
30	 This article has been peer-reviewed.� Computing in Science & Engineering

G r e e n H p c

Although most large-scale systems are designed with the network as a central component,
the interconnection network’s energy consumption has received little attention. However,
several software and hardware approaches can increase the interconnection network’s
power efficiency by using the network more efficiently or using throttling bandwidths to
reduce the power consumption of unneeded resources.

Software and Hardware Techniques
for Power-Efficient HPC Networking

P ower-aware or “green” HPC is receiv-
ing growing attention—not least due
to the eye-opening bottom line on the
energy bill for most HPC data centers.

Other factors include steadily growing perfor-
mance requirements in many application areas, the
stagnating performance-per-watt ratio of general-
purpose servers,1 and—as Figure 1 shows—the
inexorably growing costs of electrical energy.

A simple calculation, based on real data from
an SC08 Cluster Challenge Competition entry
shows that energy costs over a server’s four-year
life period already make up a significant fraction
of its total cost of ownership. Typical servers cost
approximately $3,000, including basic network-
ing costs for a small-scale system. Such a system
(including networking equipment) draws between
150 and 350 watts depending on its load. So, under
a full load, assuming 11 cents per kilowatt hour
(kWh), the total power consumption adds up to
approximately $1,350 over four years, which is
45 percent of the cost of the server. For a com-
modity cluster system with 512 compute nodes,
the cost would be $14,400 per month.

The communication network, or interconnect,
forms the backbone of every large-scale com-
puting system. Most multipurpose large-scale
computing systems are actually built around
the communication network and its topology.
The network topology describes how network
elements, such as switches or endpoints (nodes),
connect to each other. Thus, we distinguish two
important parameters of each interconnection
network: the network technology (such as Myri-
net, InfiniBand, or Ethernet) and the network to-
pology (such as fat-tree, torus, or Kautz graph).
As we describe here, both play an important role
in the communication network’s growing impor-
tance in green HPC.

Problem Overview
In our model system—a small-scale setting with a
single switch and 14 clients—the network equip-
ment consumed less than 10 percent of the total
idle power, equaling $1,440 per month. However,
network power consumption is expected to grow
at scale, and several sources report that their large-
scale systems consume between 15 and 20 percent
of the total idle power. Another interesting effect
is that our system’s power consumption increased
by more than 20 percent when running a simple
communication benchmark. We also observed
that, regardless of the load, we can achieve a power
savings of up to 5 percent by choosing the right
interconnect.

Torsten Hoefler
National Center for Supercomputing Applications

1521-9615/10/$26.00 © 2010 IEEE

Copublished by the IEEE CS and the AIP

CISE-12-6-Hoef.indd 30 16/10/10 2:54 PM

November/December 2010 � 31

The development of power-saving techniques
for other elements in servers, such as the CPU
(turning off or throttling cores), memory (new
technologies, such as “not and,” or NAND,
Flash3), or more efficient power supplies and
blade technologies, is progressing quickly. How-
ever, similar techniques in networking haven’t yet
reached wide adoption. Thus, the relative impor-
tance of power-savings in the network is likely to
grow in the near future.

In addition, steadily growing computing de-
mands to perform large-scale simulations at the
forefront of science will soon require extreme-scale
computers. As we move from peak-petaflop ma-
chines to sustained-petaflop to peak-exaflop com-
puters, we’re likely to hit the “power wall,” which
will require a completely new way of thinking.

There are several approaches for proceeding to
exascale under obvious energy limitations. The
most successful approach to energy savings is to
design special hardware.4,5 However, this often
means high design costs and relatively limited use.

A more versatile, but still limited approach is to
use heterogeneous or asymmetric multiprocessing
and accelerators. This typically requires funda-
mental changes in algorithm design and imple-
mentation to exploit the specialized architectures’
power. Such specialized solutions are gaining
importance, but the significant investments nec-
essary to build large-scale computing systems
require that those resources are versatile and can
run numerous different applications. Also, some
application classes can use holistic approaches to
the energy problem, such as the Green Destiny
project6 or Blue Gene.7 However, the network is
often a weak part of such systems.

