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Python and XML 
for Agile Scientific Computing

By Michele Vallisneri and Stanislav Babak

To set up a mock data challenge, the authors needed to string together a lot of existing and new code. Here, 
they describe how Python and XML came to the rescue. 

G ravitational waves (GWs) are self-sustaining per-
turbations of space–time geometry, predicted 
by Albert Einstein’s theory of general relativity. 

They propagate at the speed of light and have the effect 
of alternately stretching and squeezing the distance be-
tween freely falling masses (as measured by light traveling 
between them). GWs are emitted by accelerating mass, 
much like electromagnetic radiation is generated by ac-
celerating charge, but the coupling of GWs with matter 
is exceedingly weak, so only the waves emitted by very 
rapidly moving and heavy bodies (typically astrophysi-
cal objects of mass comparable to our Sun’s) are detect-
able in practice. The existence of GWs was confirmed 
by observations of binary pulsar B1913+16, discovered in 
1974 by Russell Alan Hulse and Joseph Hooton Taylor Jr. 
(a feat that won them the 1993 Nobel Prize): the orbit of 
this binary is shrinking at the rate predicted by the loss of 
orbital energy to GWs. Researchers have yet to achieve 
direct detection, but ground-based interferometric GW 
detectors such as the Laser Interferometer Space Antenna 
(LIGO) and Virgo are expected to reach the necessary 
sensitivity within the next decade. In addition, the Laser 
Interferometer Space Antenna (LISA), a space-borne GW 
observatory planned jointly by NASA and the European 
Space Agency, will assuredly detect a wide variety of GW 
sources throughout the universe, thanks mostly to the 
quietness of the space environment and to LISA’s very 
long 5-million-km baseline.1

Because all GW detectors are by their nature omni-
directional and because GWs are generated by the bulk 
motion of matter rather than by surface processes, LISA 
won’t produce images; rather, it will produce time series, 
not unlike sound (but in the 0.1-mHz to 0.1-Hz frequency 
range), consisting of the superposition of the gravitational 
waveforms from all sources within range, typically thou-
sands of them. We can tease out the signals from individual 
sources by zeroing in on their specific, complex “finger-

prints,” much as we can still conduct a conversation with a 
friend at a noisy party. Still, the analysis of LISA data will 
be a delicate job—and a very important one because we 
won’t have detections without successful data analysis. In 
this sense, data analysis is integral to the LISA measure-
ment concept.

As part of LISA’s data analysis development activities, 
its project and science teams have decided to sponsor a 
series of mock data challenges. Such exercises are widely 
used in developing and validating scientific experiments 
characterized by complex data flows, large collaborations, 
extensive use of information technology, and difficult 
or unproven data analysis techniques. They involve the 
generation of mock data sets that impersonate the future 
output of measurements at varying levels of realism. Sci-
entists then use these data sets to exercise selected parts 
of the data collection and analysis chain—for example, 
a mock data challenge for a particle collider might help 
verify that the data storage system was fast enough to re-
cord all triggers or to validate the statistical analysis of 
event backgrounds.

In the mock LISA data challenges (MLDCs; http:// 
astrogravs.nasa.gov/docs/mldc), the challengers distribute 
several simulated LISA data sets to challenge participants; 
the data include GW signals from sources of undisclosed 
parameters as well as realistic instrument noise. Partici-
pants must analyze the data and report their estimates for 
the GW source parameters. These challenges are meant to 
be blind tests but not really contests: their greatest benefit 
comes from the quantitative comparison of results, analysis 
methods, and algorithm implementations.2

