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G r e e n  H p c

Although most large-scale systems are designed with the network as a central component, 
the interconnection network’s energy consumption has received little attention. However, 
several software and hardware approaches can increase the interconnection network’s 
power efficiency by using the network more efficiently or using throttling bandwidths to 
reduce the power consumption of unneeded resources.

Software and Hardware Techniques 
for Power-Efficient HPC Networking

P ower-aware or “green” HPC is receiv-
ing growing attention—not least due 
to the eye-opening bottom line on the 
energy bill for most HPC data centers. 

Other factors include steadily growing perfor-
mance requirements in many application areas, the 
stagnating performance-per-watt ratio of general- 
purpose servers,1 and—as Figure 1 shows—the 
inexorably growing costs of electrical energy.

A simple calculation, based on real data from 
an SC08 Cluster Challenge Competition entry 
shows that energy costs over a server’s four-year 
life period already make up a significant fraction 
of its total cost of ownership. Typical servers cost 
approximately $3,000, including basic network-
ing costs for a small-scale system. Such a system 
(including networking equipment) draws between 
150 and 350 watts depending on its load. So, under 
a full load, assuming 11 cents per kilowatt hour 
(kWh), the total power consumption adds up to 
approximately $1,350 over four years, which is  
45 percent of the cost of the server. For a com-
modity cluster system with 512 compute nodes, 
the cost would be $14,400 per month.

The communication network, or interconnect, 
forms the backbone of every large-scale com-
puting system. Most multipurpose large-scale 
computing systems are actually built around 
the communication network and its topology. 
The network topology describes how network 
elements, such as switches or endpoints (nodes), 
connect to each other. Thus, we distinguish two 
important parameters of each interconnection 
network: the network technology (such as Myri-
net, InfiniBand, or Ethernet) and the network to-
pology (such as fat-tree, torus, or Kautz graph). 
As we describe here, both play an important role 
in the communication network’s growing impor-
tance in green HPC.

Problem Overview
In our model system—a small-scale setting with a 
single switch and 14 clients—the network equip-
ment consumed less than 10 percent of the total 
idle power, equaling $1,440 per month. However, 
network power consumption is expected to grow 
at scale, and several sources report that their large-
scale systems consume between 15 and 20 percent 
of the total idle power. Another interesting effect 
is that our system’s power consumption increased 
by more than 20 percent when running a simple 
communication benchmark. We also observed 
that, regardless of the load, we can achieve a power 
savings of up to 5 percent by choosing the right 
interconnect.
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The development of power-saving techniques 
for other elements in servers, such as the CPU 
(turning off or throttling cores), memory (new 
technologies, such as “not and,” or NAND, 
Flash3), or more efficient power supplies and 
blade technologies, is progressing quickly. How-
ever, similar techniques in networking haven’t yet 
reached wide adoption. Thus, the relative impor-
tance of power-savings in the network is likely to 
grow in the near future.

In addition, steadily growing computing de-
mands to perform large-scale simulations at the 
forefront of science will soon require extreme-scale 
computers. As we move from peak-petaflop ma-
chines to sustained-petaflop to peak-exaflop com-
puters, we’re likely to hit the “power wall,” which 
will require a completely new way of thinking. 

There are several approaches for proceeding to 
exascale under obvious energy limitations. The 
most successful approach to energy savings is to 
design special hardware.4,5 However, this often 
means high design costs and relatively limited use.

A more versatile, but still limited approach is to 
use heterogeneous or asymmetric multiprocessing 
and accelerators. This typically requires funda-
mental changes in algorithm design and imple-
mentation to exploit the specialized architectures’ 
power. Such specialized solutions are gaining 
importance, but the significant investments nec-
essary to build large-scale computing systems 
require that those resources are versatile and can 
run numerous different applications. Also, some 
application classes can use holistic approaches to 
the energy problem, such as the Green Destiny 
project6 or Blue Gene.7 However, the network is 
often a weak part of such systems. 

Measuring Energy Efficiency
Well-known energy-centric metrics—such as 
floating point operations per Joule (flops/J) or 
flops per second per watt (flops/W), can extend 
or even replace the current dominant measure of 
floating point operations per second (flops). Part 
of this movement is reflected in the Green500 
list and other activities related to energy-efficient 
computing at extreme scales. 

