
Computing in Science & Engineering	 This article has been peer-reviewed.� 41

V i s u a l
P r o g r a m m i n g

Creating a GUI for Zori,
a Quantum Monte Carlo Program

Rappture is a new GUI development kit that enables developers to build I/O interfaces
for specific applications. In this article, the authors describe the Rappture toolkit’s use in
generating a GUI for the Zori computer code.

I n their research laboratories, academic insti-
tutions produce some of the most advanced
software for scientific applications. How-
ever, this software is usually developed only

for local applications or for method development.
In spite of having the latest advances in a particular
field of science and engineering, such software also
often lacks adequate documentation and is there-
fore difficult for anyone to use other than the code
developers. Typically, as the codes become more
complex, so do the input files and command state-
ments necessary to operate them. To address this,
many programs offer the flexibility of performing
calculations based on different methods that have
their own set of specific variables and options, but
certain options can be incompatible with each oth-
er. For this reason, users outside the development
group might be unaware of how the program runs
in detail, thus developers can miss the opportunity
to make the software readily available outside the
laboratory of origin. This is a long-standing prob-
lem in scientific programming.

Rappture—Rapid Application Infrastructure1—
is a new GUI development kit that lets
developers build an I/O interface for a specific ap-
plication (https://developer.nanohub.org/projects/
rappture). This capability enables users to work
only with the generated GUI and avoids the prob-
lem of needing to teach code details. Further-

more, it explicitly specifies the required variables,
reducing input errors.

The Lester group at the University of Califor-
nia, Berkeley,2 developed Zori, a quantum Monte
Carlo (QMC) program that’s one of the few free
tools available for this field. Like many scientific
computer packages, Zori suffers from the prob-
lems described earlier: potential users outside the
research group have acquired it, but some find the
code difficult to use. Furthermore, new Lester
group members usually must take considerable
time learning all the options the code offers be-
fore they can use it successfully. In this article,
we describe how the Rappture toolkit eases this
problem by generating a GUI called Zopi (Zori
Processing Interface) for the Zori computer code.

Zori Basics
Zori implements the QMC method—which
simulates quantum systems by solving the many-
body Schrödinger equation—for calculating the
electronic structure of atoms and molecules. A

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

Roberto Olivares-Amaya, Romelia Salomón-Ferrer,
William A. Lester Jr., and Carlos Amador-Bedolla
University of California, Berkeley

42� Computing in Science & Engineering

detailed description of Zori’s structure and capa-
bilities as well as the fundamentals of QMC ap-
pear elsewhere (www.zori-code.com).3–8 Later,
we present a general description of the necessary
steps to perform a typical QMC calculation to
help explain the method’s complexity and how the
GUI addresses this process.

An external quantum chemistry package typi-
cally generates an initial wave function Ψ, which
then facilitates a QMC electronic structure cal-
culation. For this purpose, the user optimizes a
geometry using the quantum chemistry package,
and then the quantum chemistry package, based
on the optimized geometry, determines ΨT, where
the subscript labels the specified geometry’s par-
ticular wave function. Researchers typically use
the GAMESS9 and ADF benchmarks to deter-
mine ΨT.10 These programs then generate the
output, and the user transforms them into Zori
input format. A QMC calculation stochastically
probes configuration space with entities called
walkers guided by ΨT. Each walker represents
all the system’s particle positions, and the initial
set of walkers is generated at random. Next, the
algorithm can proceed along two paths: varia-
tional Monte Carlo (VMC) or diffusion Monte
Carlo (DMC). Because DMC gives more accurate
results, but requires more computer time than
VMC, researchers tend to make a VMC run first
to relax the initial configurations and then opti-
mize the parameters of ΨT, followed by a series of
DMC calculations to obtain statistically useful re-
sults. A module called Zopt links to the optimiza-
tion code Opt++ and optimizes ΨT in Zori (http://
csmr.ca.sandia.gov/opt++).

The way Zori works is reasonably straightfor-
ward, but the input files can be confusing. The
user inputs information using XML formatted
files that contain information about execution
time, algorithm type, the number of walkers per
processor, and so on. However, at execution, dif-
ferent options useful for code development re-
quire specified parameters that aren’t pertinent
to applications. Moreover, users typically aren’t
fully aware of all the options or variables that
they must determine.