The MLDC Workflow
At the beginning of 2006, the LISA science team formed 
a taskforce whose mission was to prepare and administer 
the first challenge within a timeframe of a few months. It 
became immediately apparent that a significant amount of 
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work would be required to produce and assemble the com-
putational pipeline that would generate the MLDC data 
sets. As Figure 1’s orange “task” boxes show, the pipeline 
involves producing random sets of physical parameters for 
the GW sources included in the challenge data set; gen-
erating the gravitational waveforms for these systems; 
running the waveforms through faithful models of LISA 
that simulate its signal response and noises; and merging 
all the noises and responses to individual sources into the 
data set distributed to the participants. Figure 2 shows an 
example of such a data set, with all constituents broken out 
as separate spectra. The only software components that 
were already available for this pipeline (the purple boxes in 
Figure 1) were small stand-alone C programs to produce 
gravitational waveforms (which we eventually rewrote 
from scratch in C++) and two larger applications to simu-
late the LISA response:

Synthetic LISA (www.vallis.org/syntheticlisa) is a C++ 
library steered from Python through SWIG wrappers 
(Simplified Wrapper and Interface Generator; www.
swig.org).3 
The LISA Simulator (www.physics.montana.edu/LISA) 
is a file-driven C application.

We felt that only an expressive scripting language such 
as Python4 (which has been compared to pseudocode for its 
readability and terseness) would let us accomplish this task 
rapidly enough, yet still give us confidence in the code’s 
correctness and let less-experienced programmers (many 
in our taskforce) participate fruitfully. Indeed, we relied 
on Python to write the missing pipeline components, in-
cluding interoperable wrappers for the existing code (the 
green boxes in Figure 1) along with a master script to glue 
everything together and run the tasks in sequence. Python 
made it easy to

write transparent steering scripts that exploit Python’s 
easy access to the shell and file system—the master script 
even includes a bare-bones queuing system (based on the 
Python subprocess module) that enables the concurrent 
processing of tasks on parallel (or multicore) computers;
wrap the GW-generating C/C++ components using 
SWIG, which can parse header files and automatically 
generate Python wrappers for functions, variables, and 
classes;
wrap the file-based LISA Simulator—which takes input 
and writes output to a set of rigidly named files in its own 
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compilation directory—by dynamically creating work-
ing directories filled with symbolic links to executables 
and shared files, and then copying and renaming input 
and output files before and after running the simulator 
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Figure 1. The mock LISA data challenge (MLDC) data-set-
generation pipeline. We use the lisaXML format throughout 
to exchange parameters and data between all tasks in the 
pipeline (orange boxes). Purple boxes represent software 
components that were already available when work began 
on the pipeline; green boxes represent ad hoc Python 
components and wrappers.
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Figure 2. Power spectral density (PSD) plot for a typical 
mock LISA data challenge (MLDC) data set, broken apart 
into gravitational wave (GW) source and noise components. 
Contestants receive only the time series corresponding to 
the black “everything” curve and must determine the source 
parameters, labeled here as “SMBHs” for the inspiraling 
binaries of supermassive black holes; “EMRIs” for the 
extreme mass ratio inspirals of small bodies into central 
galactic black holes; and “galaxy” for several millions of 
lighter white-dwarf binaries in the Milky Way.
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(also letting us run multiple instances of the simulator 
concurrently);
write I/O routines for the MLDC data files that would 
be especially convenient to use from the scripts and Py-
thon-wrapped components; and
provide a master compilation and installation script for 
the pipeline and all required Python packages. This 
was paramount because we knew that less experienced 
contributors would be stymied (in different, creative 
ways) by having to compile and install packages such 
as the GNU Scientific Library. This script facilitated 
interesting synergies with the master pipeline script, 
such as tagging output data sets with the Subversion 
revision of the pipeline code (an elementary example of 
provenance tracking).

In the rest of this article, we offer a narrative of our ex-
periences with the taskforce, focusing particularly on the 
implementation details we consider most innovative or en-
abling. We hope this proves useful to readers considering 
similar endeavors. The entire MLDC code base is available 
on Google Code (http://lisatools.googlecode.com).

