
22	 This article has been peer-reviewed.� Computing in Science & Engineering

C o m p u t a t i o n a l
P r o v e n a n c e

Provenance in
High-Energy Physics Workflows

Andrew Dolgert, Lawrence Gibbons, Christopher D. Jones,
Valentin Kuznetsov, Mirek Riedewald, Daniel Riley,
Gregory J. Sharp, and Peter Wittich
Cornell University

The adoption of large-scale distributed computing presents new opportunities and challenges
for the physicists analyzing data from the Large Hadron Collider experiments. With petabytes
of data to manage, effective use of provenance is critical to understanding the results.

T he Large Hadron Collider (LHC) at
CERN will produce data at a new en-
ergy scale of great interest to particle
physicists. With proton–proton col-

lisions at a center-of-mass energy of 14 TeV, many
of the collisions between the protons’ constituent
partons will be above the energy scale at which
the symmetry between weak and electromag-
netic interactions can be restored and will appear
as the more fundamental electroweak interaction.
Two general-purpose experiments, ATLAS and
the Compact Muon Solenoid (CMS), will study
these high-energy processes in great detail, and
the results have the potential to illuminate the
processes by which electroweak symmetry is bro-
ken and fundamental particles acquire mass—it
could even inform us about the makeup of the
cold dark matter that dominates the universe’s
mass. However, researchers must overcome sig-
nificant computing challenges to provide the in-
dividual physicist with the means to effectively
and efficiently pursue analysis of such data.

In this article, we examine the role of prov-
enance in several projects in which members of

our group have participated, with an emphasis on
using data provenance to improve the reproduc-
ibility of the physics results from the final steps
of data analysis. Although the problems we dis-
cuss are domain specific, the solutions we describe
have broader applications.

Physics Workflows
In high-energy physics (HEP) experiments,
computing is typically designed around a model
that organizes computationally intensive data
processing in a centralized manner akin to wid-
get production in a factory. In this model, small
teams of experts working in tightly controlled
environments reconstruct and reduce data sets to
subsamples containing high-level physics objects.
The resulting organized production tasks are ho-
mogeneous and predictable, and typically include
data acquisition, particle path reconstruction
from patterns of activated detector elements, and
production of simulated data used to derive detec-
tor efficiencies and investigate systematics.

Individuals or groups of physicists searching
for specific statistical patterns characteristic of
a physics process of interest usually examine the
reconstructed data from these production jobs. A
typical analysis might include preliminary, ex-
ploratory data analysis, followed by a process of
tuning the analysis code with simulated data.
Once physicists refine the analysis procedure,
they must determine that procedure’s systematics
and efficiency, usually through a combination of

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

May/June 2008 � 23

simulated and real data (avoiding the signal region
of interest in real data to avoid biasing the result).
Next, they search for the sought-after signal in
the data, using their efficiency estimates to derive
the size of the signal or an upper bound. Most of
these analysis steps are highly iterative and can re-
quire months or even years to complete, while the
physicist explores different strategies for enhanc-
ing the ratio of the physics process of interest to
other processes that might mimic it.

Traditionally, a physicist will develop a new
strategy during such exploration, perform the
analysis using this strategy, plot the distributions,
and then finally record the changes along with a
printout of the distributions into a physical log-
book. The physicist uses this logbook as a refer-
ence while preparing presentations or notes for
internal distribution within a collaboration, which
often elicits suggestions for additional strategies.
Eventually, the analysis converges on a result and
is documented in internal notes and an eventual
paper for publication, both of which are then sub-
jected to a grueling internal review process to assess
the result’s quality, reliability, and reproducibility.
When questions arise during this review process,
the lab notebook remains the ultimate reference
for how the physicist performed the analysis.

In the past, the reconstructed data sets were
typically small enough that the task of extracting
physics from them was manageable for individuals
or small teams with modest computing resources.
These final steps were unscripted, unpredictable,
and highly individual, and, as such, depended crit-
ically on the individual researcher and his or her
ability to rapidly and reliably modify small steps
in complex chains of calculations. In fact, the dif-
ference between success and failure could often
be traced to the researcher’s ability to understand
these data sets. Among the difficulties typically
encountered were problems with precisely de-
termining how intermediate quantities were cal-
culated or the inability to repeat a process when
additional reconstructed data (or data reprocessed
with an improved understanding of the detector)
became available.