Measuring Energy Efficiency
Well-known energy-centric metrics—such as
floating point operations per Joule (flops/J) or
flops per second per watt (flops/W), can extend
or even replace the current dominant measure of
floating point operations per second (flops). Part
of this movement is reflected in the Green500
list and other activities related to energy-efficient
computing at extreme scales.

Figure 2 shows the development of the high-
performance Linpack (HPL) benchmark’s power
efficiency on the Green500 list’s first and tenth
systems over a two-year period. During that time,
the total number of cores in the Top500 list in-
creased from 1.2 million to 4.6 million, which
clearly shows the emerging importance of power-
aware large-scale networking. Thus, we argue
that such computation-centric metrics (flops/J)

should be extended to capture the efficiency of
data-movement such as bytes per joule (B/J).

The Interconnect’s Role
Interconnection networks satisfy remote data-
dependencies in parallel applications. For exam-
ple, a dot product of two distributed vectors must
ultimately return the global sum of all partial
results, which obviously requires the exchange
of the partial results over the network. Although
this communication doesn’t advance the actual

Figure 1. Development of US electrical energy prices according to the
US Energy Information Administration’s Monthly Energy Review for
October 2008.2 The growing cost of energy is one of several factors
that have put green high-performance computing in the spotlight.

2

3

4

5

6

7

8

9

10

11

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Pr
ic

e
(c

en
t/

kW
h)

Year

Commercial energy price

Figure 2. High-performance Linpack (HPL) efficiency for the
Green500 list’s rank 1 and rank 10 systems. The list’s total number of
cores increased from 1.2 million to 4.6 million, clearly showing the
emerging importance of power-aware large-scale networking.

200

300

400

500

600

700

800

11/07 02/08 06/08 11/08 06/09 11/09

H
PL

 e
f�

ci
en

cy
 (

M
�o

p
s/

W
)

Year

Rank 1
Rank 10

CISE-12-6-Hoef.indd 31 16/10/10 2:54 PM

32� Computing in Science & Engineering

computation, we need it to retrieve the correct
results. Reducing communication overhead—that is,
the time that an application spends in communi-
cation routines—is an important goal. To achieve
it, most programmers strive to use the network as
little as possible, keeping the ratio of communica-
tion to computation in a parallel program as low
as possible.

We’ll use a 2D Poisson solver to demonstrate
typical communication overheads. Programmers
use Poisson solvers to solve a large class of elliptic
partial differential equations (PDEs) that model
many physical phenomena, such as heat dissipation.
Our example problem spans 5,000 grid points in
each dimension, with 25 million grid points total.

We ran the computation on 25 processes ar-
ranged in a 2D 5 × 5 grid (see Figure 3a). We dis-
tributed the grid to the five processes, with each
process receiving a 1,000 × 1,000 patch. In a stan-
dard five-point stencil, each grid point needs the
values of four adjacent points in its computation
(see Figure 3b) and requires communication of all
(4,000) elements at the process boundary to the
adjacent processes. The data that must be com-
municated is called the halo zone; the halo zone
is sent to a specialized communication buffer
(the ghost cells). Figure 3c shows communication
boundaries for process 11. Such solvers are usually
run iteratively until convergence criteria are met.

It’s possible to implement this algorithm in par-
allel by looping over the local grid and applying
the stencil operation. When the loop arrives at a
grid point that requires remote data, it can request
this data from a neighbor (which, given the sym-
metry, can proactively push the data to the receiv-
er). However, this very fine-grain communication
is inefficient.

A simple way to reduce network overheads is
to avoid small message transfers by aggregating

messages into local buffers before sending them.
In our example, the communication of all ghost
cells would have to happen at the beginning of an
iteration instead of when they’re actually needed.
This avoids the startup costs per message and thus
reduces the overhead. However, implementations
typically require local buffering and additional
memory copies at the sender or receiver.

