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Sampling Binary Contingency Tables

Ivona Bezáková

Rochester Institute of Technology

The binary contingency tables problem has sparked the interest of statisticians and 
computer scientists alike. Although it’s been studied from both theoretical and practical 
perspectives, a truly usable algorithm remains elusive. The author presents several 
approaches to the problem.

T he traditional motivation for the 
binary contingency tables problem 
comes from Charles Darwin. In the 
early 1830s, Darwin joined a geo-

logical expedition to the Galápagos archipelago, 
where he collected samples and made notes about 
each of the 17 islands. Back in England, ornithol-
ogist John Gould classified the samples Darwin 
considered to be different bird species as different 
types of the same bird: a finch. Darwin noticed 
that not every type of finch lived on every island, 
so he sketched a so-called occurrence table (see Fig-
ure 1).1 In later years, Darwin noted correlations 
between the types of finches inhabiting the indi-
vidual islands along with the living conditions on 
those islands. This observation is often considered 
to be one of the main sparks that led to his theory 
of evolution.2

In many modern disciplines, we can arrange 
data into occurrence tables as well, but is the ob-
served occurrence table the result of pure chance, 
or does it significantly differ from a random ta-
ble—in Darwin’s case, for example, is the Galá-

pagos occurrence table purely random or a result 
of evolution? To answer this sort of question, we 
need to specify which tables constitute the uni-
verse for randomness and then set up a test sta-
tistics that measures a property of interest on the 
data. If the value of the statistics for the observed 
table differs significantly from the expected value 
across all tables, then the observed table isn’t con-
sidered random.

Scientists often view the marginal sums of an oc-
currence table as fixed. For example, the marginal 
sum in the first row (that is, the sum of all entries 
in this row) of Darwin’s finches table is 14, which 
tells us how widespread the corresponding type 
of finch is (in this case, the large ground finch); 
the marginal sum in the third column is 11, which 
captures how accommodating the island Isabella 
is. Now let’s rephrase the question: is the observed 
table just a pure random draw from the set of all 
occurrence tables with the same marginal sums?

Alan Roberts and Lewis Stone3 designed a 
possible test statistics that measures competitive 
pressures between species: for an occurrence table 
T = (ti,j), i ∈ {1, …, m}, j ∈ {1, …, n}, where i cor-
responds to species and j to the environment, they 
propose computing the function
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If the value of f on the observed table is close to 
the expected value of f over all tables with the same 
marginal sums, then the observed table is viewed 
as random with respect to the test statistics f. 
(Note that this statistics is just an example—other 
researchers have designed different statistics that 
measure other properties of data arranged in oc-
currence tables.)

After we establish the test statistics, computing 
the value for the observed table is straightforward. 
The tricky part is estimating the expected value: 
we can do this via random sampling of all occur-
rence tables with the appropriate marginal sums.

Formal Statement of the Problem
In the binary contingency tables problem, the task 
is to generate a uniformly random m × n binary 
matrix T that satisfies the row sums r1, …, rm and 
the column sums c1, …, cn. (Every entry of a binary 
matrix is either zero or one.) Throughout the rest 
of this article, every matrix T that satisfies these 
conditions is called a binary contingency table (BCT); 
 denotes the sample space—that is, the set of all 
BCTs with the given row and column sums.

Sequential Importance Sampling
The main idea behind the importance sampling 
approach4 is to sample from a nonuniform (and 
easier to compute) distribution to estimate the 
sample space’s size. When the size is known, we 
can then compute the expected value of any func-
tion by computing the expected value of a proper-
ly adjusted function according to the importance 
sampling distribution.

More precisely, if s is a distribution on , we 
can define a random variable f, which, for an ele-
ment w ∈ , returns value 1/s(w). The expected 
value of f is 
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the size of the sample space. Thus, if we keep 
sampling w1, w2, … using the distribution s, the 
expression 
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converges to E[f] as n increases. Once we have an 
estimate for ||, we can then compute E[ f(w)] for 
any function f on  by computing the expected 
value of 

f ( )
( )

ω
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according to the distribution s. In the importance 
sampling approach, not only do we need to be able 
to sample from s and sample every element w ∈  
with nonzero probability, we must also be able to 
compute the probability s(w).

Yuguo Chen and his colleagues1 first proposed 
using the importance sampling approach for the 
BCT problem. Their importance sampling dis-
tribution generates a random table in a column-
by-column manner, thus they used a sequentially 
constructed distribution, which is an instance of 
a so-called sequential importance sampling (SIS). 
The main idea behind their distribution is that if 
we satisfy all the row sums but only one column 
sum, the problem becomes significantly easier. 
A random binary m × n matrix that satisfies row 
sums r1, …, rm and column sum c1 contains in its 
first column vector x = (x1, …, xm) ∈ {0, 1}m, where 
Σi
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In other words, the probability that the first col-
umn is x is equal to g(x)/Z, where the normalizing 
factor Z equals the sum of g(y) ranging over all vec-
tors y = (y1, …, ym) ∈ {0, 1}m with exactly c1 ones.