•

•

The lisaXML Format
Early on, we made the crucial simplifying decision that all 
tasks in the pipeline would communicate via a single data 
format, which we would also use to distribute the data sets 
to challenge participants and to store challenge keys (the 
undisclosed source parameters) in a secure location. Our 
format needed to describe both the rather structured data 
(each source’s physical parameters) and the more homoge-
neous but bulky arrays (the time series of the LISA mea-
surements, at a combined 134 Mbytes for two years of data 
sampled every 15 seconds).

Text-based formats seemed a reassuring choice (the re-
sulting files would be easier for humans to parse and edit 
directly) and less dependent on the availability of the right 
I/O libraries on the users’ platforms. XML,5,6 in particu-
lar, seemed promising because the data files would be es-
sentially self-describing, I/O libraries would be plentiful, 
and the files could even be displayed nicely with standard 
Web browsers, which can render XML in HTML with 
the help of application-specific stylesheets. (As an example, 
try looking at the challenge keys at http://astrogravs.nasa.
gov/docs/mldc/round2/datasets.html and then compare 

currently one minor release behind the other versions, and I 
expect the VirtualBox team to fix these issues soon.

Certain features are availably only in the closed source 

edition targeted at enterprise customers—most notably, 
access to USB devices such as external drives or Webcams 
on host machines.

Läufer’s Lounge
Free Java Test Coverage Tools
In “A Hike through Post-EJB J2EE Web 
Application, Part III” (Computing 
in Science & Eng., vol. 9, no. 1, pp. 
82–95), we discussed unit testing for 
Java applications and test coverage 
as a way to determine how well our 
tests do their jobs. Back then, we 

used Coverlipse (http://coverlipse.sourceforge.net), an 
Eclipse plug-in for code coverage visualization that, unfor-
tunately, supports only up to version 3.2 of Eclipse. Indeed, 
it didn’t work for me on Eclipse 3.3 (Europa), so I had to 
look for an alternative for my courses and other work.

A student of mine recommended EMMA (http://emma.
sourceforge.net), a Java code coverage tool under active 
development and getting quite a bit of attention. Not 
only does EMMA support various types of coverage (class, 
method, line, basic block), it also generates high-level 
stats that let you drill down into detail as needed (project, 
package, class, and method level). My student is a fan of 
command-line tools, whereas I was hoping for an Eclipse 
plug-in, so luckily for me, there’s EclEmma (www.eclemma.
org), which packages EMMA as an Eclipse plug-in that 
works with Eclipse 3.3. It integrates nicely with Eclipse by 
adding a “Run > Coverage As” menu analogous to the 
“Run > Run As” menu. It shows its results in the new “Cov-
erage” view as a tree you can drill into, and it indicates 

coverage by source code highlighting (see Figure A).

Open Source Virtualization
I do most of my work between my Apple MacBook Pro run-
ning OS X and my Linux desktop server running Ubuntu. 
Yet, once in a while, I have to run a Windows application. 
There are several ways to achieve this goal, and the Wiki-
pedia article on virtual machines (http://en.wikipedia.org/
wiki/Virtual_machine) is an excellent starting point, listing 
tons of virtualization software options, including compat-
ibility layers, emulators, and hardware virtualization.

VirtualBox (www.virtualbox.org) follows the latter ap-
proach and caught my attention for several reasons:

It’s available for all three major operating systems run-
ning on x86 and AMD64 hardware, including Windows, 
Linux, and OS X.
It seems to be the only solution freely available as open 
source software (binaries are also available for personal 
use and evaluation).
It’s a high-quality, well-supported professional product 
under active development.