In the LHC era, this landscape has changed.
With the advent of copious high-performance
computing resources in a global grid environment,
each researcher has access to enormous amounts
of processing power. The LHC will produce very
large data sets; even the data sets that small teams
of researchers will analyze will be terabytes in
size. The job of managing these large samples and
the ability to explore the data’s full possibility will
quickly overwhelm the traditional tools that sci-

entists use to manage their workflow: notebooks,
scripts, and the scientist’s own memory.

At the same time, the increasingly common
practice of regularly reprocessing all of an ex-
periment’s collected data with the latest version
of reconstruction software, along with the grow-
ing application of statistically unbiased analysis
techniques, have increased the demand to regu-
larly replicate an analysis procedure. These re-
quirements also increase the maintenance costs
of using private subsets of the data outside the
experiment’s official production system, a conflict
that can result in analyses not using all the avail-
able data or even the best version of it.

LHC experiment participants recognize the
central role that the systematic collection and
use of data provenance must play in establishing
the quality of their results, and some have made
attempts at applying modern workflow manage-
ment technologies to the task.1 However, at least
in our experience on the CMS experiment, these
efforts tend to concentrate on the relatively well-
understood production use cases, not the more
challenging analysis tasks.

CLEO-c EventStore
We designed and implemented the EventStore
system2 for the medium-energy CLEO-c experi-
ment in the course of migrating away from the
commercial object database used to store data in
the CLEO III experiment. The project’s principal
goals were to provide a simple method for physi-
cists to reliably and reproducibly access a consis-
tent set of reconstructed data for analysis. Because
the CLEO-c experiment reused much of the soft-
ware and analysis methodologies from CLEO III,
we already had well-developed use cases for the
data analysis’s later steps to guide our design.

EventStore is primarily a metadata management
layer that organizes data for analysis into grades
that represent phases in the data management life
cycle. Examples of data grades include raw, reco,
and physics, which represent raw data directly from
the detector, reconstructed data not yet validated
for physics use, and reconstructed data approved
for physics analysis, respectively. The physics grade
also includes any corrections calculated after the
primary reconstruction step, so physics analysis
jobs don’t access auxiliary data sources—instead,
a physicist selects a data set simply by specifying
the grade and a date (usually the date on which
the analysis began), along with any other selection
criteria. The date brings up the internally con-
sistent view of the data that was current on that
date, guaranteeing the analysis’s reproducibility

24� Computing in Science & Engineering

and consistency as long as the same date is used
throughout the analysis. The result is a simple,
easy-to-use system that meets the most common
requirements for consistency and reproducibility.

The EventStore implementation associates
a specific version label with data derived in a pro-
duction job. This label identifies the process that
produced the data, the CLEO-c software suite’s
release version, and the process configuration. An
EventStore grade includes a set of directed acyclic
graphs of specific version labels, thereby record-
ing the set of data that comprises the grade as well
as the data’s lineage. In our initial implementa-
tion, we set the specific version label adminis-
tratively in each production job’s configuration
file, but we soon realized that we could make the
system more reliable and potentially more useful
if labels were generated automatically, so we de-
veloped a method based on a hash of the process
configuration. This specific version hash is writ-
ten to a record type that our framework normally
propagates from input files to output files, so each
output file automatically accumulates a full pro-
cessing lineage. Later still, we modified the hash
computation module to also store the full pro-
cess configuration in the output record, so that a
physicist could replicate a job’s configuration even
if the original configuration wasn’t version con-
trolled or was otherwise lost.

We designed the CLEO-c EventStore with
three distinct implementations, tailored to the
application’s scale: personal, group, and collabo-
ration. The personal EventStore is intended to
manage data for a physics analysis project on a
personal system such as a laptop or desktop. The
group EventStore is designed to manage substan-
tial amounts of data on a pool of disks, typically
at a second-tier analysis facility. The collaboration
EventStore adds more sophisticated data manage-
ment facilities to the group system, including sup-
port for hierarchical storage, data replication and
relocation, and a distributed directory service.
The collaboration-scale EventStore resides at the
experiment’s hosting institution and holds the
master copies of all CLEO-c data.