Chen and his colleagues describe their SIS 
distribution with the following algorithm: first, 
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Figure 1. Occurrence table for Charles Darwin’s finches. Rows 
correspond to the types of finches and columns to the Galápagos 
islands they inhabit.
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choose the first column from the distribution de-
fined by g (even though the normalizing factor Z 
is a sum ranging over a possibly exponential num-
ber of terms, we can sample proportionally to g 
via a dynamic programming algorithm in poly-
nomial time). Then, once the values in the first 
column have been chosen, update the row sums 
so that they represent the required row sums of 
columns 2 through n (in other words, if xi = 0, row 
sum ri stays the same; if xi = 1, then ri is decreased 
by one). Choose the second column analogously 
to the first column. Continue through all col-
umns. (Note that this procedure might end up 
deadlocked—for example, we might be left with a 
single column and row sums with numbers higher 
than one. Chen and his colleagues also propose a 
more elaborate SIS distribution that gets around 
this problem, but for the rest of this discussion, 
the simpler SIS distribution is sufficient.)

We can see that  is an unbiased estimator for 
the sample space’s size (that is, E[] = ||), but 
it isn’t clear how many samples we need for an 
accurate estimate of E[]. This SIS distribution 
works very well for many practical applications; 
Jose Blanchet’s work recently supported this em-
pirical observation.5 He showed that the method 
converges quickly if the marginal sums are sig-
nificantly smaller than S4 , where S is the sum of 
all marginal sums.

Unfortunately, there are row and column sums 
for which, with high probability, this SIS distribu-
tion requires an exponential number of samples. 
To give a feeling for what can go wrong, let’s look 
at a simple example of row and column sequences 
for which the approach fails. Consider the row 
sums 1, 1, …, 1, with the sum m for some α 
> 0 in the last row and column sums 1, 1, …, 1. 
(Notice that n = m – 1 + m so that the sum of 
the row sums equals the sum of the column sums.) 
This example’s simplicity allows us to compare the 
SIS distribution with the uniform distribution. 
Let’s look more closely at the first column. The 
SIS distribution (see the definition of the function 
g) places a one (the single one in this column) in 
row j with probability proportional to

α
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row with probability
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Now let’s look at the uniform distribution over 
all BCTs. It’s easy to compute the number of all 
BCTs for this input: we have
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tables with a one in the last row of the first column. 
Therefore, a one should be placed in the last row 
of the first column with probability x1/x ≈ /(1 + 
). (Notice the difference between this probabil-
ity and the one arising from the SIS distribution.)

Now let’s consider the first bn columns, where 
b is an appropriately chosen positive constant. It 
turns out that a similar difference occurs in each 
of these bn columns. Because all the columns have 
the same column sum, by symmetry, we expect 
that approximately a b-fraction of all ones in the 
last row occurs in these bn columns. However, be-
cause of the difference in the probabilities, we’ll see 
significantly fewer ones in the tables sampled by 
SIS. A concentration bound (namely, the Chernoff 
bound) implies that the tables with few ones in the 
first bn columns of the last row form only an expo-
nentially small fraction of all possible BCTs. How-
ever, because these are likely to be the only tables 
sampled by SIS, the technique will estimate only 
the size of this exponentially smaller set of tables.6

Markov Chain Monte Carlo
Markov chain Monte Carlo is a popular sampling 
technique.7 The main idea is to start with an ele-
ment from the sample space  and modify it using 
a sequence of random (typically local) changes. If 
we choose the changes from a properly selected 
set of possibilities and if the sequence of changes is 
sufficiently long, the resulting element will be an 
(almost) random sample from . To illustrate the 
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idea, let’s look at a simplified version of card shuf-
fling: we start with a pile of n cards, then choose 
two cards at random and swap them. If we repeat 
this move at least O(n log n) times, the cards will 
end up in a completely random order.