Figure 2 shows the development of the high-
performance Linpack (HPL) benchmark’s power 
efficiency on the Green500 list’s first and tenth 
systems over a two-year period. During that time, 
the total number of cores in the Top500 list in-
creased from 1.2 million to 4.6 million, which 
clearly shows the emerging importance of power-
aware large-scale networking. Thus, we argue 
that such computation-centric metrics (flops/J) 

should be extended to capture the efficiency of 
data-movement such as bytes per joule (B/J).

The Interconnect’s Role
Interconnection networks satisfy remote data-
dependencies in parallel applications. For exam-
ple, a dot product of two distributed vectors must 
ultimately return the global sum of all partial 
results, which obviously requires the exchange 
of the partial results over the network. Although 
this communication doesn’t advance the actual 

Figure 1. Development of US electrical energy prices according to the 
US Energy Information Administration’s Monthly Energy Review for 
October 2008.2 The growing cost of energy is one of several factors 
that have put green high-performance computing in the spotlight.
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Figure 2. High-performance Linpack (HPL) efficiency for the 
Green500 list’s rank 1 and rank 10 systems. The list’s total number of 
cores increased from 1.2 million to 4.6 million, clearly showing the 
emerging importance of power-aware large-scale networking.

200

300

400

500

600

700

800

11/07 02/08 06/08 11/08 06/09 11/09

H
PL

 e
f�

ci
en

cy
 (

M
�o

p
s/

W
)

Year

Rank 1 
Rank 10

CISE-12-6-Hoef.indd   31 16/10/10   2:54 PM



32� Computing in Science & Engineering

computation, we need it to retrieve the correct 
results. Reducing communication overhead—that is, 
the time that an application spends in communi-
cation routines—is an important goal. To achieve 
it, most programmers strive to use the network as 
little as possible, keeping the ratio of communica-
tion to computation in a parallel program as low 
as possible. 

We’ll use a 2D Poisson solver to demonstrate 
typical communication overheads. Programmers 
use Poisson solvers to solve a large class of elliptic 
partial differential equations (PDEs) that model 
many physical phenomena, such as heat dissipation. 
Our example problem spans 5,000 grid points in 
each dimension, with 25 million grid points total. 

We ran the computation on 25 processes ar-
ranged in a 2D 5 × 5 grid (see Figure 3a). We dis-
tributed the grid to the five processes, with each 
process receiving a 1,000 × 1,000 patch. In a stan-
dard five-point stencil, each grid point needs the 
values of four adjacent points in its computation 
(see Figure 3b) and requires communication of all 
(4,000) elements at the process boundary to the 
adjacent processes. The data that must be com-
municated is called the halo zone; the halo zone 
is sent to a specialized communication buffer 
(the ghost cells). Figure 3c shows communication 
boundaries for process 11. Such solvers are usually 
run iteratively until convergence criteria are met.

It’s possible to implement this algorithm in par-
allel by looping over the local grid and applying 
the stencil operation. When the loop arrives at a 
grid point that requires remote data, it can request 
this data from a neighbor (which, given the sym-
metry, can proactively push the data to the receiv-
er). However, this very fine-grain communication 
is inefficient.

A simple way to reduce network overheads is 
to avoid small message transfers by aggregating 

messages into local buffers before sending them. 
In our example, the communication of all ghost 
cells would have to happen at the beginning of an 
iteration instead of when they’re actually needed. 
This avoids the startup costs per message and thus 
reduces the overhead. However, implementations 
typically require local buffering and additional 
memory copies at the sender or receiver. 

Data movement in dynamic RAM (DRAM) 
is one of the most energy-consuming operations 
and should be avoided. Thus, even node-local 
strategies, such as message aggregation, should be 
used with care. One possible optimization would 
be to pass blocks of data without buffering them 
to the communication layer. The message pass-
ing interface (MPI) offers this possibility, using 
derived data types to let users send data that’s 
scattered through memory without packing it in 
a contiguous buffer.

Energy Saving Strategies
Most of today’s interconnection networks have no 
means to save power; they can’t, for example, turn 
off links or clock down circuits. Thus, even when 
idle, network links run at full steam, typically per-
forming physical link-level control protocols. Bursty 
communication requires relatively high bandwidth 
(that is, wide links and high frequency) and thus 
high power consumption. But, because most pro-
grammers strive to keep communication overhead 
low, they try to keep the network largely idle.

In this situation, there are two obvious ways to 
save power: enable power-saving mechanisms in 
the network, and alter algorithms and applications 
to use the network more efficiently.