Periodically—that is, for some fixed num-
ber of MC iterations—Zori writes a walker file
to disk with the most recent walker positions.
With either DMC or VMC runs, Zori continu-
ously updates a binary file called zori-energy.
out that contains the energy list of all the posi-
tions the walkers probe. Because Monte Carlo
calculations normally run for long periods, it’s
customary to periodically probe how the energy

fluctuates during a run. A tool included with Zori
called Zavg takes the list of energies from the file,
calculates the mean, variance, and statistical er-
ror, and saves these quantities in a text file, which
programs such as GNU-Plot (www.gnuplot.
info) can easily visualize.

A Look into Rappture:
Wrapping Applications
Rappture is a powerful tool that scientific pro-
grammers can use as a wrapping tool if the target
program has already been created, or incorporate
directly into the application. Because of its special
flexibility, Rappture can link to programs written
in multiple computer languages. Developers can
also write the interface between Rappture and the
application program in various languages, includ-
ing C, Python, Tcl, and Matlab.

Michael McLennan developed Rappture as part
of the Network for Computational Nanotechnol-
ogy (NCN), “a multi-university initiative that was
established to create a resource for nanoscience
and nanotechnology.”11 However, Rappture’s
impact has been broader than the nanosciences,
with applications that include NEMO 3D, a 3D
nanoelectronic modeling tool; an interface for the
Spice simulator; a general-purpose circuit simula-
tion program; and more recently, a cyclic peptide
ion channel simulator.12

Rappture comes with two libraries: one is a unit
conversions library that makes huge unit flexibil-
ity possible, especially while treating diverse en-
ergy and length units; and the other is Rappture
Library, which contains the objects necessary to
develop the program’s GUI. In practice, the pro-
grammer must construct two simple files to run
Rappture. The first file is tool.xml, which con-
tains all the information necessary for develop-
ing the GUI. The developer can include several
XML elements in the GUI construction, such
as strings, meshes, clouds, images, and options.
This XML format is extremely simple to use; the
Rappture wiki page (https://developer.nanohub.
org/projects/rappture) offers extensive informa-
tion on how to do it. The XML file also contains
a link to the second file, called the tool executable,
which interprets XML elements and hands them
over to the GUI. The executable also takes the
user’s given information in the GUI and sends it
as input to the application.

A general example of an XML tool file looks
like this:

<?xml version=”1.0”?>

<run>

January/February 2009 � 43

<tool>

<about> Welcome to ZoPI</about>

�<command>python @tool/zopi.py @

 driver</command>

</tool>

<input>

<boolean id = “rn_psi”>

<about><label>Yes or No?</label>

<description>Please

choose</description>

</about>

<default>no</default>

</boolean>

</input>

<output>

...(other Rappture XML elements)

</output>

</run>

This example demonstrates how the developer
should generally structure the tool.xml file for
a given application, which starts by opening the
main element—the run instruction—followed
by opening the tool command. In the command
line, the programmer then specifies the tool ex-
ecutable’s location—in this case, it’s zopi.py and
is located in the same directory as the tool.xml
file, which is represented as @tool/. Then, all the
elements the GUI must display as input are now
specified (we’ve shown a Boolean declaration as
an example). The tool executable can be either a
script that works as an interface between Rappture
and the application “wrapping” it, or it can be im-
mersed in the application itself. The programmer
can code this file with several programming lan-
guages, which gives Rappture increased flexibility
for scientific programmers who are accustomed to
a particular language. In the next section, a brief
description of the file generated to develop Zopi,
the Zori Processing Interface, is presented.

Zopi, the Zori-Processing Interface
Learning how to use Rappture presents minimal
difficulty,15 which is one of its advantages. How-
ever, we needed to adapt Rappture’s capabilities
to Zori’s needs. Figure 1 shows a common set of
steps that a user would follow to run Zori.

