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The adoption of large-scale distributed computing presents new opportunities and challenges 
for the physicists analyzing data from the Large Hadron Collider experiments. With petabytes 
of data to manage, effective use of provenance is critical to understanding the results.

T he Large Hadron Collider (LHC) at 
CERN will produce data at a new en-
ergy scale of great interest to particle 
physicists. With proton–proton col-

lisions at a center-of-mass energy of 14 TeV, many 
of the collisions between the protons’ constituent 
partons will be above the energy scale at which 
the symmetry between weak and electromag-
netic interactions can be restored and will appear 
as the more fundamental electroweak interaction. 
Two general-purpose experiments, ATLAS and 
the Compact Muon Solenoid (CMS), will study 
these high-energy processes in great detail, and 
the results have the potential to illuminate the 
processes by which electroweak symmetry is bro-
ken and fundamental particles acquire mass—it 
could even inform us about the makeup of the 
cold dark matter that dominates the universe’s 
mass. However, researchers must overcome sig-
nificant computing challenges to provide the in-
dividual physicist with the means to effectively 
and efficiently pursue analysis of such data.

In this article, we examine the role of prov-
enance in several projects in which members of  

our group have participated, with an emphasis on 
using data provenance to improve the reproduc-
ibility of the physics results from the final steps 
of data analysis. Although the problems we dis-
cuss are domain specific, the solutions we describe 
have broader applications.

Physics Workflows
In high-energy physics (HEP) experiments, 
computing is typically designed around a model 
that organizes computationally intensive data 
processing in a centralized manner akin to wid-
get production in a factory. In this model, small 
teams of experts working in tightly controlled 
environments reconstruct and reduce data sets to 
subsamples containing high-level physics objects. 
The resulting organized production tasks are ho-
mogeneous and predictable, and typically include 
data acquisition, particle path reconstruction 
from patterns of activated detector elements, and 
production of simulated data used to derive detec-
tor efficiencies and investigate systematics.

Individuals or groups of physicists searching 
for specific statistical patterns characteristic of 
a physics process of interest usually examine the 
reconstructed data from these production jobs. A 
typical analysis might include preliminary, ex-
ploratory data analysis, followed by a process of 
tuning the analysis code with simulated data. 
Once physicists refine the analysis procedure, 
they must determine that procedure’s systematics 
and efficiency, usually through a combination of 
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simulated and real data (avoiding the signal region 
of interest in real data to avoid biasing the result). 
Next, they search for the sought-after signal in 
the data, using their efficiency estimates to derive 
the size of the signal or an upper bound. Most of 
these analysis steps are highly iterative and can re-
quire months or even years to complete, while the 
physicist explores different strategies for enhanc-
ing the ratio of the physics process of interest to 
other processes that might mimic it.

Traditionally, a physicist will develop a new 
strategy during such exploration, perform the 
analysis using this strategy, plot the distributions, 
and then finally record the changes along with a 
printout of the distributions into a physical log-
book. The physicist uses this logbook as a refer-
ence while preparing presentations or notes for 
internal distribution within a collaboration, which 
often elicits suggestions for additional strategies. 
Eventually, the analysis converges on a result and 
is documented in internal notes and an eventual 
paper for publication, both of which are then sub-
jected to a grueling internal review process to assess 
the result’s quality, reliability, and reproducibility. 
When questions arise during this review process, 
the lab notebook remains the ultimate reference 
for how the physicist performed the analysis.

In the past, the reconstructed data sets were 
typically small enough that the task of extracting 
physics from them was manageable for individuals 
or small teams with modest computing resources. 
These final steps were unscripted, unpredictable, 
and highly individual, and, as such, depended crit-
ically on the individual researcher and his or her 
ability to rapidly and reliably modify small steps 
in complex chains of calculations. In fact, the dif-
ference between success and failure could often 
be traced to the researcher’s ability to understand 
these data sets. Among the difficulties typically 
encountered were problems with precisely de-
termining how intermediate quantities were cal-
culated or the inability to repeat a process when 
additional reconstructed data (or data reprocessed 
with an improved understanding of the detector) 
became available.