Although our design focused on analysis use
cases, we unexpectedly found that the personal
EventStore was also very useful during organized
production processes, so in the current CLEO-c
production workflows, all results are stored in a
personal EventStore specific to a particular job.
The production team commits the workflow’s fi-
nal results into the collaboration EventStore only
after the data pass all validation tests. Unfortu-
nately, CLEO-c didn’t widely adopt the personal

EventStore for the analysis use cases for which we
designed it, perhaps in part because the CLEO
experiment’s physics analysis workflows were well
established by the time we introduced the Event-
Store system for CLEO-c data.

CMS Dataset Bookkeeping Service
The CMS Dataset Bookkeeping Service (DBS)3
is the primary metadata repository for the CMS
experiment. It is conceptually similar to the
EventStore’s metadata management components
but differs in scale and implementation. With
thousands of jobs at hundreds of institutions ac-
cessing CMS data at any time, scalability and reli-
ability are much more challenging, and the design
and implementation involved a much larger group
drawn from many institutions within CMS.

The CMS DBS is designed as a hierarchical fed-
eration, with a global instance hosted at CERN’s
experiment site and local instances used for in-
termediate results of production jobs. As in the
EventStore system, production jobs record their
final results in a local DBS instance. The produc-
tion team validates the results and, if validated,
publishes them to the global DBS. However, un-
like in CLEO-c, all operations in the CMS system
are performed on the local DBS instance (includ-
ing locating the data to be processed), so the
CMS workflow management tools must prepare
a local DBS by copying metadata about the input
data sets into it prior to data processing. This step
eliminates any dependence running jobs have on
the global DBS, which is a more robust configura-
tion for a globally deployed service.

The DBS records the parentage relationships
between a task’s input and output files, the con-
figuration of the job that processed the data, and
the release version of the CMS software suite
used. In the terms of a widely cited taxonomy,4
the DBS data provenance is process oriented—it
collects provenance about the deriving processes
with file granularity.

The CMS workflow management tools access
both global and local DBS instances via Web
services interfaces, while physicists principally
browse them in the DBS Data Discovery Web ap-
plication, written as part of this project.

CMS Data-Processing
Software Framework
The provenance collected in the DBS generally
isn’t sufficient to fully understand how physics
analysis results are produced, at least in part due
to the CMS data-processing framework’s flex-
ibility. The primary CMS data-processing appli-

May/June 2008 � 25

cation, developed by a large team with members
from several institutions within CMS, consists of
a single C++ software framework with a suite of
plug-in modules.5 A framework job’s configura-
tion specifies a set of these modules to load, each
module’s parameters, and a set of processing paths
specifying the sequence in which the modules
are executed. With different configurations and
modules, we can use the same framework to col-
late detector-produced data, generate simulated
data, reconstruct particle tracks from patterns of
activated elements in the detector, and perform
most of the steps in the physics analysis. A single
framework job can simultaneously write several
different output files with different object con-
tents and filtering criteria; it can also read mul-
tiple input files with slightly different processing
histories. Understanding in detail how an output
file’s contents were produced requires finer gran-
ularity provenance than the process-oriented
DBS provenance.

Moreover, processing steps can also occur
outside the official job execution services that re-
cord provenance in the DBS, in which case, the
process-oriented provenance could be incom-
plete. It’s highly desirable to be able to reliably
detect when this has happened. To address such
cases, the CMS data-processing software frame-
work implements fine-grained object annotations
to record the processing history that produced
each object. This framework data provenance is
data oriented, explicitly recording data products’
lineage with the granularity of individual atomic
storage objects. To generate the annotations, the
framework normalizes the process configura-
tion into a set of declarative statements for each
module, which reside in the output file and can
be queried from within the framework. The sim-

plified annotation shown in Figure 1 would be
attached to objects produced by a module that
finds clusters of activated channels in a silicon
strip detector element.

The framework mediates all access to the data,
which lets it associate all module-produced data
with the module configuration and the types
of the data the module accessed. These asso-
ciations among the objects produced, input ob-
jects, and the module’s configuration are stored
in the output file as fine-grained object annota-
tions. Continuing our example, the framework
would annotate a set of clusters produced by the
si­StripClusters module with the module
configuration displayed in Figure 1, along with
the types of objects the module accessed.