Zopi must have a linear structure composed of
separate sections that follow the algorithm in Fig-
ure 1. QMC is well known to have the benefit of
being embarrassingly parallel, so it’s common for
users to run applications on more than one pro-
cessor on either local clusters or large multipro-
cessor systems. This means that Zopi must have
an additional section that controls the necessary

options for generating the proper scripts for sub-
mitting the job to a particular computer system’s
queue. The submission of a job to a single proces-
sor is likewise desired, so Zopi must also contain
this flexibility.

Rappture offers a system that includes a tab
interface in which each tab controls a procedure
step—the last tab addresses the submission sec-
tion. It also includes the option of running all the
steps—that is, walker generation and VMC and
DMC runs sequentially or one at a time.

We’ve included six tabs in Zopi:

Trial Psi•	 writes the wave function’s information
for the Zori format to use.
Walkers•	 creates an initial set of walkers.
VMC•	 drives a VMC run.
DMC•	 drives a DMC run.
Optimization•	 calls OPT++ to optimize the cor-
related wave function.
Submit•	 sends the job to a cluster or runs interac-
tively on a single processor.

The development of tabs through Rappture is
specified in the tool.xml file. Here’s an example
of the corresponding instructions:

<group id = “WT”>

<group id = “PSI”>

<about><label>Psi</label>

<description>Creation of the

 wave function and orbitals.xml

 files</description>

</about>

Creation of
wave function

by external programs
such as GAMESS or ADF

Generation of
initial walkers

Collect statistics
and interpret results

Variational Monte Carlo run
to probe energy-collect
walkers for optimization

Optimization
of wave function

by Opt++

Diffusion
Monte Carlo run

Figure 1. Flow diagram of a Zori run. This figure shows a common set
of steps that a user would follow to run Zori.

44� Computing in Science & Engineering

...(Rappture XML elements)

</group>

<group id = “CW”>

...

</group>

...

</group>

The first group’s ID encapsulates all the tabs. The
second group’s ID is for the first tab, Trial Psi, in
which the user prompts the rest of the section’s
input. The list can continue, and, if so, the tab
length automatically changes.

Although similar in structure, it’s important
to look at other tabs to gain insight into one of
Rappture’s advantages—namely, compartmental-
ization. Figure 2 shows a DMC tab section. Other
options exist in the random walk section that this
figure doesn’t show.

Figure 2 shows three sections of the DMC tab:
the run instruction, which activates it; the gen-
eral subsection, which specifies the necessary in-
put files’ path and the type of DMC algorithm
currently being used; and, finally, a random-walk
section. In the random-walk section, more tabs
appear that the user must fill out completely with
required information. An additional advantage
with this approach is that users have a good idea
of what they’re filling out and therefore can ac-
quire further insight into Zori operations and
QMC in general.

The optimization tab enables the user to run
the wave function parameters’ optimization al-
gorithms. The optimization algorithm, OPT++,

improves Zori’s performance, as the different pa-
rameters improve the wave function’s form that
Zori needs to use. This tab functions like the oth-
ers, but it calls the module Zopt as opposed to the
main Zori program, which will be evident in the
command line itself.

As mentioned, Zopi has an additional tab that
provides the option to run QMC calculations
on a computer cluster. The user can also specify
command-line-specific instructions to run Zori
efficiently. This tab’s design favors users at the
University of California, Berkeley and the Law-
rence Berkeley National Laboratory (LBNL)
because it explicitly includes typical cluster speci-
fications present at these institutions. However,
the program also provides custom cluster script
prompts. Furthermore, Rappture’s flexibility
makes a rapid adaptation of Zopi possible, which
lets the user create a customized template for the
chosen cluster. As stated earlier, either the user or
the developer must edit the XML file and then
edit zopi.py where the actual command stands.
For instance, for the Lester group cluster, we cre-
ated a function (see Figure 3) that asks the user for
the necessary information, such as the number of
processors the user will use, the Zori executable’s
location, and so on.

The Tool Executable
The interface between the core application—
namely, Zori—and the GUI is a tool executable
called zopi.py. This wrapper communicates to
the program by transferring the information the
user enters into the GUI. Rappture offers the flex-
ibility of hard-coding these instructions into the
legacy code or writing them as an external wrap-
per, which lets the developer impose a GUI on an
existing legacy code.