In the LHC era, this landscape has changed. 
With the advent of copious high-performance 
computing resources in a global grid environment, 
each researcher has access to enormous amounts 
of processing power. The LHC will produce very 
large data sets; even the data sets that small teams 
of researchers will analyze will be terabytes in 
size. The job of managing these large samples and 
the ability to explore the data’s full possibility will 
quickly overwhelm the traditional tools that sci-

entists use to manage their workflow: notebooks, 
scripts, and the scientist’s own memory.

At the same time, the increasingly common 
practice of regularly reprocessing all of an ex-
periment’s collected data with the latest version 
of reconstruction software, along with the grow-
ing application of statistically unbiased analysis 
techniques, have increased the demand to regu-
larly replicate an analysis procedure. These re-
quirements also increase the maintenance costs 
of using private subsets of the data outside the 
experiment’s official production system, a conflict 
that can result in analyses not using all the avail-
able data or even the best version of it.

LHC experiment participants recognize the 
central role that the systematic collection and 
use of data provenance must play in establishing 
the quality of their results, and some have made 
attempts at applying modern workflow manage-
ment technologies to the task.1 However, at least 
in our experience on the CMS experiment, these 
efforts tend to concentrate on the relatively well-
understood production use cases, not the more 
challenging analysis tasks.

CLEO-c EventStore
We designed and implemented the EventStore 
system2 for the medium-energy CLEO-c experi-
ment in the course of migrating away from the 
commercial object database used to store data in 
the CLEO III experiment. The project’s principal 
goals were to provide a simple method for physi-
cists to reliably and reproducibly access a consis-
tent set of reconstructed data for analysis. Because 
the CLEO-c experiment reused much of the soft-
ware and analysis methodologies from CLEO III, 
we already had well-developed use cases for the 
data analysis’s later steps to guide our design.

EventStore is primarily a metadata management 
layer that organizes data for analysis into grades 
that represent phases in the data management life 
cycle. Examples of data grades include raw, reco, 
and physics, which represent raw data directly from 
the detector, reconstructed data not yet validated 
for physics use, and reconstructed data approved 
for physics analysis, respectively. The physics grade 
also includes any corrections calculated after the 
primary reconstruction step, so physics analysis 
jobs don’t access auxiliary data sources—instead, 
a physicist selects a data set simply by specifying 
the grade and a date (usually the date on which 
the analysis began), along with any other selection 
criteria. The date brings up the internally con-
sistent view of the data that was current on that 
date, guaranteeing the analysis’s reproducibility 
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and consistency as long as the same date is used 
throughout the analysis. The result is a simple, 
easy-to-use system that meets the most common 
requirements for consistency and reproducibility.

The EventStore implementation associates 
a specific version label with data derived in a pro-
duction job. This label identifies the process that 
produced the data, the CLEO-c software suite’s 
release version, and the process configuration. An 
EventStore grade includes a set of directed acyclic 
graphs of specific version labels, thereby record-
ing the set of data that comprises the grade as well 
as the data’s lineage. In our initial implementa-
tion, we set the specific version label adminis-
tratively in each production job’s configuration 
file, but we soon realized that we could make the 
system more reliable and potentially more useful 
if labels were generated automatically, so we de-
veloped a method based on a hash of the process 
configuration. This specific version hash is writ-
ten to a record type that our framework normally 
propagates from input files to output files, so each 
output file automatically accumulates a full pro-
cessing lineage. Later still, we modified the hash 
computation module to also store the full pro-
cess configuration in the output record, so that a 
physicist could replicate a job’s configuration even 
if the original configuration wasn’t version con-
trolled or was otherwise lost.

We designed the CLEO-c EventStore with 
three distinct implementations, tailored to the 
application’s scale: personal, group, and collabo-
ration. The personal EventStore is intended to 
manage data for a physics analysis project on a 
personal system such as a laptop or desktop. The 
group EventStore is designed to manage substan-
tial amounts of data on a pool of disks, typically 
at a second-tier analysis facility. The collaboration 
EventStore adds more sophisticated data manage-
ment facilities to the group system, including sup-
port for hierarchical storage, data replication and 
relocation, and a distributed directory service. 
The collaboration-scale EventStore resides at the 
experiment’s hosting institution and holds the 
master copies of all CLEO-c data.