Hardware Power Savings 
Industry groups have analyzed power-saving 
techniques for network interconnects. IEEE’s 

Figure 3. A Poisson solver example. The (a) domain decomposition, (b) five-point stencil, and the (c) halo 
zones, which consist of data that must be communicated.
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task force on energy efficient Ethernet (IEEE 
802.3az) discussed power saving options such as 
dynamic link-speed reduction, receiver modi-
fication, and deep sleep states. However, some 
of those options might hinder today’s high- 
performance applications because state-changes 
from sleep to active could take up to 10 micro-
seconds, which directly adds to the latency and 
significantly increases network jitter. In general, 
while such mechanisms provide a huge power-
saving potential, applications should be notified if 
performance is degraded.

Algorithmic Power Savings
Unlike hardware, which is typically replaced in 
four-year cycles, algorithmic changes are usually 
more difficult to implement because algorithms 
and parallel codes are often significant long-term 
investments. However, initial results show that 
overlapping communication and computation can 

lead to a steady use of the interconnect, which in 
turn reduces the required bandwidth and/or im-
proves application performance and wait times. 
Such optimizations have two effects. First, they 
reduce the time to solution (see Figure 4b). Sec-
ond, they allow systems to throttle network speeds 
and avoid bursty traffic (see Figure 4c).

In a previous study,8 we analyzed the effects 
of overlapping computation and communication 
over Gigabit Ethernet and SDR InfiniBand. Both 
networks’ effective bandwidth differs by a factor 
of 8, and the initial costs differ by nearly a fac-
tor of 15. Our Poisson solver with 8003 points on 
96 nodes performs 34 percent worse over Giga-
bit Ethernet than over InfiniBand. However, as  
Figure 5 shows, with overlapping computation 
and communication, both networks perform 
equally well. The applied optimizations avoid 
memory copies and bursty network traffic and 
thus reduce the power consumption.

Figure 4. Poisson example with power saving optimizations. Power-saving possibilities include (a) blocking 
communication, (b) nonblocking communication with overlap, and (c) overlap with half bandwidth.
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Figure 5. Parallel speedup for (a) Ethernet and (b) InfiniBand. Optimizing through overlapping 
computation and communication produced equally good performance in both networks. The applied 
optimizations avoid memory copies and bursty network traffic and thus reduce the power consumption. 
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Optimized problem partitioning and task map-
ping could also save power by improving locality.9 
However, it’s important to weigh the overheads of 
computing the partition and redistributing the data 
against the savings in memory and network usage.

Not all algorithms and applications readily 
lend themselves to overlap like the Poisson solv-
er. Often, other more complex techniques must 
be employed to extract the needed parallelism 
of communication and computation. Among the 
promising techniques are one-sided communica-
tion (such as MPI-2 One-Sided) and partitioned 
global address space models (such as Unified Par-
allel C or Co-array Fortran). These eliminate 
the receiver’s CPU overhead (with appropriate 
hardware support) and thus enable efficient fine-
grained communication. This alleviates the need 
for coalescing or at least takes it out of the applica-
tion developer’s hands. Power-optimized libraries 
could use the relaxed memory consistency of re-
mote memory access models (such as MPI-2) to 

transmit messages most efficiently, and program-
mers could overlap fine-grained communication 
and computation conveniently.

Analysis: Small-Scale Network  
Power Consumption
Future developments in software and hardware 
are on their way, but several limitations apply to 
today’s systems. Here, we report gathered data 
comparing the power consumption of two differ-
ent networking technologies under microbench-
mark conditions, as well as full application runs.10

Our study compares the Mellanox double data 
rate (DDR) InfiniBand ConnectX (MT26418) 
with Myricom’s Myrinet 10G on 14 dual symmet-
ric multiprocessors (SMPs), quad-core IBM iDat-
aPlex (dx360) nodes. We used identical hardware 
and software and simply swapped the cards and 
switches for the benchmarks.10 Our InfiniBand 

setup was based on copper (configuration A) and 
we compared copper-based (10G-PCIE-8A-C, 
configuration B) and fiber-based (10G-PCIE-8B-
QP, configuration C) Myricom cards.

The complete system’s power draw at 120 volts 
varied between 17.7 and 40 amps idle and under 
maximum load, respectively. Interestingly, the 
idle power was 17.7 amps for configuration A, 
17.3 amps for configuration B, and 16.9 amps for 
configuration C, which is nearly a 5 percent dif-
ference. We also observed a similar difference 
under high communication load, which increased 
the power consumption by more than 20 percent. 
Because the networking hardware doesn’t yet sup-
port power savings, the increase in total power 
consumption is likely due to the CPU’s higher use 
of the endpoints.