Rappture makes it easy to write tool executables
because it includes libraries of different program-
ming languages. Although Zori is mainly writ-
ten in C, the present tool executable is a Python
script, which offers usability and helpful XML-
related libraries. The following lines of code show
an example of how zori.py extracts a value out
of a particular GUI entry and stores it in its cor-
responding variable:

Creation of .xml file for running

VMC in Zori

import sys

import Rappture

driver = Rappture.library(sys.argv[1])

rnVMC = driver.get(‘input.group.(VMC).

(rnVMC).current’)

Figure 2. Diffusion Monte Carlo (DMC) tab layout. This screenshot
shows three sections: the run instruction, which activates it; the
general subsection, which specifies the necessary input files’ path
and the type of DMC algorithm currently being used; and, finally, a
random-walk section.

January/February 2009 � 45

if rnVMC =’yes’:

...

wppv = driver.get(‘input.group.(VMC).

(rdmwalk).(vls).(wppv).current’)

punchv = driver.get(‘input.group.

(VMC).(rdmwalk).(vls).(punch).

current’)

...

Looking at the variable wppv (walkers per proces-
sor for a VMC calculation), the developer can ap-
preciate how the code obtains the current value in
the slot labeled wppv—that is, within the subsec-
tion vls, which in turn is in the subsection rdm-
walk that belongs to the tab VMC.

As mentioned earlier, Zori uses a file in XML
format as input. After we obtain the variable’s val-
ues that we’ll use from the GUI, we use the li-
brary libxml2 as an XML parser to generate the
necessary input files:15

docv = libxml2.newDoc(“1.0”)

popv = docv.newChild(None,

“Population”, “\n”)

popv.setProp(“WalkersPerProcessor”,

 wppv)

popv.setProp(“Punch”,punchv)

docv.saveFile(namev)

docv.freeDoc()

This example illustrates how to start writing an
XML file with libxml2 and the command libx-
ml2.newDoc. The command newChild indicates
the creation of a new branch or section in the
XML tree, which would correspond to the fol-
lowing resulting input file’s statement:

<Population></Population>

After creating the new section, the program-
mer specifies the necessary properties using the
command setProp. In the example, the proper-
ties WalkersPerProcesor and Punch are defined
with the values read from the GUI, wppv and
punchv, respectively. If the corresponding values
entered in the GUI for these two variables are 10
and True, then libxml2 parses the following line
into the following input file:

WalkersPerProcessor=”10”, Punch=”True”

Overall, this example should produce

an input file that reads as follows:

<?xml version=”1.0” ?>

<Population> WalkersPerProcessor=”10”

Punch=”True”</Population>

Once the user generates all the necessary input
files, he or she can initialize the QMC calculation.
These calculations usually require a lot of com-
puter power, but QMC is quite parallel, so the cal-
culations typically run in multiprocessor systems
or clusters. We implemented a simple window
within the GUI to input all the parameters to run
in the cluster. Here, we present only a pseudocode
that highlights the main variables to be specified
because the real code will be specific to the archi-
tecture used:

function run_GANITA(nodes, run,

command, extra)

 write script ganita.scr

 #include all specifications

 if nodes = 1

 #run single-node script

 else if nodes > 1

 #run in parallel

 end

The function uses the necessary information
to generate a script called ganita.scr, which
the GUI then sends to the cluster’s queue system.
Zopi prompts all the variables that the function
requires. The user can write a simple function to
create a template for his or her chosen cluster.

Running Zopi
With the GUI’s aid, the user can prepare and exe-
cute a calculation using Zori with little or no diffi-
culty. He or she needs only to click on the simulate
button located on the interface’s right side after

Figure 3. Submit input tab. The user sets information concerning the
cluster, what to run, and Zori specifications here.

46� Computing in Science & Engineering

completing the requested information on the left
side to launch the calculation.