Annotations in the input files pass through to
the output file, so we can determine an object’s
complete processing history by recursively follow-
ing each input object’s configuration annotations.
This history produces a directed acyclic graph of
input data types connected by module configura-
tions, and because the framework doesn’t allow
a module’s configuration to change during the
course of a single job, the representation of these
annotations can be quite compact.

For organized production jobs, the framework
is normally configured to enforce the processing
history’s homogeneity for all the data in a set by
examining the object types stored as well as the
object annotations. When it finds homogeneity ex-
ceptions, examining the object annotations identi-
fies the difference in processing history and, in our
experience, quickly leads to the identification of the
programming or configuration error that caused
the problem. Once the production team identifies
the cause of a problem, they can search the job con-
figuration and software release provenance in the

Module: siStripClusters Reco	 # module name and processing step

 PSet id:404e226632c0b4f66e9dccf2f7970a46	 # configuration ID

 products: { SiStripClusterSetsiStripClusters_Reco.	# types produced by this module

 }

 parameters: {	 # module configuration

 @modulelabel: string = ‘siStripClusters’

 �@moduletype: string = ‘SiStripClusterizer’

 ChannelThreshold: double = 3

 ClusterThreshold: double = 5

 MaxHolesInCluster: int32 = 0

 }

Figure 1. A simplified annotation for an object produced by a module that finds clusters of activated
channels in a silicon strip detector element.

26� Computing in Science & Engineering

DBS to identify additional data likely to be affect-
ed. Exact homogeneity is also the normal case for
the later steps in data analysis, but this constraint is
sometimes undesirable. The data-oriented frame-
work provenance makes it possible to detect when
strict homogeneity has been violated and still de-
termine exactly how each object was produced.

A subtlety of the software framework’s data prov-
enance is that it records the data inputs and calcula-
tions that produced an object, but it doesn’t record
any filtering steps that discard data objects. As a re-
sult, the framework provenance can help users un-
derstand an individual object or record’s processing
history, but it might not be sufficient to replicate
the entire data set’s production process because it
doesn’t record all the filtering applied. One notable
exception is the classification criteria applied by the
experiment’s trigger, which forms the primary basis

for dividing the data into data sets. However, the
mechanism used to record the trigger classification
doesn’t fully record logical combinations of trigger
classifications and hasn’t been generalized beyond
recording the trigger decision.

The lack of selection criteria is an obstacle
to fully understanding an analysis strictly from
the framework’s provenance. Another obstacle
is that a physics analysis often involves modules
private to a group or individual. The CMS col-
laboration is attempting to standardize a set of
higher-level objects that are produced by the
organized production process, but any specific
physics analysis will have additional steps after-
ward. One approach to this problem is to develop
a set of small, generic analysis components that
allow a physicist to construct an analysis proce-
dure entirely via the framework configuration.
As a simple example, we could select collision
events that contain a track with transverse mo-
mentum greater than 15 GeV/c with the follow-
ing module configuration:

module highPtTracks = TrackSelector {

 InputTag src = ctfAnalyticalTracks

 string cut = “pt > 15.0”

}

where the “src” InputTag specifies the object col-

lection to which to apply the selection, and the
“cut” string specifies the selection criteria. The
module parses the “cut” string by using the Re-
flex C++ introspection system to locate the object
method to which to apply the selection criteria
and to construct an efficient implementation of
the selection. A physicist typically uses one of
these modules to produce a new collection of ob-
jects with the selection criteria applied, so that the
selection criteria are recorded in the annotation
provenance when the framework registers the
production of the new collection.

With the generic component system, we can
directly read the selection criteria and algorithms
applied from the framework annotations. We can
also discover how two analyses differ, or check for
errors (such as applying a narrow selection crite-
ria in one step followed by a wider selection on
the same parameter in a later step) by comparing
the provenance of each. How generally useful this
system will be for physics analysis is still an open
question, particularly when physicists use multi-
variate classification techniques that can’t be con-
figured with just a few parameters.

