
Editors: George K. Thiruvathukal, gkt@cs.luc.edu
Konstantin Läufer, laufer@cs.luc.edu

80	 Copublished by the IEEE CS and the AIP	 1521-9615/08/$25.00 ©2008 IEEE� Computing in Science & Engineering

S cie n t i f ic P r o g r a m m i n g

Python and XML
for Agile Scientific Computing

By Michele Vallisneri and Stanislav Babak

To set up a mock data challenge, the authors needed to string together a lot of existing and new code. Here,
they describe how Python and XML came to the rescue.

G ravitational waves (GWs) are self-sustaining per-
turbations of space–time geometry, predicted
by Albert Einstein’s theory of general relativity.

They propagate at the speed of light and have the effect
of alternately stretching and squeezing the distance be-
tween freely falling masses (as measured by light traveling
between them). GWs are emitted by accelerating mass,
much like electromagnetic radiation is generated by ac-
celerating charge, but the coupling of GWs with matter
is exceedingly weak, so only the waves emitted by very
rapidly moving and heavy bodies (typically astrophysi-
cal objects of mass comparable to our Sun’s) are detect-
able in practice. The existence of GWs was confirmed
by observations of binary pulsar B1913+16, discovered in
1974 by Russell Alan Hulse and Joseph Hooton Taylor Jr.
(a feat that won them the 1993 Nobel Prize): the orbit of
this binary is shrinking at the rate predicted by the loss of
orbital energy to GWs. Researchers have yet to achieve
direct detection, but ground-based interferometric GW
detectors such as the Laser Interferometer Space Antenna
(LIGO) and Virgo are expected to reach the necessary
sensitivity within the next decade. In addition, the Laser
Interferometer Space Antenna (LISA), a space-borne GW
observatory planned jointly by NASA and the European
Space Agency, will assuredly detect a wide variety of GW
sources throughout the universe, thanks mostly to the
quietness of the space environment and to LISA’s very
long 5-million-km baseline.1

Because all GW detectors are by their nature omni-
directional and because GWs are generated by the bulk
motion of matter rather than by surface processes, LISA
won’t produce images; rather, it will produce time series,
not unlike sound (but in the 0.1-mHz to 0.1-Hz frequency
range), consisting of the superposition of the gravitational
waveforms from all sources within range, typically thou-
sands of them. We can tease out the signals from individual
sources by zeroing in on their specific, complex “finger-

prints,” much as we can still conduct a conversation with a
friend at a noisy party. Still, the analysis of LISA data will
be a delicate job—and a very important one because we
won’t have detections without successful data analysis. In
this sense, data analysis is integral to the LISA measure-
ment concept.

As part of LISA’s data analysis development activities,
its project and science teams have decided to sponsor a
series of mock data challenges. Such exercises are widely
used in developing and validating scientific experiments
characterized by complex data flows, large collaborations,
extensive use of information technology, and difficult
or unproven data analysis techniques. They involve the
generation of mock data sets that impersonate the future
output of measurements at varying levels of realism. Sci-
entists then use these data sets to exercise selected parts
of the data collection and analysis chain—for example,
a mock data challenge for a particle collider might help
verify that the data storage system was fast enough to re-
cord all triggers or to validate the statistical analysis of
event backgrounds.

In the mock LISA data challenges (MLDCs; http://
astrogravs.nasa.gov/docs/mldc), the challengers distribute
several simulated LISA data sets to challenge participants;
the data include GW signals from sources of undisclosed
parameters as well as realistic instrument noise. Partici-
pants must analyze the data and report their estimates for
the GW source parameters. These challenges are meant to
be blind tests but not really contests: their greatest benefit
comes from the quantitative comparison of results, analysis
methods, and algorithm implementations.2

The MLDC Workflow
At the beginning of 2006, the LISA science team formed
a taskforce whose mission was to prepare and administer
the first challenge within a timeframe of a few months. It
became immediately apparent that a significant amount of