Installation was a snap on both Ubuntu and OS X, and as I 
typed up this sidebar using Google Docs in Firefox running 
on a Windows XP guest machine inside a VirtualBox running 
on my MacBook, the user experience was close to native ex-
cept for some printing problems (which could be Windows-
related) and a little quirk with the fn key. The Mac version is 
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•

Figure A. Eclipse with EclEmma views. The hierarchical view and Java source code highlighting provide detailed test coverage information.
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with the XML version by using the “View page source” 
option in your browser.) The choice of XML eliminated 
from consideration several standard binary formats for 
scientific data, such as the Hierarchical Data Format 
(HDF; http://hdf.ncsa.uiuc.edu), Network Common Data 
Form (netCDF; www.unidata.ucar.edu/software/netcdf), 
and Flexible Image Transport System (FITS; http://fits.
gsfc.nasa.gov), all of which have XML representations 
that are meant primarily as interfaces for special parsing 
tasks or for translating to other formats. On the other 
hand, given the length of our time series, we longed for 
the performance that reading and writing binary files can 
achieve. We ended up choosing the Extensible Scientific 
Interchange Language (XSIL; www.cacr.caltech.edu/SDA/
xsil), dubbed a “flexible, hierarchical, extensible transport 
[XML] language for scientific data objects” by its creators 
at Caltech’s Center for Advanced Computing Research and 
used in projects such as LISA’s cousin LIGO. Although 
the enthusiasm for developing scientific XML languages 
(XSIL included) seems to have peaked around 2001, XSIL 
still stands out for its simple yet expressive structure based 
on just eight XML elements and for its ability to link to 

external binary files containing time series or tabular data: 
the main XML file describes the binary data’s layout and 
structure, which can be stored locally or accessed remotely 
through URLs.

The alternative approach of embedding the binary data 
in the XML is hardly practical: we can’t just insert a 
stream of “bits” in an XML document because all the 
bits therein must represent legal characters in the doc-
ument’s encoding; even if this were somehow arranged, 
the binary data might contain special sequences, such as 
</, which could confuse the XML parsing. The work-
around is to encode the binary data with a limited set 
of ASCII characters (such as hexadecimal numbers or 
the XSIL-supported Base64 encoding), but doing this 
eats away at the very performance gain sought by “going 
binary” in the first place. (The emerging binary XML 
standards discussed in the “Binary XML” sidebar should 
eventually support some form of binary data embedding, 
but they aren’t quite there yet.)

Depending on its use in the pipeline or to distribute 
data sets, a lisaXML file can include several sections, such 
as a SourceData section to describe gravitational wave 

currently one minor release behind the other versions, and I 
expect the VirtualBox team to fix these issues soon.

Certain features are availably only in the closed source 

edition targeted at enterprise customers—most notably, 
access to USB devices such as external drives or Webcams 
on host machines.
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look for an alternative for my courses and other work.
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Figure A. Eclipse with EclEmma views. The hierarchical view and Java source code highlighting provide detailed test coverage information.
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sources or a TDIData section with time series of simu-
lated LISA readouts (see Figure 3). The XSIL format can 
represent complex hierarchical data structures using a 
few simple XML elements, such as <XSIL Name=“...” 
Type=“...”>, a generic container used in lisaXML to 
delimit the file sections and enclose composite objects; 
<Param Name=“...” Unit=“...”>, to represent physi-
cal quantities and other atomic data; <Array>, <Dim>, 
and <Stream>, to represent homogeneous matricial data; 

<Table> and <Column Name=“...” Unit=“...”>, for 
heterogeneous tabular data; and a few others.

Reading and Writing lisaXML in Python
Because we chose Python as the preferred language for 
scripting and gluing together the MLDC workflow, we 
needed a good I/O library for lisaXML (the XSIL creators 
provide a very accomplished parsing library for Java but not 
for Python). Several good Python modules are available 

Figure 3. The lisaXML format. The Extensible Scientific Interchange Language (XSIL) format can represent complex 
hierarchical data structures using a few simple XML elements.