Replacing the Notebook
Not all physicists use software versioning sys-
tems and sound software release practices as con-
sistently as they should for their own work, so
modifying past workflows (such as by replicating
an old workflow with recently acquired data) can
be error-prone because the only records might
exist in a physical notebook. We’re working on
two complementary projects to investigate how
existing scientific workflow management tools
could replace the physical notebook for HEP data
analysis. A secondary objective of this work is to
evaluate the feasibility of combining domain-
specific CMS provenance with existing scientific
workflow tools, which we believe have been under
utilized in particle physics.

In 2003, the LHC Grid Computing Project
High-Energy Physics Common Application Layer
Requirements Technical Assessment Group exam-
ined common use cases for data analysis. They iden-
tified the desirability of an electronic bookkeeping
tool or electronic logbook with the following features:

Every task whose output is retained should be
recorded with the output’s lineage and suffi-
cient information to replicate the task.
The logbook should be capable of submitting
tasks to the experiment’s workflow management
system, query the execution status, and auto-
matically record the results of task execution.

•

•

The lack of selection criteria is an obstacle to

fully understanding an analysis strictly from

the framework’s provenance.

May/June 2008 � 27

The logbook should make it easy to repeat a
task with configuration variations.
The logbook should be able to report a task’s
resource consumption.
The logbook should be usable by individuals as
well as groups of physicists. It should be pos-
sible to “cut and paste” parts of one logbook
into another.
A group’s logbook should be usable concurrent-
ly by several group members.

We propose using a local DBS instance as an
electronic logbook’s primary memory, tailored to
track the lineage of all data in a physicist’s analy-
sis via much the same mechanisms used for or-
ganized production tasks. Using the DBS as the
provenance-tracking mechanism for an analysis
would also let us reuse the existing CMS workflow
management and job execution systems, which the
logbook could access via a Web service. Because
the CMS workflow management tools normally
incorporate the metadata for all input files into the
local DBS instance used for a process, it naturally
supports such operations as incrementally adding
data to an analysis. In addition, the logbook could
automatically enforce proper version control of all
source code—in fact, recent distributed version
control systems would allow synchronization of
the source code with a master repository while also
supporting full version control even when the mas-
ter repository is unavailable.

We’re currently evaluating the suitability of ex-
isting scientific workflow management tools, such
as Kepler6 and VisTrails,7 as an electronic logbook
component for managing tasks such as process
configuration, replicating a completed task on
a new data set, or repeating a task with specific
variations in the configuration. In parallel with
the electronic logbook project, our HEPTrails
project is investigating the strategies used during
a physics analysis’s exploration phase, indepen-
dent of the details about a particular experiment’s
software or computing systems. The implementa-
tion of HEPTrails is based on the VisTrails pack-
age, which is designed to track the provenance of
workflows developed for interactive visualization
of scientific or medical data, letting users edit
their workflows and then run them.8 The system
displays the results in a separate window via a
spreadsheet metaphor, and each workflow modifi-
cation is recorded so that users can graphically see
the change history along with modifications lead-
ing to related workflows. Users can even choose
a workflow from a provenance graph and either
rerun or modify it to create a new workflow that

•

•

•

•

will also be recorded in the provenance graph.
The provenance capture, along with the ability to
use a graph to choose older workflows for modi-
fication, are ideal for the HEPTrails project, but
the way workflows are executed in VisTrails isn’t a
good match for HEP data processing.

Specifically, VisTrails decomposes a workflow
into modules, with one module’s output connected
to the input of one or more subsequent modules.
When the workflow executes, each module executes
once in the order the workflow specifies. In HEP
data, each event record is independent of all other
event records, so an HEP analysis applies the same
workflow to each event, accumulating a summary
of all the processed events’ properties. However,
event records also hold additional data collections
(such as lists of particle trajectories or clusters of
energy deposited in the surrounding calorimeter),
and physicists normally apply the same workflow
for all items in a collection. The standard VisTrails
workflow execution engine doesn’t support this
type of repetitive application of a workflow, but
its design does support replacing the standard ex-
ecution engine with one that—along with a set of
custom workflow modules—generates a program
to implement the desired workflow.