January/February 2008� 81

work would be required to produce and assemble the com-
putational pipeline that would generate the MLDC data
sets. As Figure 1’s orange “task” boxes show, the pipeline
involves producing random sets of physical parameters for
the GW sources included in the challenge data set; gen-
erating the gravitational waveforms for these systems;
running the waveforms through faithful models of LISA
that simulate its signal response and noises; and merging
all the noises and responses to individual sources into the
data set distributed to the participants. Figure 2 shows an
example of such a data set, with all constituents broken out
as separate spectra. The only software components that
were already available for this pipeline (the purple boxes in
Figure 1) were small stand-alone C programs to produce
gravitational waveforms (which we eventually rewrote
from scratch in C++) and two larger applications to simu-
late the LISA response:

Synthetic LISA (www.vallis.org/syntheticlisa) is a C++
library steered from Python through SWIG wrappers
(Simplified Wrapper and Interface Generator; www.
swig.org).3
The LISA Simulator (www.physics.montana.edu/LISA)
is a file-driven C application.

We felt that only an expressive scripting language such
as Python4 (which has been compared to pseudocode for its
readability and terseness) would let us accomplish this task
rapidly enough, yet still give us confidence in the code’s
correctness and let less-experienced programmers (many
in our taskforce) participate fruitfully. Indeed, we relied
on Python to write the missing pipeline components, in-
cluding interoperable wrappers for the existing code (the
green boxes in Figure 1) along with a master script to glue
everything together and run the tasks in sequence. Python
made it easy to

write transparent steering scripts that exploit Python’s
easy access to the shell and file system—the master script
even includes a bare-bones queuing system (based on the
Python subprocess module) that enables the concurrent
processing of tasks on parallel (or multicore) computers;
wrap the GW-generating C/C++ components using
SWIG, which can parse header files and automatically
generate Python wrappers for functions, variables, and
classes;
wrap the file-based LISA Simulator—which takes input
and writes output to a set of rigidly named files in its own

•

•

•

•

•

compilation directory—by dynamically creating work-
ing directories filled with symbolic links to executables
and shared files, and then copying and renaming input
and output files before and after running the simulator

Stand-alone
C++ code

M
as

te
r

Py
th

on
 s

cr
ip

t

Generate random
gravitational wave (GW)

source parameters

Tasks Existing and new code

Python script

Python script

Python wrappers

Python wrappers

Python module,
legacy C application

lisaXML file

Compute gravitational
waveforms

lisaXML file

Simulate LISA
response and noises

lisaXML file

Put everything together

lisaXML file

Figure 1. The mock LISA data challenge (MLDC) data-set-
generation pipeline. We use the lisaXML format throughout
to exchange parameters and data between all tasks in the
pipeline (orange boxes). Purple boxes represent software
components that were already available when work began
on the pipeline; green boxes represent ad hoc Python
components and wrappers.

10–35

10–40

10–45

10–50

10–55

10–4 10–3

Frequency (Hz)
10–2

PS
D

 o
f f

ra
ct

io
na

l f
lu

ct
ua

tio
ns

(1
/H

z,
 o

ne
-s

id
ed

)

Challenge 22 (training set)
Everything Galaxy

(white dwarfs)
Instrument

EMRIs

SMBHs

Figure 2. Power spectral density (PSD) plot for a typical
mock LISA data challenge (MLDC) data set, broken apart
into gravitational wave (GW) source and noise components.
Contestants receive only the time series corresponding to
the black “everything” curve and must determine the source
parameters, labeled here as “SMBHs” for the inspiraling
binaries of supermassive black holes; “EMRIs” for the
extreme mass ratio inspirals of small bodies into central
galactic black holes; and “galaxy” for several millions of
lighter white-dwarf binaries in the Milky Way.

S cie n t i f ic P r o g r a m m i n g

82� Computing in Science & Engineering

(also letting us run multiple instances of the simulator
concurrently);
write I/O routines for the MLDC data files that would
be especially convenient to use from the scripts and Py-
thon-wrapped components; and
provide a master compilation and installation script for
the pipeline and all required Python packages. This
was paramount because we knew that less experienced
contributors would be stymied (in different, creative
ways) by having to compile and install packages such
as the GNU Scientific Library. This script facilitated
interesting synergies with the master pipeline script,
such as tagging output data sets with the Subversion
revision of the pipeline code (an elementary example of
provenance tracking).