Although our design focused on analysis use 
cases, we unexpectedly found that the personal 
EventStore was also very useful during organized 
production processes, so in the current CLEO-c 
production workflows, all results are stored in a 
personal EventStore specific to a particular job.  
The production team commits the workflow’s fi-
nal results into the collaboration EventStore only 
after the data pass all validation tests. Unfortu-
nately, CLEO-c didn’t widely adopt the personal 

EventStore for the analysis use cases for which we 
designed it, perhaps in part because the CLEO 
experiment’s physics analysis workflows were well 
established by the time we introduced the Event-
Store system for CLEO-c data.

CMS Dataset Bookkeeping Service
The CMS Dataset Bookkeeping Service (DBS)3 
is the primary metadata repository for the CMS 
experiment. It is conceptually similar to the 
EventStore’s metadata management components 
but differs in scale and implementation. With 
thousands of jobs at hundreds of institutions ac-
cessing CMS data at any time, scalability and reli-
ability are much more challenging, and the design 
and implementation involved a much larger group 
drawn from many institutions within CMS.

The CMS DBS is designed as a hierarchical fed-
eration, with a global instance hosted at CERN’s 
experiment site and local instances used for in-
termediate results of production jobs. As in the 
EventStore system, production jobs record their 
final results in a local DBS instance. The produc-
tion team validates the results and, if validated, 
publishes them to the global DBS. However, un-
like in CLEO-c, all operations in the CMS system 
are performed on the local DBS instance (includ-
ing locating the data to be processed), so the 
CMS workflow management tools must prepare 
a local DBS by copying metadata about the input 
data sets into it prior to data processing. This step 
eliminates any dependence running jobs have on 
the global DBS, which is a more robust configura-
tion for a globally deployed service.

The DBS records the parentage relationships 
between a task’s input and output files, the con-
figuration of the job that processed the data, and 
the release version of the CMS software suite 
used. In the terms of a widely cited taxonomy,4 
the DBS data provenance is process oriented—it 
collects provenance about the deriving processes 
with file granularity.

The CMS workflow management tools access 
both global and local DBS instances via Web 
services interfaces, while physicists principally 
browse them in the DBS Data Discovery Web ap-
plication, written as part of this project.

CMS Data-Processing  
Software Framework
The provenance collected in the DBS generally 
isn’t sufficient to fully understand how physics 
analysis results are produced, at least in part due 
to the CMS data-processing framework’s flex-
ibility. The primary CMS data-processing appli-
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cation, developed by a large team with members 
from several institutions within CMS, consists of 
a single C++ software framework with a suite of 
plug-in modules.5 A framework job’s configura-
tion specifies a set of these modules to load, each 
module’s parameters, and a set of processing paths 
specifying the sequence in which the modules 
are executed. With different configurations and 
modules, we can use the same framework to col-
late detector-produced data, generate simulated 
data, reconstruct particle tracks from patterns of 
activated elements in the detector, and perform 
most of the steps in the physics analysis. A single 
framework job can simultaneously write several 
different output files with different object con-
tents and filtering criteria; it can also read mul-
tiple input files with slightly different processing 
histories. Understanding in detail how an output 
file’s contents were produced requires finer gran-
ularity provenance than the process-oriented 
DBS provenance. 

Moreover, processing steps can also occur 
outside the official job execution services that re-
cord provenance in the DBS, in which case, the 
process-oriented provenance could be incom-
plete. It’s highly desirable to be able to reliably 
detect when this has happened. To address such 
cases, the CMS data-processing software frame-
work implements fine-grained object annotations 
to record the processing history that produced 
each object. This framework data provenance is 
data oriented, explicitly recording data products’ 
lineage with the granularity of individual atomic 
storage objects. To generate the annotations, the 
framework normalizes the process configura-
tion into a set of declarative statements for each 
module, which reside in the output file and can 
be queried from within the framework. The sim-

plified annotation shown in Figure 1 would be 
attached to objects produced by a module that 
finds clusters of activated channels in a silicon 
strip detector element.