A distribution module can take a collection as in-
put and pass individual elements of that collection
to child modules, which can further transform or
filter elements. Another form of module monitors
the individual items and, when the collection is
complete, performs an operation and passes the
result to its child modules, allowing implicit it-
erations to be performed in the workflow. Figure
1 shows an example HEPTrails workflow with
implicit looping, filtering, and transformation.
These modules support streaming workflows that
process data as it becomes available and, in turn,
make the data available for further processing as
soon as an object or collection is complete.

Because each module’s individual operations
tend to be very fine-grained, the module’s com-
munication overhead can be greater than the
operations themselves. To make the workflow ex-
ecution sufficiently efficient, the modules build an
expression tree instead of directly performing an
operation. Execution of the workflow transforms
this tree into code in the Python language, which
is then run on a separate thread. Running the gen-
erated code on a separate thread lets a physicist
see partial results from long-running workflows
and create a new workflow inspired by them while
the original workflow runs.

Transforming a workflow to create an interme-
diate representation for subsequent execution is a

28� Computing in Science & Engineering

general technique with many uses. For example,
we plan to use VisTrails to construct configuration
files for the CMS software framework and send
them to the CMS grid workflow system for ex-
ecution. In this scheme, the workflow in VisTrails
represents the module configurations and execu-
tion paths, which—upon execution of the work-
flow—translates into a framework configuration.

If a physicist modifies a workflow, only the por-
tions of the workflow that need to be re-executed
are the parts directly affected by the change or
descendants of a changed part. We plan to imple-
ment caching of the workflow’s intermediate results
and, instead of executing the direct ancestors of a
changed part, HEPTrails will replay the ancestry
back to only the closest ancestor that has cached the

appropriate intermediate results. HEPTrails will
also check that a filter applied late in a workflow isn’t
a less restrictive selection criterion than a related fil-
ter earlier in the workflow or in a previous one.

T he LHC experiments’ scale, collabo-
ration sizes, and sizes of the physics
topic subgroups within collabora-
tions are placing new demands for

provenance tracking on HEP software design.
The CMS collaboration is exploring several ap-
proaches to provenance, two of which we’ve dis-
cussed here. Although these efforts are largely ad
hoc, they do explore interesting design points,
particularly with respect to the kinds of prov-

FilterExpression

FilterExpressionFilterExpression

BinaryExpression

AccumulatorWrapper

PythonSource

Iterator DataSource

TransformExpression

TransformExpression

LooperExpression

LooperExpression

FilterExpression

FilterExpressionFilterExpression

AccumulatorWrapper

Histogram

PythonSourcePythonSource

TransformExpression

TransformExpression

TransformExpression

TransformExpression

Plot Children Et with title

Histogram

Plot Children Et with title

Plot Children Et

Plot Children Et with title

Plot Children Et

Plot Children Et with title

Plot Children Et

Plot Children Et

Plot Children Et

Plot Children Et

Plot Children Et

Figure 2. Illustration of a HEPTrails workflow that has implicit looping via LooperExpression modules
as well as filtering and transformation operations. The inset window shows the workflow’s version history.

May/June 2008 � 29

enance collected and the granularity of the data
objects to which the provenance refers. The utility
of provenance data increases with its availability,
but there is a trade-off between provenance data’s
completeness and the overhead of collecting, stor-
ing, accessing, and managing it. We believe the
adoption of ubiquitous, decentralized provenance
creates new opportunities to better manage the
unpredictable, unscripted steps of physics analy-
sis, especially on the vast quantities of data gener-
ated from the LHC experiments.�

Acknowledgments
The CMS DBS and CMS data-processing framework
sections of this article summarize the work of many
contributors within the CMS collaboration, too nu-
merous to recognize individually here, but we partic-
ularly acknowledge the contributions of Lee Lueking
and Elizabeth Sexton-Kennedy. This work was par-
tially supported by the US National Science Founda-
tion award PHY-0654198.

References
A. Arbree et al., “Virtual Data in CMS Production,” Proc. Int’l
Conf. Computing in High-Energy Physics and Nuclear Physics
(CHEP 03), CERN, 2003; http://arxiv.org/abs/cs.DC/0306009.