In the rest of this article, we offer a narrative of our ex-
periences with the taskforce, focusing particularly on the
implementation details we consider most innovative or en-
abling. We hope this proves useful to readers considering
similar endeavors. The entire MLDC code base is available
on Google Code (http://lisatools.googlecode.com).

•

•

The lisaXML Format
Early on, we made the crucial simplifying decision that all
tasks in the pipeline would communicate via a single data
format, which we would also use to distribute the data sets
to challenge participants and to store challenge keys (the
undisclosed source parameters) in a secure location. Our
format needed to describe both the rather structured data
(each source’s physical parameters) and the more homoge-
neous but bulky arrays (the time series of the LISA mea-
surements, at a combined 134 Mbytes for two years of data
sampled every 15 seconds).

Text-based formats seemed a reassuring choice (the re-
sulting files would be easier for humans to parse and edit
directly) and less dependent on the availability of the right
I/O libraries on the users’ platforms. XML,5,6 in particu-
lar, seemed promising because the data files would be es-
sentially self-describing, I/O libraries would be plentiful,
and the files could even be displayed nicely with standard
Web browsers, which can render XML in HTML with
the help of application-specific stylesheets. (As an example,
try looking at the challenge keys at http://astrogravs.nasa.
gov/docs/mldc/round2/datasets.html and then compare

currently one minor release behind the other versions, and I
expect the VirtualBox team to fix these issues soon.

Certain features are availably only in the closed source

edition targeted at enterprise customers—most notably,
access to USB devices such as external drives or Webcams
on host machines.

Läufer’s Lounge
Free Java Test Coverage Tools
In “A Hike through Post-EJB J2EE Web
Application, Part III” (Computing
in Science & Eng., vol. 9, no. 1, pp.
82–95), we discussed unit testing for
Java applications and test coverage
as a way to determine how well our
tests do their jobs. Back then, we

used Coverlipse (http://coverlipse.sourceforge.net), an
Eclipse plug-in for code coverage visualization that, unfor-
tunately, supports only up to version 3.2 of Eclipse. Indeed,
it didn’t work for me on Eclipse 3.3 (Europa), so I had to
look for an alternative for my courses and other work.

A student of mine recommended EMMA (http://emma.
sourceforge.net), a Java code coverage tool under active
development and getting quite a bit of attention. Not
only does EMMA support various types of coverage (class,
method, line, basic block), it also generates high-level
stats that let you drill down into detail as needed (project,
package, class, and method level). My student is a fan of
command-line tools, whereas I was hoping for an Eclipse
plug-in, so luckily for me, there’s EclEmma (www.eclemma.
org), which packages EMMA as an Eclipse plug-in that
works with Eclipse 3.3. It integrates nicely with Eclipse by
adding a “Run > Coverage As” menu analogous to the
“Run > Run As” menu. It shows its results in the new “Cov-
erage” view as a tree you can drill into, and it indicates

coverage by source code highlighting (see Figure A).

Open Source Virtualization
I do most of my work between my Apple MacBook Pro run-
ning OS X and my Linux desktop server running Ubuntu.
Yet, once in a while, I have to run a Windows application.
There are several ways to achieve this goal, and the Wiki-
pedia article on virtual machines (http://en.wikipedia.org/
wiki/Virtual_machine) is an excellent starting point, listing
tons of virtualization software options, including compat-
ibility layers, emulators, and hardware virtualization.

VirtualBox (www.virtualbox.org) follows the latter ap-
proach and caught my attention for several reasons:

It’s available for all three major operating systems run-
ning on x86 and AMD64 hardware, including Windows,
Linux, and OS X.
It seems to be the only solution freely available as open
source software (binaries are also available for personal
use and evaluation).
It’s a high-quality, well-supported professional product
under active development.

Installation was a snap on both Ubuntu and OS X, and as I
typed up this sidebar using Google Docs in Firefox running
on a Windows XP guest machine inside a VirtualBox running
on my MacBook, the user experience was close to native ex-
cept for some printing problems (which could be Windows-
related) and a little quirk with the fn key. The Mac version is

•

•

•

Figure A. Eclipse with EclEmma views. The hierarchical view and Java source code highlighting provide detailed test coverage information.

