1000 times will yield the 1000 lowest-energy

states with the given material and model parameters. The line

generate(basisStates.begin(), basisStates.end(), fdGen);

does exactly this. The basis states are then stored in the vector basisStates.

Section 4 of Fig. 1 creates the Hamiltonian matrix, Eq. (3), using the matrixOp

function of Sec. 4.4. The function objects fdMatElem and fdMatElemSO are each

to be called with two arguments (Fock-Darwin states, FDState) and return matrix

elements of Ĥqd and Ĥso respectively. Thus, these are the matelem objects described

in Sec. 4.2.

Finally, in section 5 of Fig. 1, the diagonalization occurs. A StateSet (Sec. 4.1)

is first created and the basis states are added to it. Then, diagon (Sec. 4.4) is

called and the eigenvalues are placed in the vector eigenValues, whereas all the

eigenstates, each an orthogonal superposition of the basis vectors, are placed in the

StateSet eigenVectors. These results can then be printed, or otherwise processed.

We stress that this simple example is meant for illustrative purposes only. Many

of the functions in Fig. 1 take optional arguments and support different interfaces

and much of the Diagon framework has not been explicitly mentioned in this exam-

ple. Nevertheless, it does illustrate how a properly constructed generic framework

can support a flexible computing environment. For example, elliptic dots could eas-

ily be added to the above example. One would simply need to define an additional

matelem function object which computes the appropriate matrix elements, and an

additional parameter object containing the eccentricities and so forth. This addi-

tional term could then be added to the Hamiltonian through the matrixOp function.

Additionally adding Coulomb interactions among the particles would proceed along

essentially identical lines.

6. Conclusions

We have outlined an approach to the CI method which utilizes the generic pro-

gramming facilities provided by the C++ programming language. The general idea

is that much of the CI machinery is independent of the actual single-particle states

used. A generic approach allows one explicitly separate algorithms and data types

and allows a great deal of code reuse. This has been implemented in the Diagon

framework, which focuses on (but is by no means restricted to) two-dimensional

semiconductor quantum dots. A generic approach such as this offers a good com-

promise between rapid development and flexibility on the one hand, and efficient

code on the other.

Acknowledgments

This work is supported by NSERC of Canada and by the Canadian Foundation for

Innovation.

February 26, 2017 12:3 WSPC/INSTRUCTION FILE diagon

12 Jordan Kyriakidis

References

1. S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
2. M. A. Kastner, Ann. Phys. (Leipzig) 9, 885 (2000).
3. X. Gonze et al., Computational Materials Science 25, 478 (2002).
4. Source-level documentation of the full Diagon framework, including unit tests, sup-

plementary files, example applications, and the complete source code, can be viewed
at http://soliton.phys.dal.ca/diagon.

5. T. L. Veldhuizen, C++ templates as partial evaluation, 1999 ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’99).

6. M. H. Austern, Generic Programming and the STL: Using and Extending the C++

Standard Template Library (Addison Wesley, 1999).
7. A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns

Applied (Addison-Wesley, 2001).
8. J. J. Barton and L. R. Nackman, Scientific and Engineering C++: An Introduction

with Advanced Techniques and Examples (Addison-Wesley, 1994).
9. J. Kyriakidis and C. J. Stevenson, cond-mat/0608044 (2006).

10. E. Vaz and J. Kyriakidis, cond-mat/0608272 (2006).
11. L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer, Berlin, 1997).
12. J. W. Negele and H. Orland, Quantum Many-Particle Systems (Perseus, 1998).
13. A. Wensauer, M. Korkusiński, and P. Hawrylak, Solid State Commun. 130, 115 (2004).
14. T. Helgaker, P. Jørgensen, and J. Olsen,Molecular Electronic-Structure Theory (Wiley,

Chichester, 2000).
15. M. Rontani, C. Cavazzoni, D. Bellucci, and G. Goldoni, J. Chem. Phys. 124, 124102

(2006).
16. W. Zawadzki and P. Pfeffer, Semicond. Sci. Technol. 19, R1 (2004).

http://soliton.phys.dal.ca/diagon
http://arxiv.org/abs/cond-mat/0608044
http://arxiv.org/abs/cond-mat/0608272