The framework mediates all access to the data, 
which lets it associate all module-produced data 
with the module configuration and the types 
of the data the module accessed. These asso-
ciations among the objects produced, input ob-
jects, and the module’s configuration are stored 
in the output file as fine-grained object annota-
tions. Continuing our example, the framework 
would annotate a set of clusters produced by the 
si­StripClusters module with the module 
configuration displayed in Figure 1, along with 
the types of objects the module accessed.

Annotations in the input files pass through to 
the output file, so we can determine an object’s 
complete processing history by recursively follow-
ing each input object’s configuration annotations. 
This history produces a directed acyclic graph of 
input data types connected by module configura-
tions, and because the framework doesn’t allow 
a module’s configuration to change during the 
course of a single job, the representation of these 
annotations can be quite compact.

For organized production jobs, the framework 
is normally configured to enforce the processing 
history’s homogeneity for all the data in a set by 
examining the object types stored as well as the 
object annotations. When it finds homogeneity ex-
ceptions, examining the object annotations identi-
fies the difference in processing history and, in our 
experience, quickly leads to the identification of the 
programming or configuration error that caused 
the problem. Once the production team identifies 
the cause of a problem, they can search the job con-
figuration and software release provenance in the 

Module: siStripClusters Reco	 # module name and processing step

  PSet id:404e226632c0b4f66e9dccf2f7970a46	 # configuration ID

  products: {  SiStripClusterSetsiStripClusters_Reco.	# types produced by this module

  }

  parameters: {	 # module configuration

    @modulelabel: string = ‘siStripClusters’

    �@moduletype: string = ‘SiStripClusterizer’

    ChannelThreshold: double = 3

    ClusterThreshold: double = 5 

    MaxHolesInCluster: int32 = 0

  }

Figure 1. A simplified annotation for an object produced by a module that finds clusters of activated 
channels in a silicon strip detector element.
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DBS to identify additional data likely to be affect-
ed. Exact homogeneity is also the normal case for 
the later steps in data analysis, but this constraint is 
sometimes undesirable. The data-oriented frame-
work provenance makes it possible to detect when 
strict homogeneity has been violated and still de-
termine exactly how each object was produced.

A subtlety of the software framework’s data prov-
enance is that it records the data inputs and calcula-
tions that produced an object, but it doesn’t record 
any filtering steps that discard data objects. As a re-
sult, the framework provenance can help users un-
derstand an individual object or record’s processing 
history, but it might not be sufficient to replicate 
the entire data set’s production process because it 
doesn’t record all the filtering applied. One notable 
exception is the classification criteria applied by the 
experiment’s trigger, which forms the primary basis 

for dividing the data into data sets. However, the 
mechanism used to record the trigger classification 
doesn’t fully record logical combinations of trigger 
classifications and hasn’t been generalized beyond 
recording the trigger decision.

The lack of selection criteria is an obstacle 
to fully understanding an analysis strictly from 
the framework’s provenance. Another obstacle 
is that a physics analysis often involves modules 
private to a group or individual. The CMS col-
laboration is attempting to standardize a set of 
higher-level objects that are produced by the 
organized production process, but any specific 
physics analysis will have additional steps after-
ward. One approach to this problem is to develop 
a set of small, generic analysis components that 
allow a physicist to construct an analysis proce-
dure entirely via the framework configuration. 
As a simple example, we could select collision 
events that contain a track with transverse mo-
mentum greater than 15 GeV/c with the follow-
ing module configuration:

module highPtTracks = TrackSelector {

  InputTag src = ctfAnalyticalTracks

  string cut = “pt > 15.0”

}

where the “src” InputTag specifies the object col-

lection to which to apply the selection, and the 
“cut” string specifies the selection criteria. The 
module parses the “cut” string by using the Re-
flex C++ introspection system to locate the object 
method to which to apply the selection criteria 
and to construct an efficient implementation of 
the selection. A physicist typically uses one of 
these modules to produce a new collection of ob-
jects with the selection criteria applied, so that the 
selection criteria are recorded in the annotation 
provenance when the framework registers the 
production of the new collection.