January/February 2008� 83

with the XML version by using the “View page source”
option in your browser.) The choice of XML eliminated
from consideration several standard binary formats for
scientific data, such as the Hierarchical Data Format
(HDF; http://hdf.ncsa.uiuc.edu), Network Common Data
Form (netCDF; www.unidata.ucar.edu/software/netcdf),
and Flexible Image Transport System (FITS; http://fits.
gsfc.nasa.gov), all of which have XML representations
that are meant primarily as interfaces for special parsing
tasks or for translating to other formats. On the other
hand, given the length of our time series, we longed for
the performance that reading and writing binary files can
achieve. We ended up choosing the Extensible Scientific
Interchange Language (XSIL; www.cacr.caltech.edu/SDA/
xsil), dubbed a “flexible, hierarchical, extensible transport
[XML] language for scientific data objects” by its creators
at Caltech’s Center for Advanced Computing Research and
used in projects such as LISA’s cousin LIGO. Although
the enthusiasm for developing scientific XML languages
(XSIL included) seems to have peaked around 2001, XSIL
still stands out for its simple yet expressive structure based
on just eight XML elements and for its ability to link to

external binary files containing time series or tabular data:
the main XML file describes the binary data’s layout and
structure, which can be stored locally or accessed remotely
through URLs.

The alternative approach of embedding the binary data
in the XML is hardly practical: we can’t just insert a
stream of “bits” in an XML document because all the
bits therein must represent legal characters in the doc-
ument’s encoding; even if this were somehow arranged,
the binary data might contain special sequences, such as
</, which could confuse the XML parsing. The work-
around is to encode the binary data with a limited set
of ASCII characters (such as hexadecimal numbers or
the XSIL-supported Base64 encoding), but doing this
eats away at the very performance gain sought by “going
binary” in the first place. (The emerging binary XML
standards discussed in the “Binary XML” sidebar should
eventually support some form of binary data embedding,
but they aren’t quite there yet.)

Depending on its use in the pipeline or to distribute
data sets, a lisaXML file can include several sections, such
as a SourceData section to describe gravitational wave

currently one minor release behind the other versions, and I
expect the VirtualBox team to fix these issues soon.

Certain features are availably only in the closed source

edition targeted at enterprise customers—most notably,
access to USB devices such as external drives or Webcams
on host machines.

Läufer’s Lounge
Free Java Test Coverage Tools
In “A Hike through Post-EJB J2EE Web
Application, Part III” (Computing
in Science & Eng., vol. 9, no. 1, pp.
82–95), we discussed unit testing for
Java applications and test coverage
as a way to determine how well our
tests do their jobs. Back then, we

used Coverlipse (http://coverlipse.sourceforge.net), an
Eclipse plug-in for code coverage visualization that, unfor-
tunately, supports only up to version 3.2 of Eclipse. Indeed,
it didn’t work for me on Eclipse 3.3 (Europa), so I had to
look for an alternative for my courses and other work.

A student of mine recommended EMMA (http://emma.
sourceforge.net), a Java code coverage tool under active
development and getting quite a bit of attention. Not
only does EMMA support various types of coverage (class,
method, line, basic block), it also generates high-level
stats that let you drill down into detail as needed (project,
package, class, and method level). My student is a fan of
command-line tools, whereas I was hoping for an Eclipse
plug-in, so luckily for me, there’s EclEmma (www.eclemma.
org), which packages EMMA as an Eclipse plug-in that
works with Eclipse 3.3. It integrates nicely with Eclipse by
adding a “Run > Coverage As” menu analogous to the
“Run > Run As” menu. It shows its results in the new “Cov-
erage” view as a tree you can drill into, and it indicates

coverage by source code highlighting (see Figure A).

Open Source Virtualization
I do most of my work between my Apple MacBook Pro run-
ning OS X and my Linux desktop server running Ubuntu.
Yet, once in a while, I have to run a Windows application.
There are several ways to achieve this goal, and the Wiki-
pedia article on virtual machines (http://en.wikipedia.org/
wiki/Virtual_machine) is an excellent starting point, listing
tons of virtualization software options, including compat-
ibility layers, emulators, and hardware virtualization.