Figure 4. Reading a lisaXML file with the Python lisaxml interface. The yellow, light blue, and green highlighting matches 
the lisaXML sections and containers with the corresponding Python objects.
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for parsing XML, but it wasn’t realistic to ask the average 
taskforce developer to work directly with one of the two 
standard APIs (SAX, the Simple API for XML, is event-
based and therefore requires writing unintuitive handler 
functions, and DOM, the Document Object Model, is tree-
based and so comprehensive that it can easily become un-
wieldy). Instead we chose a more simple-minded approach 
(and one married more directly to lisaXML’s structure and 
needs) that was closer to the idea of XML data binding and 
to the BetterXML/NaturalXML project’s aims.5

The idea was to match the lisaXML and Python seman-
tics. Look at Figure 3 for the structure of lisaXML files, 
which consist of trees of nested <XSIL> containers; our 
interface represents them as instances of an XSILobject 
class that extends the Python list object, so it can contain 
its <XSIL> children very naturally (they can be accessed 
as xsilobj[0], xsilobj[1], and so on). The Name and 
Type of <XSIL> elements are assigned naturally to the at-
tributes xsilobj.Name and xsilobj.Type; in fact, Py-
thon attributes are so convenient that we used them in 
several additional ways:

to provide access to <XSIL> children by Name (for ex-
ample, rootxsil.SourceData, where rootxsil is the 
outermost XSIL element of the lisaXML file);
to store any <Table> or <Array> contained in an 
<XSIL> element; and
to provide access to the <Param> defined for an <XSIL> 
element (for example, xsilobj.EclipticLatitude for 
a GW source’s sky position; xsilobj.parameters keeps 
the list of <Param> types that have been defined in order 
to distinguish them from the Name’d XSIL children).

The resulting lisaXML I/O interface is very natural to 

•

•

•

use, following Python’s principle of minimum surprise; 
Figures 4 and 5 give examples of reading and writing 
lisaXML files. The lisaxml library supports creating and 
writing lisaXML trees, as well as reading and rewriting 
them after modification.

If you need some technical details, the lisaXML ar-
rays and tables stored in external binary files are read and 
written directly to and from Numerical Python (numpy) 
arrays,7 swapping bytes if necessary to read data written 
on platforms with different endianness (the ordering of the 
bytes that comprise a multibyte data type, such as a floating-
point number). The attribute-mapping “magic” is achieved 
via Python’s introspection capabilities, such as __dict__, 
__getattr__, and __setattr__. The lisaxml library 
is built on top of the very fast C/Python module pyRXP, 
which reads an entire XML file in one go and returns a 
simple tree structure of Python “tuples” of the form

(tagname,attrdict,children|content,[more]),

where tagname is a string (such as ‘Param’ for the first 
Param element in the green box of Figure 3); content is a 
list of more tuples describing children elements or text data 
(just [‘GalacticBinary’] for our Param element); attr-
dict is a Python dictionary ({‘Name’: ‘SourceType’}); 
and the fourth element is sometimes used for more ad-
vanced parsing functions. An equally swift but more el-
egant XML interface is the ElementTree module, which 
is in the Python 2.5 standard library.

All in all, lisaxml takes up roughly 1,000 lines of Py-
thon, which are devoted mostly to the management of bi-
nary files; the code that translates back and forth between 
XML and Python objects is very terse, again thanks to 
Python’s expressiveness and introspection (try that in C!). 

Figure 5. Writing a gravitational wave (GW) source object to a lisaXML file. The highlighted Python objects in this example 
map into the file’s sections and containers.
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The greatest advantage of using an introspective language 
such as Python rather than a compiled language for this 
application is that, although there’s some regularity in the 
lisaXML files’ structure (which we’ve used to some extent 
in designing the lisaxml interface), the structure is still 
very fluid: for instance, different lisaXML files can have 
different <Param> elements defined in different containers, 
users might want to include annotations from their own 
analysis pipelines, and so on. In Python, we can change 
data object structures on the fly to accommodate such dif-
ferences, whereas doing so would be difficult in a language 
such as C without adding layers of indirection (and there-
fore complicating the interface).