Internally, the GUI saves the input values, and
Rappture interprets them based on the tool ex-
ecutable’s information. The Rappture interface
then builds the XML file that the program needs
to run Zori, and the interface builds the appropri-
ate command line to run Zori with all the user’s
specifications. For instance, a typical Zori com-
mand line for a DMC calculation would look as
follows:

./zori –i dmc.xml –p psi.xml –r new_

 walkers –t 720

Here, we assume that the executable for Zori as well
as the necessary XML input files are located in the
directory from which we send the job. This com-
mand line asks Zori to run by using the file dmc.
xml as the main input file and the psi.xml file for
the wave function; the walker files come from the
new_walkers prefix. Zori will run for a maximum
of 720 minutes on the specified machine. This input
procedure is now encapsulated within Zopi, where
all these options are inputs that the user can enter
into the proper box. The tool executable makes the
proper arrangements to parse and run the program
with all the correct specifications.

The optimization program, Opt++, has a slight-
ly different command line. It invokes the module
zopt:

./zopt –i walkers.xml –p psi.xml –r

 new_walkers

The GUI performs all the previous steps and

hides them from the user. As an example of how
the user would use the GUI, suppose he or she
has a valid wave function file that Zori can un-
derstand—psi.xml—and wants to run a VMC
calculation. The user would only have to go to
the GUI’s VMC section and activate this cal-
culation by selecting yes in response to the run
VMC command. This will change the GUI’s look
and display the information fields needed to
specify a VMC calculation. After providing this
information, the user just has to go to the GUI’s
submit section to specify whether the calculation
should run interactively on one processor or on
the cluster’s queue system where the GUI runs.
After entering this information, the user clicks
on the simulate button to perform the calcula-
tion. If he or she chooses to perform the run in-
teractively, the right panel would then show the
Zori’s output. Figure 4 shows a GUI screenshot
during a VMC calculation. At this point, the
user can choose to close the GUI and let the cal-
culation continue running in the background or
continue to monitor the run’s progress by call-
ing zavg.

Although Rappture offers a wide array of out-
put implementations (graphs, meshes, clouds, and,
more simply, logs), we decided to implement Zopi
with only the terminal screen output—this is a
matter of convenience. QMC calculations aren’t
usually run for long, thus having a GUI running
the whole time presents no extra benefit. On the
other hand, Zori comes with a tool named zavg,
which the user can call at any time to determine
the calculation convergence. Therefore, instead
of taking advantage of Rappture’s wide array of
information, we’ve chosen to observe if the calcu-
lation itself is running smoothly. Another option
would be to have Rappture call zavg periodically
to analyze and display the run’s updated statistical
analysis. This capability, however, is left for future
implementations.

When the program finishes the calculation,
Zopi outputs a simple indication of which runs
have taken place. As stated earlier, the user can
choose to close the GUI after submitting the job.
This message will only appear if the GUI is still
active when the run ends.

A simple and understandable way of run-
ning a given computer package is es-
sential to making software accessible to
the general user. In scientific program-

ming, developerse don’t often give this capability
a high priority. Increasingly, production-package

Figure 4. Virtual Monte Carlo (VMC) run. The input appears on
the left side of the window, and the information regarding the run
appears on the right side.

January/February 2009 � 47

developers are turning to GUI development to
make their application codes user friendly.

With the development of a simple GUI for
Zori called Zopi, we hope to broaden the use
of QMC and show the scientific community the
ease and benefits of generating such tools, which
also offer instructional advantages for students
in higher education.�

Acknowledgments
Roberto Olivares-Amaya and Carlos Amador-Bedolla
thank DGAPA-UNAM for financial support during
the semester at Berkeley. Romelia Salomón-Ferrer
and William A. Lester Jr. were supported by the US
Department of Energy under contract number DE-
AC03-76SF00098. We give special thanks to Rapp-
ture mailing list members Michael McLennan and
Alan Aspuru-Guzik for invaluable help during the
development of this project.

References
M. Lundstrom and G. Klimeck, “The NCN: Science, Simula-1.	
tion, and Cyber Services,” Proc. 2006 IEEE Conf. Emerging
Technologies – Nanoelectronics, IEEE CS Press, 2006, pp.
496–500.

A. Aspuru-Guzik et al., “Zori 1.0: A Parallel Quantum Monte 2.	
Carlo Electronic Structure Package” J. Computational Chemis-
try, vol. 26, no. 8, 2005, pp. 856–862.