Data movement in dynamic RAM (DRAM)
is one of the most energy-consuming operations
and should be avoided. Thus, even node-local
strategies, such as message aggregation, should be
used with care. One possible optimization would
be to pass blocks of data without buffering them
to the communication layer. The message pass-
ing interface (MPI) offers this possibility, using
derived data types to let users send data that’s
scattered through memory without packing it in
a contiguous buffer.

Energy Saving Strategies
Most of today’s interconnection networks have no
means to save power; they can’t, for example, turn
off links or clock down circuits. Thus, even when
idle, network links run at full steam, typically per-
forming physical link-level control protocols. Bursty
communication requires relatively high bandwidth
(that is, wide links and high frequency) and thus
high power consumption. But, because most pro-
grammers strive to keep communication overhead
low, they try to keep the network largely idle.

In this situation, there are two obvious ways to
save power: enable power-saving mechanisms in
the network, and alter algorithms and applications
to use the network more efficiently.

Hardware Power Savings
Industry groups have analyzed power-saving
techniques for network interconnects. IEEE’s

Figure 3. A Poisson solver example. The (a) domain decomposition, (b) five-point stencil, and the (c) halo
zones, which consist of data that must be communicated.

0 1 2 3 4

98765

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

5,
00

0
gr

id
 p

oi
nt

s

5,000 grid points

1,000 grid points

...
 1

,0
00

 g
rid

 p
oi

nt
s

...

11

5-point stencil

Halo zone

(a) (b) (c)

CISE-12-6-Hoef.indd 32 16/10/10 2:54 PM

November/December 2010 � 33

task force on energy efficient Ethernet (IEEE
802.3az) discussed power saving options such as
dynamic link-speed reduction, receiver modi-
fication, and deep sleep states. However, some
of those options might hinder today’s high-
performance applications because state-changes
from sleep to active could take up to 10 micro-
seconds, which directly adds to the latency and
significantly increases network jitter. In general,
while such mechanisms provide a huge power-
saving potential, applications should be notified if
performance is degraded.

Algorithmic Power Savings
Unlike hardware, which is typically replaced in
four-year cycles, algorithmic changes are usually
more difficult to implement because algorithms
and parallel codes are often significant long-term
investments. However, initial results show that
overlapping communication and computation can

lead to a steady use of the interconnect, which in
turn reduces the required bandwidth and/or im-
proves application performance and wait times.
Such optimizations have two effects. First, they
reduce the time to solution (see Figure 4b). Sec-
ond, they allow systems to throttle network speeds
and avoid bursty traffic (see Figure 4c).

In a previous study,8 we analyzed the effects
of overlapping computation and communication
over Gigabit Ethernet and SDR InfiniBand. Both
networks’ effective bandwidth differs by a factor
of 8, and the initial costs differ by nearly a fac-
tor of 15. Our Poisson solver with 8003 points on
96 nodes performs 34 percent worse over Giga-
bit Ethernet than over InfiniBand. However, as
Figure 5 shows, with overlapping computation
and communication, both networks perform
equally well. The applied optimizations avoid
memory copies and bursty network traffic and
thus reduce the power consumption.

Figure 4. Poisson example with power saving optimizations. Power-saving possibilities include (a) blocking
communication, (b) nonblocking communication with overlap, and (c) overlap with half bandwidth.

NET

CPU

Bandwidth

CPU speed

Time Time

ComputationH
alo

exchange

H
alo

exchange NET

CPU
Comp
halo

Compute
inner points

NET

CPU

Time

Comp
halo

Compute
inner points

(a) (b)

(c)

Figure 5. Parallel speedup for (a) Ethernet and (b) InfiniBand. Optimizing through overlapping
computation and communication produced equally good performance in both networks. The applied
optimizations avoid memory copies and bursty network traffic and thus reduce the power consumption.