The true power of having such a simple, intuitive in-
terface became clear when it was time to ask taskforce 
members to develop GW-generating plug-ins for the 
MLDC architecture. Figure 6 shows an example. The 
C++ program BBHChallenge1.cc generates gravitational 
waveforms for a system of two inspiraling black holes. We 
use it by first instantiating a BBHChallenge1 object and 
then calling its ComputeWaveform method. We plugged 
this code into the MLDC pipeline by using SWIG to 
generate a Python wrapper: except for a little SWIG 
boilerplate, all that we required was a new Python class 
(BlackHoleBinary) to extend lisaxml Source. Doing 
so automatically ensures that by the time the pipeline calls 

the waveforms method, the lisaXML interface has read 
source parameters from lisaXML and assigned them to 
the instance attributes of the same name, ready to be used 
in the BBHChallenge1 constructor. Indeed, such wrap-
pers are simple enough that we can easily adapt  them from 
a template for any additional GW source class; they’re also 
transparent and easy to debug.

Collaborative computational projects carry many risk 
factors (getting things running fast and keeping them 

running for an extended time; merging contributions from 
multiple developers and managing diverse groups of us-
ers on different platforms; dealing with even moderately 
complicated workflows) that can result in unnecessary de-
lays, duplicated effort, steep learning curves, difficult-to-
maintain code bases, and even (alas!) incorrect results. We 
learned that we can fight such complexity with simplicity, 
and we found strong allies in powerful, flexible, and ex-
pressive tools such as Python and XML. At its best, sci-
entific programming becomes the transparent and elegant 
embodiment of scientific notions, equations, and processes 
into code, and many CiSE readers are familiar with the 
satisfaction and enjoyment that come from occasionally 
reaching such highs. We think that Python and XML can 
help in this quest.�

Binary XML

The emerging binary XML standards seek to reduce the 
size and improve the reading and writing performance 

of XML documents, while preserving the language’s flex-
ibility by encoding the entire infoset (the abstract class 
of data structures that can be expressed with XML, as 
opposed to their explicit realization in the XML syntax). In 
addition, binary formats should ease the inclusion of typed 
data such as images, sound, and the large numerical arrays 
useful in many scientific applications, which are represent-
ed awkwardly in standard text-oriented XML.1

In response to these aspirations, the World Wide Web 
Consortium (W3C) chartered the XML Binary Characteriza-
tion (XBC) working group to scope out the use cases and 
desired properties of binary XML implementations; among 
the properties the working group is discussing is support 
for embedding binary data and standard data types. Work-
ing from the XBC recommendations, the W3C Efficient 
XML Interchange (EXI) working group has since released 
a format specification based on the pre-existing Efficient 
XML, which distills the XML syntax into an event grammar 
that can be mapped to variable bit-length tokens, with the 
shortest sequences reserved for the most common occur-
rences. Work is ongoing on actual implementations.

Sun Microsystems’ competing Fast Infoset format (re-
cently adopted as an ISO specification) is based on similar 
principles, but is more mature, with open source and 
commercial libraries already available in several languages 
(though not Python). Other binary XML formats focus on 
specific applications (multimedia players or mobile phones) 
or can be described more accurately as compressing text
ual XML, rather than directly encoding the XML infoset.

The overall impression is that the situation is still very 
fluid, and it might be too early to embrace binary XML in 
mainstream scientific applications. It would be good to 
revisit the question in a few years, with the hindsight of 
the initial experiments that are now beginning to appear 
in the literature. In the meantime, we can adopt more 
simple-minded methods to reduce storage size (such as 
gzip-compressing textual XML) to improve the reading 
and writing of large data sets (such as the hybrid approach 
discussed in the main text of this article).
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Figure 6. Wrapping gravitational wave (GW)-generating code for use in the mock LISA data challenge (MLDC) pipeline. The 
text on the right in this example explains what’s happening on the left.
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