With the generic component system, we can 
directly read the selection criteria and algorithms 
applied from the framework annotations. We can 
also discover how two analyses differ, or check for 
errors (such as applying a narrow selection crite-
ria in one step followed by a wider selection on 
the same parameter in a later step) by comparing 
the provenance of each. How generally useful this 
system will be for physics analysis is still an open 
question, particularly when physicists use multi-
variate classification techniques that can’t be con-
figured with just a few parameters.

Replacing the Notebook
Not all physicists use software versioning sys-
tems and sound software release practices as con-
sistently as they should for their own work, so 
modifying past workflows (such as by replicating 
an old workflow with recently acquired data) can 
be error-prone because the only records might 
exist in a physical notebook. We’re working on 
two complementary projects to investigate how 
existing scientific workflow management tools 
could replace the physical notebook for HEP data 
analysis. A secondary objective of this work is to 
evaluate the feasibility of combining domain-
specific CMS provenance with existing scientific 
workflow tools, which we believe have been under
utilized in particle physics.

In 2003, the LHC Grid Computing Project 
High-Energy Physics Common Application Layer 
Requirements Technical Assessment Group exam-
ined common use cases for data analysis. They iden-
tified the desirability of an electronic bookkeeping 
tool or electronic logbook with the following features:

Every task whose output is retained should be 
recorded with the output’s lineage and suffi-
cient information to replicate the task.
The logbook should be capable of submitting 
tasks to the experiment’s workflow management 
system, query the execution status, and auto-
matically record the results of task execution.

•

•

The lack of selection criteria is an obstacle to 

fully understanding an analysis strictly from 

the framework’s provenance.
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The logbook should make it easy to repeat a 
task with configuration variations.
The logbook should be able to report a task’s 
resource consumption.
The logbook should be usable by individuals as 
well as groups of physicists. It should be pos-
sible to “cut and paste” parts of one logbook 
into another.
A group’s logbook should be usable concurrent-
ly by several group members.

We propose using a local DBS instance as an 
electronic logbook’s primary memory, tailored to 
track the lineage of all data in a physicist’s analy-
sis via much the same mechanisms used for or-
ganized production tasks. Using the DBS as the 
provenance-tracking mechanism for an analysis 
would also let us reuse the existing CMS workflow 
management and job execution systems, which the 
logbook could access via a Web service. Because 
the CMS workflow management tools normally 
incorporate the metadata for all input files into the 
local DBS instance used for a process, it naturally 
supports such operations as incrementally adding 
data to an analysis. In addition, the logbook could 
automatically enforce proper version control of all 
source code—in fact, recent distributed version 
control systems would allow synchronization of 
the source code with a master repository while also 
supporting full version control even when the mas-
ter repository is unavailable.

We’re currently evaluating the suitability of ex-
isting scientific workflow management tools, such 
as Kepler6 and VisTrails,7 as an electronic logbook 
component for managing tasks such as process 
configuration, replicating a completed task on 
a new data set, or repeating a task with specific 
variations in the configuration. In parallel with 
the electronic logbook project, our HEPTrails 
project is investigating the strategies used during 
a physics analysis’s exploration phase, indepen-
dent of the details about a particular experiment’s 
software or computing systems. The implementa-
tion of HEPTrails is based on the VisTrails pack-
age, which is designed to track the provenance of 
workflows developed for interactive visualization 
of scientific or medical data, letting users edit 
their workflows and then run them.8 The system 
displays the results in a separate window via a 
spreadsheet metaphor, and each workflow modifi-
cation is recorded so that users can graphically see 
the change history along with modifications lead-
ing to related workflows. Users can even choose 
a workflow from a provenance graph and either 
rerun or modify it to create a new workflow that 

•

•

•

•

will also be recorded in the provenance graph. 
The provenance capture, along with the ability to 
use a graph to choose older workflows for modi-
fication, are ideal for the HEPTrails project, but 
the way workflows are executed in VisTrails isn’t a 
good match for HEP data processing.