(b)

0

 20

 40

 60

 80

 100

8 16 24 32 40 48 56 64 72 80 88 96

Sp
ee

du
p

Number of CPUs(a)

Blocking
Non-blocking

0

20

40

60

80

100

8 16 24 32 40 48 56 64 72 80 88 96

Sp
ee

du
p

Number of CPUs

Blocking
Non-blocking

CISE-12-6-Hoef.indd 33 16/10/10 2:54 PM

34� Computing in Science & Engineering

Optimized problem partitioning and task map-
ping could also save power by improving locality.9
However, it’s important to weigh the overheads of
computing the partition and redistributing the data
against the savings in memory and network usage.

Not all algorithms and applications readily
lend themselves to overlap like the Poisson solv-
er. Often, other more complex techniques must
be employed to extract the needed parallelism
of communication and computation. Among the
promising techniques are one-sided communica-
tion (such as MPI-2 One-Sided) and partitioned
global address space models (such as Unified Par-
allel C or Co-array Fortran). These eliminate
the receiver’s CPU overhead (with appropriate
hardware support) and thus enable efficient fine-
grained communication. This alleviates the need
for coalescing or at least takes it out of the applica-
tion developer’s hands. Power-optimized libraries
could use the relaxed memory consistency of re-
mote memory access models (such as MPI-2) to

transmit messages most efficiently, and program-
mers could overlap fine-grained communication
and computation conveniently.

Analysis: Small-Scale Network
Power Consumption
Future developments in software and hardware
are on their way, but several limitations apply to
today’s systems. Here, we report gathered data
comparing the power consumption of two differ-
ent networking technologies under microbench-
mark conditions, as well as full application runs.10

Our study compares the Mellanox double data
rate (DDR) InfiniBand ConnectX (MT26418)
with Myricom’s Myrinet 10G on 14 dual symmet-
ric multiprocessors (SMPs), quad-core IBM iDat-
aPlex (dx360) nodes. We used identical hardware
and software and simply swapped the cards and
switches for the benchmarks.10 Our InfiniBand

setup was based on copper (configuration A) and
we compared copper-based (10G-PCIE-8A-C,
configuration B) and fiber-based (10G-PCIE-8B-
QP, configuration C) Myricom cards.

The complete system’s power draw at 120 volts
varied between 17.7 and 40 amps idle and under
maximum load, respectively. Interestingly, the
idle power was 17.7 amps for configuration A,
17.3 amps for configuration B, and 16.9 amps for
configuration C, which is nearly a 5 percent dif-
ference. We also observed a similar difference
under high communication load, which increased
the power consumption by more than 20 percent.
Because the networking hardware doesn’t yet sup-
port power savings, the increase in total power
consumption is likely due to the CPU’s higher use
of the endpoints.

Our study used four applications:

•	 Multiple Instruction, Multiple Data (MIMD)
Lattice Computation (MILC/su3 rmd),

•	 Parallel Ocean Program (POP),
•	 Wave Propagation Program (WPP), and
•	 Random Axellerated Maximum Likelihood

(RAxML).

All programs use MPI for communication and ex-
hibited between 4 and 27 percent communication
overhead.

We recorded the power consumption for com-
plete runs of all four applications; Figure 6 shows
the power traces. Based on this data, we computed
the total energy consumption for each configura-
tion (see Table 1).

It would be interesting to compute the flops/J
for each application as is often done for the HPL
benchmark. A next step could then be to assess
each application’s power efficiency with regards
to some theoretical upper limit. To determine the
floating point efficiency, researchers typically as-
sess the application’s efficiency by comparing the
reached flops with the peak flops. Because this
model neglects other system parts—such as the
memory subsystem—it’s questionable in itself.
However, such metrics do encourage users to
make more efficient use of other resources, such
as memory or network.

Determining a power-efficiency measure is
harder because deriving an upper bound—that is,
determining the flops/J for an ideal application—
is a nontrivial task in itself and probably requires
a vendor specification (such as the theoretical
peak flops rate). This and equivalent iso-energy-
efficiency scaling (such as isoefficient scaling) is
an interesting topic for future research.

Not all algorithms and applications

readily lend themselves to overlap like the

Poisson solver. Often, other more complex

techniques must be employed to extract the

needed parallelism of communication and

computation.