VirtualBox (www.virtualbox.org) follows the latter ap-
proach and caught my attention for several reasons:

It’s available for all three major operating systems run-
ning on x86 and AMD64 hardware, including Windows,
Linux, and OS X.
It seems to be the only solution freely available as open
source software (binaries are also available for personal
use and evaluation).
It’s a high-quality, well-supported professional product
under active development.

Installation was a snap on both Ubuntu and OS X, and as I
typed up this sidebar using Google Docs in Firefox running
on a Windows XP guest machine inside a VirtualBox running
on my MacBook, the user experience was close to native ex-
cept for some printing problems (which could be Windows-
related) and a little quirk with the fn key. The Mac version is

•

•

•

Figure A. Eclipse with EclEmma views. The hierarchical view and Java source code highlighting provide detailed test coverage information.

S cie n t i f ic P r o g r a m m i n g

84� Computing in Science & Engineering

sources or a TDIData section with time series of simu-
lated LISA readouts (see Figure 3). The XSIL format can
represent complex hierarchical data structures using a
few simple XML elements, such as <XSIL Name=“...”
Type=“...”>, a generic container used in lisaXML to
delimit the file sections and enclose composite objects;
<Param Name=“...” Unit=“...”>, to represent physi-
cal quantities and other atomic data; <Array>, <Dim>,
and <Stream>, to represent homogeneous matricial data;

<Table> and <Column Name=“...” Unit=“...”>, for
heterogeneous tabular data; and a few others.

Reading and Writing lisaXML in Python
Because we chose Python as the preferred language for
scripting and gluing together the MLDC workflow, we
needed a good I/O library for lisaXML (the XSIL creators
provide a very accomplished parsing library for Java but not
for Python). Several good Python modules are available

Figure 3. The lisaXML format. The Extensible Scientific Interchange Language (XSIL) format can represent complex
hierarchical data structures using a few simple XML elements.

Figure 4. Reading a lisaXML file with the Python lisaxml interface. The yellow, light blue, and green highlighting matches
the lisaXML sections and containers with the corresponding Python objects.

January/February 2008� 85

for parsing XML, but it wasn’t realistic to ask the average
taskforce developer to work directly with one of the two
standard APIs (SAX, the Simple API for XML, is event-
based and therefore requires writing unintuitive handler
functions, and DOM, the Document Object Model, is tree-
based and so comprehensive that it can easily become un-
wieldy). Instead we chose a more simple-minded approach
(and one married more directly to lisaXML’s structure and
needs) that was closer to the idea of XML data binding and
to the BetterXML/NaturalXML project’s aims.5

The idea was to match the lisaXML and Python seman-
tics. Look at Figure 3 for the structure of lisaXML files,
which consist of trees of nested <XSIL> containers; our
interface represents them as instances of an XSILobject
class that extends the Python list object, so it can contain
its <XSIL> children very naturally (they can be accessed
as xsilobj[0], xsilobj[1], and so on). The Name and
Type of <XSIL> elements are assigned naturally to the at-
tributes xsilobj.Name and xsilobj.Type; in fact, Py-
thon attributes are so convenient that we used them in
several additional ways:

to provide access to <XSIL> children by Name (for ex-
ample, rootxsil.SourceData, where rootxsil is the
outermost XSIL element of the lisaXML file);
to store any <Table> or <Array> contained in an
<XSIL> element; and
to provide access to the <Param> defined for an <XSIL>
element (for example, xsilobj.EclipticLatitude for
a GW source’s sky position; xsilobj.parameters keeps
the list of <Param> types that have been defined in order
to distinguish them from the Name’d XSIL children).

The resulting lisaXML I/O interface is very natural to

•

•

•

use, following Python’s principle of minimum surprise;
Figures 4 and 5 give examples of reading and writing
lisaXML files. The lisaxml library supports creating and
writing lisaXML trees, as well as reading and rewriting
them after modification.