Our study used four applications: 

•	 Multiple Instruction, Multiple Data (MIMD) 
Lattice Computation (MILC/su3 rmd), 

•	 Parallel Ocean Program (POP), 
•	 Wave Propagation Program (WPP), and 
•	 Random Axellerated Maximum Likelihood 

(RAxML). 

All programs use MPI for communication and ex-
hibited between 4 and 27 percent communication 
overhead.

We recorded the power consumption for com-
plete runs of all four applications; Figure 6 shows 
the power traces. Based on this data, we computed 
the total energy consumption for each configura-
tion (see Table 1).

It would be interesting to compute the flops/J 
for each application as is often done for the HPL 
benchmark. A next step could then be to assess 
each application’s power efficiency with regards 
to some theoretical upper limit. To determine the 
floating point efficiency, researchers typically as-
sess the application’s efficiency by comparing the 
reached flops with the peak flops. Because this 
model neglects other system parts—such as the 
memory subsystem—it’s questionable in itself. 
However, such metrics do encourage users to 
make more efficient use of other resources, such 
as memory or network.

Determining a power-efficiency measure is 
harder because deriving an upper bound—that is, 
determining the flops/J for an ideal application—
is a nontrivial task in itself and probably requires 
a vendor specification (such as the theoretical 
peak flops rate). This and equivalent iso-energy-
efficiency scaling (such as isoefficient scaling) is 
an interesting topic for future research.

Not all algorithms and applications 

readily lend themselves to overlap like the 

Poisson solver. Often, other more complex 

techniques must be employed to extract the 

needed parallelism of communication and 

computation.
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Toward Large-Scale Systems
Scaling interconnection networks is hard and 
requires several trade-offs. These trade-offs are 
most important when it comes to choosing the 
network topology—that is, the way in which the 
networking elements are connected.

The network topology determines the two 
most important characteristics of an interconnec-
tion network: bisection width and diameter. The 
bisection width defines the minimum number of 
links (cables) that must be removed to split the 
network into two equal parts. It also determines 
the performance of applications that commu-
nicate large messages in dense communication 
patterns (such as all-to-all or random patterns). 
The network diameter mainly influences the 

performance of applications that communicate 
small data, such as scalar values.

Low-diameter networks often have a high 
bisection width, so the basic trade-off is cost/
power consumption versus diameter and bisec-
tion width. Many scientific applications require 
only sparse—or even regular—communication 
patterns, such as 2D and 3D Cartesian grids as 
in our Poisson example. Developers can often 
efficiently embed such applications in low-cost 
topologies, such as torus networks, where the 
number of switches scales favorably (O(P)) with 
the network size (P). However, achieving efficient 
parallel-application embedding remains a topic 
of ongoing research, and most implementations 
support only the embedding of Cartesian grids 

Figure 6. Power-profiles for all configurations and networks. (a) Multiple Instruction, Multiple Data (MIMD) 
Lattice Computation (MILC), (b) Parallel Ocean Program (POP), (c) Wave Propagation Program (WPP), and 
(d) Random Axellerated Maximum Likelihood (RAxML).
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Table 1. Total power consumption (in kilowatts per hour) for each problem set.

Application Configuration A Configuration B Configuration C

MIMD Lattice Computation (MILC) 3.879 (100%) 3.875 (99.9%) 3.819 (98.5%)

Parallel Ocean Program (POP) 0.458 (100%) 0.432 (94.3%) 0.406 (88.6%)
Wave Propagation Program (WPP) 6.807 (100%) 6.781 (99.6%) 6.713 (98.6%)

Random Axellerated Maximum 
Likelihood (RAxML)

8.315 (100%) 8.164 (98.2%) 8.015 (96.4%)
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into torus topologies.11 Most large-scale systems 
either have deep hierarchies (such as Road Run-
ner) or torus networks (such as Blue Gene or Cray 
XT systems) as topologies.

Some communication patterns, such as wheel 
or star graphs, are hard to embed into torus to-
pologies and many applications require the full 
bisection width and/or low diameter. Examples of 
such applications are 3D fast Fourier transforma-
tions (FFTs), which perform large-data transpose 
(all-to-all) operations, or parallel graph computa-
tions with data-driven and highly dynamic com-
munication patterns.