CISE-12-6-Hoef.indd 34 16/10/10 2:54 PM

November/December 2010 � 35

Toward Large-Scale Systems
Scaling interconnection networks is hard and
requires several trade-offs. These trade-offs are
most important when it comes to choosing the
network topology—that is, the way in which the
networking elements are connected.

The network topology determines the two
most important characteristics of an interconnec-
tion network: bisection width and diameter. The
bisection width defines the minimum number of
links (cables) that must be removed to split the
network into two equal parts. It also determines
the performance of applications that commu-
nicate large messages in dense communication
patterns (such as all-to-all or random patterns).
The network diameter mainly influences the

performance of applications that communicate
small data, such as scalar values.

Low-diameter networks often have a high
bisection width, so the basic trade-off is cost/
power consumption versus diameter and bisec-
tion width. Many scientific applications require
only sparse—or even regular—communication
patterns, such as 2D and 3D Cartesian grids as
in our Poisson example. Developers can often
efficiently embed such applications in low-cost
topologies, such as torus networks, where the
number of switches scales favorably (O(P)) with
the network size (P). However, achieving efficient
parallel-application embedding remains a topic
of ongoing research, and most implementations
support only the embedding of Cartesian grids

Figure 6. Power-profiles for all configurations and networks. (a) Multiple Instruction, Multiple Data (MIMD)
Lattice Computation (MILC), (b) Parallel Ocean Program (POP), (c) Wave Propagation Program (WPP), and
(d) Random Axellerated Maximum Likelihood (RAxML).

23

24

25

26

27

28

29

50 100 150 200 250 300 350 400 450

Po
w

er
 c

on
su

m
p

tio
n

(a
m

p
er

e)

Application runtime (s)

A
B
C

A
B
C27

28

29

30

31

0 100 200 300 400 500 600 700

Po
w

er
 c

on
su

m
p

tio
n

(a
m

p
er

e)

Application runtime (s)

(a)

(c)

18

19

20

21

22

23

10 20 30 40 50 60 70

Po
w

er
 c

on
su

m
p

tio
n

(a
m

p
er

e)

Application runtime (s)

A
B
C

(b)

ApplicationApplication

Application
A
B
C

29

30

31

32

33

34

35

36

0 100 200 300 400 500 600 700

Po
w

er
 c

on
su

m
p

tio
n

(a
m

p
er

e)

Application runtime (s)(d)

Application

Table 1. Total power consumption (in kilowatts per hour) for each problem set.

Application Configuration A Configuration B Configuration C

MIMD Lattice Computation (MILC) 3.879 (100%) 3.875 (99.9%) 3.819 (98.5%)

Parallel Ocean Program (POP) 0.458 (100%) 0.432 (94.3%) 0.406 (88.6%)
Wave Propagation Program (WPP) 6.807 (100%) 6.781 (99.6%) 6.713 (98.6%)

Random Axellerated Maximum
Likelihood (RAxML)

8.315 (100%) 8.164 (98.2%) 8.015 (96.4%)

CISE-12-6-Hoef.indd 35 16/10/10 2:54 PM

36� Computing in Science & Engineering

into torus topologies.11 Most large-scale systems
either have deep hierarchies (such as Road Run-
ner) or torus networks (such as Blue Gene or Cray
XT systems) as topologies.

Some communication patterns, such as wheel
or star graphs, are hard to embed into torus to-
pologies and many applications require the full
bisection width and/or low diameter. Examples of
such applications are 3D fast Fourier transforma-
tions (FFTs), which perform large-data transpose
(all-to-all) operations, or parallel graph computa-
tions with data-driven and highly dynamic com-
munication patterns.

Example Topologies
To support all applications that require maxi-
mum bisection width and minimal diameter, we
need networks in which the number of required
switches grows superlinearly (O(P log P)), such
as Clos or fat-tree networks. However, the power
consumption of such networks grows significantly
at scale. We’ll again do a simple calculation based
on our measurement results. InfiniBand switches
(configuration A) have 24 ports while Myrinet
switches (configuration B and C) have 32 ports.
Both switches draw 0.48 amps (This is a pure
model computation; different integration and
port counts will change the computation and shift
some constants in the results.)