In mathematical terminology, a Markov chain 
on a sample space  = {w1, …, w||} is given by a 
transition matrix P of size || × ||, where pi,j 
specifies the probability with which we move from 
element wi to element wj. A distribution p on  for 
which p = pP is called stationary (if we choose the 
initial element from  according to p, the next 
element will also be distributed according to p). 
If it’s possible to get from every element to every 
other element by a sequence of steps, and if pi,i > 
0 for every i, then the stationary distribution is 
unique. Thus, no matter which element we start 
with, we’ll eventually (in the limit) reach the sta-
tionary distribution. Finally, if we want to sample 
from a stationary distribution p, it’s sufficient to 
set up the transition matrix so that it satisfies the 
so-called detailed balance condition: p(wi)pi,j = 
p(wj)pj,i for every wi,wj ∈ .

Typically, the most challenging part is to decide 
how many steps of the Markov chain we need to 
get sufficiently close to the stationary distribution. 
In computer science, a Markov chain is said to be 
rapidly mixing if this number of steps is polyloga-
rithmic in ||. For BCTs, this means we want a 
Markov chain that needs at most a polynomial 
number of steps in n and m.

Two different Markov chains for the BCT 
problem have been studied in literature. Persi 
Diaconis and Anil Gangolli8 proposed a Markov 
chain that, in every step, chooses two rows and 
two columns of the current table at random, and 
if the four entries specified by these rows and col-
umns have exactly one 1 (and thus exactly one 0 as 
well) in each row and each column, the two zeros 
are replaced with ones and vice versa. Ravi Kan-
nan, Prasad Tetali, and Santosh Vempala9 ana-
lyzed this Markov chain for the case when all row 
and column sums are equal and proved that the 
chain is rapidly mixing (albeit the number of steps 
is a polynomial of a rather large degree). Unfortu-
nately, there are no known results for this Markov 
chain in the case when the row and column sums 
differ significantly (Kannan, Tetali, and Vempa-
la’s results can be adapted for marginals that differ 
only a little).

An alternative Markov chain samples not only 
from the set of all BCTs, but also from the set 
of all tables with exactly one row and exactly one 
column sum decreased by one. To simplify our 
language, let’s call a BCT perfect if it has row sums 

r1, …, rm and column sums c1, …, cn; we’ll call it 
near-perfect with deficiencies at i,j if it has row sums 
r1, …, ri–1, ri – 1, ri+1, …, rm and column sums c1, 
…, cj–1, cj – 1, cj+1, …, cn. The Markov chain starts 
at a perfect table (it isn’t difficult to find one), and 
the subsequent moves follow these rules:

If the current table T is perfect, choose an 
entry i,j with ti,j = 1 at random and set ti,j = 0 
(creating a deficiency in row i and column j).
If the current table T is near-perfect with de-
ficiencies at i,j, choose an entry k,, with tk,, = 
1 or (k, ,) = (i, j) uniformly at random: if (k, 
,) = (i, j), set ti,j = 1 (and T becomes a perfect 
table); otherwise, flip a coin, and if it comes 
out heads, do this: if tk,j = 0, set tk,j = 1 and 
tk,, = 0 (move the deficiency from column j to 
column ,); for tails, do this: if ti,, = 0, set ti,, = 
1 and tk,, = 0 (move the deficiency from row 
i to row k).

It follows from the detailed balance condition 
that the stationary distribution of this Markov 
chain is uniform over all perfect and near-perfect 

tables. However, we want to sample only from the 
perfect tables, so how do we get rid of the near-
perfect ones? Consider the marginals 1, 2, 3, …, 
n and 1, 2, 3, …, n for some n. It turns out that a 
unique BCT satisfies these marginals, but at least 
2n/4 corresponding near-tables also exist. Thus, 
even if the Markov chain converged to the station-
ary distribution quickly and we could use it for 
sampling from all perfect and near-perfect tables, 
we would have an extremely small probability of 
actually sampling the one table we want to see for 
the marginals just listed. Before we sketch a solu-
tion to this problem, let’s see how a similar issue 
was overcome in a slightly different setting.

A Different Sampling Problem
Let’s start with an n × n binary matrix A. The goal 
is to sample from the set of all n × n binary tables 
T with all marginals equal to one and, moreover, 

1.

2.

Even if the Markov chain converged to the 

stationary distribution quickly, we would have 

an extremely small probability of actually 

sampling the one table we want to see for the 

marginals just listed.
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if ai,j = 0, then ti,j = 0, too. (This problem is known 
as sampling perfect matchings in a bipartite graph 
and is directly related to the problem of comput-
ing the permanent of a binary matrix.)

If we transfer our perfect and near-perfect table 
terminology to this setting, we notice that the 
Markov chain from earlier (with a small modifica-
tion) gives rise to the uniform stationary distri-
bution for the new problem. Similarly, there exist 
input matrices A for which the number of perfect 
tables is exponentially smaller than the number of 
near-perfect tables.