Example Topologies
To support all applications that require maxi-
mum bisection width and minimal diameter, we 
need networks in which the number of required 
switches grows superlinearly (O(P log P)), such 
as Clos or fat-tree networks. However, the power 
consumption of such networks grows significantly 
at scale. We’ll again do a simple calculation based 
on our measurement results. InfiniBand switches 
(configuration A) have 24 ports while Myrinet 
switches (configuration B and C) have 32 ports. 
Both switches draw 0.48 amps (This is a pure 
model computation; different integration and 
port counts will change the computation and shift 
some constants in the results.)

In the following, we’ll extrapolate our simple 
data to a large-scale system as described in the US 
Department of Energy’s report on exascale sys-
tems.12 Our envisioned exascale scenario consists 
of 1.3 million processing elements with 64 cores 
each. If we assume SMP systems with 8 process-
ing elements (PEs) per node, our model system 
would have 162,500 network endpoints. The net-
work would have three hierarchies: 

•	 the on-chip network connecting all cores, 
•	 the off-chip network connecting all PEs in a 

node, and
•	 the off-node network, which we discuss here.

We compare two typical network topologies. The 
torus topology scales with O(P) switches linearly 
with the number of nodes, but has a high diame-
ter and low bisection width. The fat-tree topology 
that scales with O(P log(P)) switches superlinearly 
with the number of nodes and has low diameter and  
high bisection width. Figure 7 shows a 2D torus 
with 36 nodes (four-port switches, with one node 
per switch) and a two-stage fat-tree with 144 nodes 
(24-port switches, with 12 nodes per level-1 switch).

In the 3D torus network, each node has six 
neighbors. If we built a torus with full bandwidth 
to all neighbors, we could attach three nodes to 
each InfiniBand switch and four nodes to each 
Myrinet switch. This would leave three and four 
ports per switch idle, respectively. If we scaled 
this network to 162,500 nodes, we would need 
54,167 InfiniBand or 40,625 Myrinet switches. In 
the fat-tree network with full bisection width and 
a similar number of endpoints, we would need a 
five-level fat-tree requiring 60,939 and 45,706 
switches for InfiniBand and Myrinet, respectively.

In both cases, the interconnect would represent 
a significant fraction of the total power consump-
tion; the switches alone consume as much power as 
several thousand computer nodes under full load. 
However, integration and more power-effective 
designs will likely lower this consumption signifi-
cantly. IBM’s Blue Gene supercomputer, for ex-
ample, integrates the torus network in the CPU 
chip.13 Nonetheless, the network transceivers 
that drive the external network links use a sig-
nificant fraction of the switch’s power.

Figure 7. Torus and fat-tree network topologies. (a) The two-stage fat-tree topology has 144 nodes (24-port 
switches, with 12 nodes per level-1 switch). (b) The 2D torus topology has 36 nodes (four-port switches, 
with one node per switch).
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Routing and Fiber-Based Technologies
Network routing should also be investigated for 
power savings. For example, destination-based dis-
tributed routing as used in InfiniBand or Ethernet 
networks requires a look-up in a forwarding table 
at each switch. Source-based routing as used in 
Myrinet or Blue Gene simply encodes the route in 
each packet’s header, enabling a much simpler logic 
in switches. For the latter, it’s necessary to include 
the power costs of encoding the route into each 
packet. There’s thus no general silver bullet to save 
energy in routing and topology of large-scale net-
works; most decisions require careful analysis of all 
alternatives in the limits of current technology.

An interesting emerging technology is the wide 
availability of fiber-based interconnects. While 
the first generation of these interconnects uses the 
same electrical connectors and are thus not saving 
much energy, it’s possible to drive fiber cables with 
less energy over higher distances than copper-based 
cables. The higher cable lengths permit the con-
struction of networks with lower diameters and full 
bisection width, such as the flattened butterfly.14 
This again contributes to energy savings and per-
formance improvements. However, today’s optical 
networking is relatively unoptimized. This is due 
both to low market volume and to the expense of 
crossing over from copper to optics—in the range 
of several meters for cost and energy consumption.

I t’s now up to the hardware and software 
communities to make network energy con-
sumption an explicit variable in the equa-
tion. Methods, such as power saving states 

and low-power optics, could lead to quick success-
es on the hardware side. Power savings in software 
are at least as important and have a huge potential. 
Software development tools and languages can 
help programmers enable low-power applications 
that use the networking resources more effectively.

Toward exascale, we need new system designs, 
topologies, and programming environments to 
stay within the practical energy limitations. All 
such developments must consider energy con-
sumption hand-in-hand with the performance 
requirements.�
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