In the following, we’ll extrapolate our simple
data to a large-scale system as described in the US
Department of Energy’s report on exascale sys-
tems.12 Our envisioned exascale scenario consists
of 1.3 million processing elements with 64 cores
each. If we assume SMP systems with 8 process-
ing elements (PEs) per node, our model system
would have 162,500 network endpoints. The net-
work would have three hierarchies:

•	 the on-chip network connecting all cores,
•	 the off-chip network connecting all PEs in a

node, and
•	 the off-node network, which we discuss here.

We compare two typical network topologies. The
torus topology scales with O(P) switches linearly
with the number of nodes, but has a high diame-
ter and low bisection width. The fat-tree topology
that scales with O(P log(P)) switches superlinearly
with the number of nodes and has low diameter and
high bisection width. Figure 7 shows a 2D torus
with 36 nodes (four-port switches, with one node
per switch) and a two-stage fat-tree with 144 nodes
(24-port switches, with 12 nodes per level-1 switch).

In the 3D torus network, each node has six
neighbors. If we built a torus with full bandwidth
to all neighbors, we could attach three nodes to
each InfiniBand switch and four nodes to each
Myrinet switch. This would leave three and four
ports per switch idle, respectively. If we scaled
this network to 162,500 nodes, we would need
54,167 InfiniBand or 40,625 Myrinet switches. In
the fat-tree network with full bisection width and
a similar number of endpoints, we would need a
five-level fat-tree requiring 60,939 and 45,706
switches for InfiniBand and Myrinet, respectively.

In both cases, the interconnect would represent
a significant fraction of the total power consump-
tion; the switches alone consume as much power as
several thousand computer nodes under full load.
However, integration and more power-effective
designs will likely lower this consumption signifi-
cantly. IBM’s Blue Gene supercomputer, for ex-
ample, integrates the torus network in the CPU
chip.13 Nonetheless, the network transceivers
that drive the external network links use a sig-
nificant fraction of the switch’s power.

Figure 7. Torus and fat-tree network topologies. (a) The two-stage fat-tree topology has 144 nodes (24-port
switches, with 12 nodes per level-1 switch). (b) The 2D torus topology has 36 nodes (four-port switches,
with one node per switch).

(a) (b)

CISE-12-6-Hoef.indd 36 16/10/10 2:54 PM

November/December 2010 � 37

Routing and Fiber-Based Technologies
Network routing should also be investigated for
power savings. For example, destination-based dis-
tributed routing as used in InfiniBand or Ethernet
networks requires a look-up in a forwarding table
at each switch. Source-based routing as used in
Myrinet or Blue Gene simply encodes the route in
each packet’s header, enabling a much simpler logic
in switches. For the latter, it’s necessary to include
the power costs of encoding the route into each
packet. There’s thus no general silver bullet to save
energy in routing and topology of large-scale net-
works; most decisions require careful analysis of all
alternatives in the limits of current technology.

An interesting emerging technology is the wide
availability of fiber-based interconnects. While
the first generation of these interconnects uses the
same electrical connectors and are thus not saving
much energy, it’s possible to drive fiber cables with
less energy over higher distances than copper-based
cables. The higher cable lengths permit the con-
struction of networks with lower diameters and full
bisection width, such as the flattened butterfly.14
This again contributes to energy savings and per-
formance improvements. However, today’s optical
networking is relatively unoptimized. This is due
both to low market volume and to the expense of
crossing over from copper to optics—in the range
of several meters for cost and energy consumption.

I t’s now up to the hardware and software
communities to make network energy con-
sumption an explicit variable in the equa-
tion. Methods, such as power saving states

and low-power optics, could lead to quick success-
es on the hardware side. Power savings in software
are at least as important and have a huge potential.
Software development tools and languages can
help programmers enable low-power applications
that use the networking resources more effectively.