B.L. Hammond, W.A. Lester Jr., and P.J. Reynolds, 3.	 Monte Car-
lo Methods in Ab Initio Quantum Chemistry, World Scientific,
1994.

J.B. Anderson, “Quantum Monte Carlo: Atoms, Molecules, 4.	
Clusters, Liquids and Solids,” Reviews in Computational
Chemistry, vol. 13, K.B. Lipkowitz and D.B. Boyd, eds., Wiley-
VCH, 1999, pp. 132–182.

W.M.C. Foulkes et al., “Quantum Monte-Carlo Simulations of 5.	
Solids,” Rev. Modern Physics, vol. 73, no. 1, 2001, pp. 33-83.

A. Aspuru-Guzik and W.A. Lester Jr., “Quantum Monte Carlo 6.	
Methods for the Solution of the Schrödinger Equation for
Molecular Systems in Computational Chemistry,” Handbook
of Numerical Analysis: Special Volume, Computational Chemis-
try, vol. 10, C. Le Bris, ed., Elsevier, 2003, pp. 485–535.

A. Aspuru-Guzik and W.A. Lester, Jr., “Quantum Monte 7.	
Carlo: Theory and Application to Molecular Systems,”
Advances in Quantum Chemistry, vol. 49, Elsevier, 2005, pp.
209–226.

P.J. Reynolds et al., “Fixed-Node Quantum Monte Carlo for 8.	
Molecules,” J. Chemical Physics, vol. 77, no. 11, 1982, pp.
5593–5603.

M. Schmidt et al., “General Atomic and Molecular Electronic 9.	
Structure System,” J. Computational Chemistry, vol. 14, no.
11, 1993, pp. 1347–1363.

G. Velde et al., “Chemistry with ADF,” 10.	 J. Computational
Chemistry, vol. 22, no. 9, 2001, pp. 931–967.

G. Klimeck et al., “NEMO 3-D and nanoHUB: Bridging 11.	
Research and Education,” Proc. 6th IEEE Conf., 2006, IEEE CS
Press, pp. 441–444.

B. Radak, H. Hwang, and G.C. Schatz, “Modeling Ion Chan-12.	
nels Using Poisson-Nernst-Planck Theory as an Integrated
Approach to Introducing Nanotechnology Concepts: The
PNP Cyclic Peptide Ion Channel Model,” J. Chemical Educa-
tion, vol. 85, no. 5, 2008, pp. 744–748.

Roberto Olivares-Amaya is a PhD student in the
Department of Chemistry and Chemical Biology at
Harvard University. His research includes the study
of structure, response, and reactivity of molecular
systems studied by first-principles electronic struc-
ture methods. Olivares-Amaya has a BS in chemistry
from UNAM and was an exchange student at the
University of California, Berkeley, when this work
was performed. Contact him at olivares@chemistry.
harvard.edu.

Romelia Salomón-Ferrer is a postdoctoral researcher
at the California Institute of Technology. Her research
interests include energy and electron and proton
transfer between molecules. Romelia has a PhD in
chemistry from the University of California, Berkeley,
where she worked in Monte Carlo method develop-
ment and application to molecular systems of bio-
logical interest. Contact her at romelia@caltech.edu.

William A. Lester Jr. is a chemistry professor at the
University of California, Berkeley, and a principal
investigator in the Chemical Sciences Division, Law-
rence Berkeley National Laboratory. His research
interests are the electronic structure of atoms and
molecules, including quantum Monte Carlo method
development and application. Lester has a PhD in
chemistry from the Catholic University of America.
He is a fellow of the American Physical Society, the
American Association for the Advancement of Sci-
ence, and the California Academy of Sciences. He
is also a member of the American Chemical Society.
Contact him at walester@lbl.gov.

Carlos Amador-Bedolla is a chemistry professor at the
National Autonomous University of Mexico (UNAM).
His research interests are in first-principles electronic
structure methods. Amador-Bedolla has a PhD in
chemistry from UNAM. Contact him at amador@
cbsj.org.

Advancing in the IEEE Computer Society can elevate
your standing in the profession.

www.computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST • UPGRADE YOUR MEMBERSHIP