If you need some technical details, the lisaXML ar-
rays and tables stored in external binary files are read and
written directly to and from Numerical Python (numpy)
arrays,7 swapping bytes if necessary to read data written
on platforms with different endianness (the ordering of the
bytes that comprise a multibyte data type, such as a floating-
point number). The attribute-mapping “magic” is achieved
via Python’s introspection capabilities, such as __dict__,
__getattr__, and __setattr__. The lisaxml library
is built on top of the very fast C/Python module pyRXP,
which reads an entire XML file in one go and returns a
simple tree structure of Python “tuples” of the form

(tagname,attrdict,children|content,[more]),

where tagname is a string (such as ‘Param’ for the first
Param element in the green box of Figure 3); content is a
list of more tuples describing children elements or text data
(just [‘GalacticBinary’] for our Param element); attr-
dict is a Python dictionary ({‘Name’: ‘SourceType’});
and the fourth element is sometimes used for more ad-
vanced parsing functions. An equally swift but more el-
egant XML interface is the ElementTree module, which
is in the Python 2.5 standard library.

All in all, lisaxml takes up roughly 1,000 lines of Py-
thon, which are devoted mostly to the management of bi-
nary files; the code that translates back and forth between
XML and Python objects is very terse, again thanks to
Python’s expressiveness and introspection (try that in C!).

Figure 5. Writing a gravitational wave (GW) source object to a lisaXML file. The highlighted Python objects in this example
map into the file’s sections and containers.

S cie n t i f ic P r o g r a m m i n g

86� Computing in Science & Engineering

The greatest advantage of using an introspective language
such as Python rather than a compiled language for this
application is that, although there’s some regularity in the
lisaXML files’ structure (which we’ve used to some extent
in designing the lisaxml interface), the structure is still
very fluid: for instance, different lisaXML files can have
different <Param> elements defined in different containers,
users might want to include annotations from their own
analysis pipelines, and so on. In Python, we can change
data object structures on the fly to accommodate such dif-
ferences, whereas doing so would be difficult in a language
such as C without adding layers of indirection (and there-
fore complicating the interface).

The true power of having such a simple, intuitive in-
terface became clear when it was time to ask taskforce
members to develop GW-generating plug-ins for the
MLDC architecture. Figure 6 shows an example. The
C++ program BBHChallenge1.cc generates gravitational
waveforms for a system of two inspiraling black holes. We
use it by first instantiating a BBHChallenge1 object and
then calling its ComputeWaveform method. We plugged
this code into the MLDC pipeline by using SWIG to
generate a Python wrapper: except for a little SWIG
boilerplate, all that we required was a new Python class
(BlackHoleBinary) to extend lisaxml Source. Doing
so automatically ensures that by the time the pipeline calls

the waveforms method, the lisaXML interface has read
source parameters from lisaXML and assigned them to
the instance attributes of the same name, ready to be used
in the BBHChallenge1 constructor. Indeed, such wrap-
pers are simple enough that we can easily adapt them from
a template for any additional GW source class; they’re also
transparent and easy to debug.

Collaborative computational projects carry many risk
factors (getting things running fast and keeping them

running for an extended time; merging contributions from
multiple developers and managing diverse groups of us-
ers on different platforms; dealing with even moderately
complicated workflows) that can result in unnecessary de-
lays, duplicated effort, steep learning curves, difficult-to-
maintain code bases, and even (alas!) incorrect results. We
learned that we can fight such complexity with simplicity,
and we found strong allies in powerful, flexible, and ex-
pressive tools such as Python and XML. At its best, sci-
entific programming becomes the transparent and elegant
embodiment of scientific notions, equations, and processes
into code, and many CiSE readers are familiar with the
satisfaction and enjoyment that come from occasionally
reaching such highs. We think that Python and XML can
help in this quest.�

Binary XML

The emerging binary XML standards seek to reduce the
size and improve the reading and writing performance

of XML documents, while preserving the language’s flex-
ibility by encoding the entire infoset (the abstract class
of data structures that can be expressed with XML, as
opposed to their explicit realization in the XML syntax). In
addition, binary formats should ease the inclusion of typed
data such as images, sound, and the large numerical arrays
useful in many scientific applications, which are represent-
ed awkwardly in standard text-oriented XML.1

In response to these aspirations, the World Wide Web
Consortium (W3C) chartered the XML Binary Characteriza-
tion (XBC) working group to scope out the use cases and
desired properties of binary XML implementations; among
the properties the working group is discussing is support
for embedding binary data and standard data types. Work-
ing from the XBC recommendations, the W3C Efficient
XML Interchange (EXI) working group has since released
a format specification based on the pre-existing Efficient
XML, which distills the XML syntax into an event grammar
that can be mapped to variable bit-length tokens, with the
shortest sequences reserved for the most common occur-
rences. Work is ongoing on actual implementations.