Toward exascale, we need new system designs,
topologies, and programming environments to
stay within the practical energy limitations. All
such developments must consider energy con-
sumption hand-in-hand with the performance
requirements.�

References
1.	 L.A. Barroso, “The Price of Performance,” ACM

Queue, vol. 3, no. 7, 2005, pp. 48–53.

2.	 Monthly Energy Review, Oct. 2008, US Energy

Information Admin., 2008; www.eia.gov/FTPROOT/

monthlyhistory.htm.

3.	 D. Klein, Challenges in Energy-Efficient Memory Archi-

tecture, presentation, Power Efficiency and the Path to

Exascale Computing Workshop, 2008; www.lbl.gov/

CS/html/SC08ExascalePowerWorkshop/Klein.pdf.

4.	 M. Taiji, “MDGrape-3 Chip: A 165-Gflops Applica-

tion-Specific LSI for Molecular Dynamics Simula-

tions,” Proc. 16th IEEE Hot Chips Symp., IEEE CS Press,

2004, pp. 49–63; doi:10.1145/1188455.1188506.

5.	 D.E. Shaw et al., “Anton, a Special-Purpose Machine

for Molecular Dynamics Simulation,” Computer Archi-

tecture News, vol. 35, no. 2, 2007, pp. 1–12.

6.	 W.C. Feng, “Making a Case for Efficient Supercom-

puting,” ACM Queue, vol. 1, no. 7, 2003, pp. 54–64.

7.	 N.R. Adiga et al., “An Overview of the Blue Gene/L

Supercomputer,” Proc. Int’l Conf. High-Performance

Computing, Networking, Storage, and Analysis, ACM

Press, 2002, pp. 1–22.

8.	 T. Hoefler et al., “Optimizing a Conjugate Gradient

Solver with Non-Blocking Collective Operations,”

J. Parallel Computing, vol. 33, no. 9, 2007,

pp. 624–633.

9.	 P. Raghavan, Energy-Aware Algorithms at Exascale, pre-

sentation, Power Efficiency and the Path to Exascale

Computing Workshop, 2008; www.lbl.gov/CS/html/

SC08ExascalePowerWorkshop/PRSCfinal.pdf.

10.	 T. Hoefler, T. Schneider, and A. Lumsdaine, “A

Power-Aware, Application-Based, Performance Study

of Modern Commodity Cluster Interconnection

Networks,” Proc. 23rd IEEE Int’l Parallel & Distributed

Processing Symp., IEEE Press, 2009, pp. 1–7.

11.	 H. Yu, I.H. Chung, and J.E. Moreira, “Topology

Mapping for Blue Gene/L Supercomputer,” Proc.

Int’l Conf. High-Performance Computing, Networking,

Storage, and Analysis, IEEE CS Press, 2006, no. 116;

http://doi.acm.org/10.1145/1188455.1188576.

12.	 H. Simon, T. Zacharia, and R. Stevens, Modeling and

Simulation at the Exascale for Energy and the Environ-

ment, E3 report, US Dept. Energy, 2007; www.sc.doe.

gov/ascr/ProgramDocuments/Docs/TownHall.pdf.

13.	 M. Blumrich et al., Design and Analysis of the Blue Gene/

L Torus Interconnection Network, report, IBM, 2003.

14.	 J. Kim, W.J. Dally, and D. Abts, “Flattened Butterfly:

A Cost-Efficient Topology for High-Radix Networks,”

Proc. 34th Int’l Symp. Computer Architecture, ACM

Press, 2007, pp. 126–137.

Torsten Hoefler leads the Blue Waters project’s per-
formance modeling and simulation efforts at the
National Center for Supercomputing Applications
at the University of Illinois at Urbana-Champaign.
His research interests focus on large-scale HPC net-
working and parallel programming frameworks.
He a coauthor of MPI-2.2, chair of MPI-3’s collec-
tive operations working group. Hoefler has a PhD
in computer science from Indiana University. He is a
member of IEEE and the ACM. Contact him at htor@
illinois.edu.

CISE-12-6-Hoef.indd 37 16/10/10 2:54 PM