C.D. Jones et al., “EventStore: Managing Event Versioning
and Data Partitioning Using Legacy Data Formats,” Proc.
Int’l Conf. Computing in High-Energy Physics and Nuclear Phys-
ics (CHEP 04), CERN, 2004; http://indico.cern.ch/material
Display.py?contribId=199&sessionId=6&materialId=paper
&confId=0.

A. Afaq et al., “The CMS Dataset Bookkeeping Service,” Proc.
Int’l Conf. Computing in High-Energy Physics and Nuclear Phys-
ics (CHEP 07), CERN, 2007; http://indico.cern.ch/material
Display.py?contribId=325&sessionId=28&materialId=paper
&confId=3580.

Y. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science,” SIGMOD Record, vol. 34, no. 3,
2005, pp. 31–36.

C.D. Jones et al., “The New CMS Event Data Model and
Framework,” Proc. Int’l Conf. Computing in High-Energy Phys-
ics (CHEP 06), CERN, 2006; http://indico.cern.ch/getFile.py/
access?contribId=242&sessionId=3&resId=0&materialId
=paper&confId=048.

I. Altintas et al., “Kepler: An Extensible System for Design
and Execution of Scientific Workflows,” Proc. 16th Intl. Conf.
on Scientific and Statistical Database Management (SSDBM
04), IEEE CS Press, 2004, pp. 423–424.

S.P. Callahan et al., “VisTrails: Visualization Meets Data
Management,” Proc. ACM SIGMOD, ACM Press, 2006, pp.
745–747.

J. Freire et al., “Managing Rapidly-Evolving Scientific Work-
flows,” Proc. Int’l Provenance and Annotation Workshop, LNCS
4145, Springer, 2006, pp. 10–18.

Andrew Dolgert is a consultant at the Cornell Univer-
sity Center for Advance Computation. His research
interests include data visualization and software us-
ability. Dolgert has a PhD in physics from the Univer-
sity of Virginia. Contact him at ajd27@cornell.edu.

1.

2.

3.

4.

5.

6.

7.

8.

Lawrence Gibbons is a professor in the Department
of Physics at Cornell University. His research interests
include precision measurement of CKM matrix ele-
ments, origin of electroweak symmetry breaking, and
analysis tools for large-scale data sets. Gibbons has
a PhD in high-energy physics from the University of
Chicago. Contact him at lkg@mail.lepp.cornell.edu.

Christopher D. Jones is a senior research associate
in the Laboratory for Elementary-Particle Physics
at Cornell University. His research interests include
software usability, analysis tools for HEP, and data
visualization. Jones has a PhD in high-energy phys-
ics from Cornell. Contact him at, cdj@mail.lepp.
cornell.edu.

Valentin Kuznetsov is a research associate in the
Laboratory for Elementary-Particle Physics at Cor-
nell University. His research interests include data
management, data mining, and Web technologies.
Kuznetsov has a PhD in physical and mathemati-
cal science from the Joint Institute for Nuclear Re-
search, Dubna, Russia. Contact him at vk@mail.lepp.
cornell.edu.

Mirek Riedewald is a research associate in the De-
partment of Computer Science at Cornell Universi-
ty. His research interests include data management
and analysis services for the sciences, data stream
processing, and data mining. Riedewald has a
PhD in computer science from the University of
California, Santa Barbara. Contact him at mirek@
cs.cornell.edu.

Daniel Riley is a research associate in the Laboratory
for Elementary-Particle Physics at Cornell University.
His research interests include reliable distributed sys-
tems, network security protocols, and analysis tools
for large-scale data sets. Riley has a PhD in high-
energy physics from Cornell. Contact him at dsr@
mail.lepp.cornell.edu.

Gregory J. Sharp is a senior programmer/analyst in
the Laboratory for Elementary-Particle Physics at
Cornell University. His research interests include op-
erating systems, storage, and theology. Sharp has an
ME in computer science from Cornell. Contact him at
gregor@mail.lepp.cornell.edu.

Peter Wittich is a professor in the Department of
Physics at Cornell University. His research interests
include elementary particle physics, hadron collider
physics, and neutrino physics. Wittich has a PhD in
high-energy physics from the University of Pennsyl-
vania. Contact him at pw94@cornell.edu.