Through a series of iterations, Mark Jerrum, 
Alistair Sinclair, and Eric Vigoda10 came up with 
a breakthrough idea that tweaked the stationary 
distribution so that they could sample perfect 
tables with a probability of roughly 1/(n2 + 1). The 
idea is to re-weight the distribution so that each 
of the following n2 + 1 groups of tables is sampled 
equally likely: perfect tables (denoted with P) 
and, for every i,j ∈ {1, …, n}, near-perfect tables 
with deficiencies at i and j (denoted with Ni,j). In 
other words, with the uniform distribution, the 
chance of sampling a table from Ni,j is propor-
tional to |Ni,j|; with the re-weighted distribution, 
we want this chance to be equal to the chance of 
sampling a perfect table, so we need to sample an 
element from Ni,j with a probability proportional 
to |P|/|Ni,j|. The detailed balance condition lets 
us modify the Markov chain so that the station-
ary distribution reflects the re-weighted distribu-
tion, contingent upon knowing how to compute 
the ratios |P|/|Ni,j| (this reweighting technique 
is known as the Metropolis-Hastings technique). 
Moreover, the re-weighted Markov chain can be 
proved to mix rapidly if we have a constant-factor 
estimate of each of the ratios.

So how do we estimate the ratios? Because 
computing |P| is about as hard as being able to 
sample from P, we can’t compute the ratios di-
rectly. However, if the matrix A contained only 
ones, we would know how to compute |P|/|Ni,j| 
= n!/(n – 1)! = n. Let B represent the n × n matrix 
with all entries equal to one and let A be the target 
matrix for which we want to sample the (perfect) 
tables. Instead of sampling tables for A directly, 
we’ll sample tables for the matrix A′ = B + A(1 
– ), where  will gradually change from one to 
(almost) zero. (If you’re familiar with the simu-
lated annealing technique, this is an instance of 
the technique in which 1/ln corresponds to the 
current temperature.)

We defined the problem for matrices A with en-
tries zero or one, but the matrix A′ might have real-
valued entries in [0, 1]. In this case, we’re interested in 

sampling binary tables T with all marginals equal to 
one; the probability of the table T will be proportion-
al to (T) := ′( )∏ ai j

t

i j
i j

,,
, . Notice that  = 0 corre-

sponds to the original problem. Similarly, instead of 
taking the count of all perfect tables, we define the “ 
count” as (P) = ∑T∈P(T).

We start with  = 1 when we know the ratios 
are equal to n, then we decrease  slightly so that 
n is within a factor of 4 from the new ratio (P)/
(Ni,j). Now, we can use the Markov chain to im-
prove our estimate of the new ratio from factor 4 
to factor 2 simply by looking at the frequencies of 
sampling perfect tables versus near-perfect tables 
with deficiencies at i,j. This, in turn, allows us to 
decrease  so that this factor 2 estimate becomes 
a factor 4 estimate for the decreased . We con-
tinue decreasing  in this fashion until  reaches 
(almost) zero, at which point we’ll have a close es-
timate of the ratios |P|/|Ni,j|.

C an we use a similar idea for the 
BCT problem? Earlier, we gradually 
changed the all-one matrix B into 
our target matrix A (which restricts 

some entries of the tables to zeros). However, in 
the BCT problem, we don’t have restrictions on 
the table entries, so it isn’t clear whether we can 
make analogous gradual transformations of the 
input. Surprisingly, it turns out that we can. In 
particular, for any BCT’s input, there exists a “re-
striction matrix” A that we can gradually change 
into B, our target input (no restrictions). To do 
this, we include a matrix A′ with entries in [0, 1] 
in the input of the BCT problem—our goal is to 
sample a BCT T with row sums r1, …, rm and col-
umn sums c1, …, cn with probability proportional 
to ′( )∏ ai j

t

i j
i j

,,
, . As before, we consider matrices 

A′ of the form Bλ + A(1 – ); again, the tricky part 
is getting an initial estimate of the ratios (P)/
(Ni,j). Interestingly, for any marginals, we can 
construct a “restriction matrix” A for which we 
can estimate the ratios for  close to zero. Then, 
we can gradually increase  until  = 1.11

The SIS approach described earlier works well 
in many real-life situations but provably fails for 
some inputs. Unfortunately, we can’t simply test 
whether the algorithm converges or not—for the 
example presented earlier, the algorithm appears 
to converge to a wrong value.

We’ve sketched an algorithm for BCTs that 
runs in a polynomial time for any input, but the 
polynomial is rather large (for an m × n input, the 
running time is upper-bounded by O*((nm)5(n + 
m)), where the O* notation hides constant and 
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polylogarithmic factors). Thus, a truly usable al-
gorithm for the BCT problem remains elusive.�
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