Sun Microsystems’ competing Fast Infoset format (re-
cently adopted as an ISO specification) is based on similar
principles, but is more mature, with open source and
commercial libraries already available in several languages
(though not Python). Other binary XML formats focus on
specific applications (multimedia players or mobile phones)
or can be described more accurately as compressing text
ual XML, rather than directly encoding the XML infoset.

The overall impression is that the situation is still very
fluid, and it might be too early to embrace binary XML in
mainstream scientific applications. It would be good to
revisit the question in a few years, with the hindsight of
the initial experiments that are now beginning to appear
in the literature. In the meantime, we can adopt more
simple-minded methods to reduce storage size (such as
gzip-compressing textual XML) to improve the reading
and writing of large data sets (such as the hybrid approach
discussed in the main text of this article).

Reference
J. Kangasharju and S. Tarkoma, “Benefits of Alternate XML

Serialization Formats in Scientific Computing,” Proc. Workshop

on Service-Oriented Computing Performance: Aspects, Issues and

Approaches, ACM Press, 2007, pp. 23–30; http://portal.acm.org/

citation.cfm?id=1272457.

1.

January/February 2008� 87

Acknowledgments
Michele Vallisneri’s work was supported by the LISA Mis-
sion Science Office and by the Human Resources Devel-
opment Fund at the Jet Propulsion Laboratory, California
Institute of Technology, where it was performed under con-
tract with NASA.

References
J. Baker et al., eds. “LISA: Probing the Universe with Gravitational
Waves,” LISA Mission Science Office whitepaper, 2007; www.lisa-sci-
ence.org/resources/talks-articles/science/lisa_science_case.pdf.

K.A. Arnaud et al., “An Overview of the Second Round of the Mock LISA
Data Challenges,” Classical and Quantum Gravity, vol. 24, no. 19, 2007,
pp. S551–S564.

T.L. Cottom, “Using SWIG to Bind C++ to Python,” Computing in Science
& Eng., vol. 5, no. 2, 2003, pp. 88–96.

Computing in Science & Eng., special issue on Python, vol. 9, no. 3, 2007.

G.K. Thiruvathukal, “XML and Computational Science,” Computing in
Science & Eng., vol. 6, no. 1, 2004, pp. 74–80.

G.K. Thiruvathukal and K. Laufer, “Natural XML for Data Binding,
Processing, and Persistence,” Computing in Science & Eng., vol. 6, no. 2,
2004, pp. 86–92.

T.E. Oliphant, “Python for Scientific Computing,” Computing in Science
& Eng., vol. 9, no. 3, 2007, pp. 10–20.

Michele Vallisneri is a research scientist at NASA’s Jet Propulsion
Laboratory in Pasadena, California; he is also co-chair of the Mock
LISA Data Challenge taskforce. His research interests include gravi-
tational waves and computational physics. Contact him at michele.
vallisneri@jpl.nasa.gov; via www.vallis.org.

Stanislav Babak is a relativist in the Astrophysical Relativity research
team of the Max-Planck-Institut für Gravitationsphysik in Golm, Ger-
many. His research interests include general relativity and data analy-
sis for ground-based and space-based gravitational wave detectors.
Contact him at stba@aei.mpg.de.

1.

2.

3.

4.

5.

6.

7.

Figure 6. Wrapping gravitational wave (GW)-generating code for use in the mock LISA data challenge (MLDC) pipeline. The
text on the right in this example explains what’s happening on the left.

Now
available!
FREE Visionary Web Videos
about the Future of Multimedia.

Listen to premiere
multimedia experts!

Post your own views
and demos!

Please visit
www.computer.org/multimedia