Specifically, VisTrails decomposes a workflow 
into modules, with one module’s output connected 
to the input of one or more subsequent modules. 
When the workflow executes, each module executes 
once in the order the workflow specifies. In HEP 
data, each event record is independent of all other 
event records, so an HEP analysis applies the same 
workflow to each event, accumulating a summary 
of all the processed events’ properties. However, 
event records also hold additional data collections 
(such as lists of particle trajectories or clusters of 
energy deposited in the surrounding calorimeter), 
and physicists normally apply the same workflow 
for all items in a collection. The standard VisTrails 
workflow execution engine doesn’t support this 
type of repetitive application of a workflow, but 
its design does support replacing the standard ex-
ecution engine with one that—along with a set of 
custom workflow modules—generates a program 
to implement the desired workflow.

A distribution module can take a collection as in-
put and pass individual elements of that collection 
to child modules, which can further transform or 
filter elements. Another form of module monitors 
the individual items and, when the collection is 
complete, performs an operation and passes the 
result to its child modules, allowing implicit it-
erations to be performed in the workflow. Figure 
1 shows an example HEPTrails workflow with 
implicit looping, filtering, and transformation. 
These modules support streaming workflows that 
process data as it becomes available and, in turn, 
make the data available for further processing as 
soon as an object or collection is complete.

Because each module’s individual operations 
tend to be very fine-grained, the module’s com-
munication overhead can be greater than the 
operations themselves. To make the workflow ex-
ecution sufficiently efficient, the modules build an 
expression tree instead of directly performing an 
operation. Execution of the workflow transforms 
this tree into code in the Python language, which 
is then run on a separate thread. Running the gen-
erated code on a separate thread lets a physicist 
see partial results from long-running workflows 
and create a new workflow inspired by them while 
the original workflow runs.

Transforming a workflow to create an interme-
diate representation for subsequent execution is a 
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general technique with many uses. For example, 
we plan to use VisTrails to construct configuration 
files for the CMS software framework and send 
them to the CMS grid workflow system for ex-
ecution. In this scheme, the workflow in VisTrails 
represents the module configurations and execu-
tion paths, which—upon execution of the work-
flow—translates into a framework configuration.

If a physicist modifies a workflow, only the por-
tions of the workflow that need to be re-executed 
are the parts directly affected by the change or 
descendants of a changed part. We plan to imple-
ment caching of the workflow’s intermediate results 
and, instead of executing the direct ancestors of a 
changed part, HEPTrails will replay the ancestry 
back to only the closest ancestor that has cached the 

appropriate intermediate results. HEPTrails will 
also check that a filter applied late in a workflow isn’t 
a less restrictive selection criterion than a related fil-
ter earlier in the workflow or in a previous one.

T he LHC experiments’ scale, collabo-
ration sizes, and sizes of the physics 
topic subgroups within collabora-
tions are placing new demands for 

provenance tracking on HEP software design. 
The CMS collaboration is exploring several ap-
proaches to provenance, two of which we’ve dis-
cussed here. Although these efforts are largely ad 
hoc, they do explore interesting design points, 
particularly with respect to the kinds of prov-
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Figure 2.  Illustration of a HEPTrails workflow that has implicit looping via LooperExpression modules 
as well as filtering and transformation operations.  The inset window shows the workflow’s version history.
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enance collected and the granularity of the data 
objects to which the provenance refers. The utility 
of provenance data increases with its availability, 
but there is a trade-off between provenance data’s 
completeness and the overhead of collecting, stor-
ing, accessing, and managing it. We believe the 
adoption of ubiquitous, decentralized provenance 
creates new opportunities to better manage the 
unpredictable, unscripted steps of physics analy-
sis, especially on the vast quantities of data gener-
ated from the LHC experiments.�
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