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Is dislocation flow turbulent in deformed crystals?
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Intriguing analogies were found between a model of plastic deformation in crystals and turbu-
lence in fluids. A study of this model provides remarkable explanations of known experiments and
predicts fractal dislocation pattern formation. Further, the challenges encountered resemble those
in turbulence, which is exemplified in a comparison with the Rayleigh-Taylor instability.

From horseshoes and knives to bridges and aircrafts,
mankind has spent five millennia studying how the struc-
tural properties of metals depend not only on their con-
stituents, but also how the atoms are arranged and re-
arranged as metals are cast, hammered, rolled, and bent
into place. A key part of the physics of this plastic dis-
tortion is played by the motion of intrinsic line defects
called dislocations, and how they move and rearrange to
allow the crystal to change shape.

Here, we describe the intriguing analogies we found
between our model of plastic deformation in crystals
and turbulence in fluids. Studying this model led
us to remarkable explanations of existing experiments
and let us predict fractal dislocation pattern formation.
The challenges we encountered resemble those in turbu-
lence, which we describe here with a comparison to the
Rayleigh-Taylor instability.

For brevity, we offer a minimal problem description

(a) Continuum Dislocation Dynamics (b) Turbulence

FIG. 1: Comparison of our continuum
dislocation dynamics (CDD) with turbulence.
(a) Dislocation density profile as it evolves from a
smooth random initial condition. The structures form
fractal cell wall patterns. Dark regions represent high
dislocation density. (b) Rayleigh-Taylor instability at a
late time. The fluid (air) with two layers of different
densities mix under the effect of gravity. The emerging
flows exhibit complex swirling turbulent patterns. The
color represents density (red for high, blue for low).

that ignores many important features of plastic deforma-
tion of crystals, including yield stress, work hardening,
dislocation entanglement, and dependence on material
properties [1]. We focus on the complex cellular struc-

tures that develop in deformed crystals, which appear to
be fractal in some experiments [2]. These fractal struc-
tures are reproduced by our continuum dislocation dy-
namics (CDD) [3] theory (see Figure 1a).

Not only do the resulting patterns match the experi-
mental ones, but the theory also has rich dynamics, akin
to turbulence. This raises a question: Is the dislocation
flow turbulent? Here, we focus on exploring this question
by building analogies to an explicit turbulence example:
the Rayleigh-Taylor instability. As we describe, our the-
ory displays similar conceptual and computational chal-
lenges as does this example, which reassures us that we’re
on firm ground.

This CDD model [3–5] provides a deterministic expla-
nation for the emergence of fractal wall patterns [3, 4]
in mesoscale plasticity. The crystal’s state is described
by the deformation-mediating dislocation density ̺ij –
where i denotes the direction of the dislocation lines and
j their Burgers vectors [1] – and our dynamical evolu-
tion moves this density with a local velocity Vℓ, yielding
a partial differential equation (PDE):

∂t̺ij − εimn∂m(εnℓkVℓ̺kj) = ν∂4̺ij (1)

Here Vℓ is proportional to the net force on it (overdamped
motion), coming from the other dislocations and the ex-
ternal stress. That is,

Vℓ =
D

|̺|
σmnǫℓmk̺kn

where σ is the local stress tensor, the sum of an external
stress σext

ij and the long-range interactions between dis-

locations. σint

ij =
∫
Kijmn(r − r′)̺mn(r

′)dr′, with Kijmn

the function representing the stress at r generated by ̺
at r′ [1]. The term proportional to ν is the regularizing
quartic diffusion term for the dislocation density (an ar-
tificial viscosity), which we’ll focus on here. (In fact, the
equation we simulate here is further complicated to con-
strain the motion of the dislocations to the glide plane
while minimizing the elastic energy [3, 4].) The details of
our equations aren’t crucial: dislocations move around
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with velocity ~V , pushed by external loads and internal
stresses to lower their energies. Our equation is nonlin-

ear, and it’s exactly this non-linearity that makes our
theory different from more traditional theories of contin-
uum plasticity.

Turbulence is an emergent chaotic flow, typically de-
scribed by the evolution of the Navier-Stokes equations
at high Reynolds numbers:

ρ (∂t~v + ~v · ∇~v) = µ∇2~v + ~f
∂tρ+∇ · (ρ~v) = 0

(2)

where ρ is the local density of the fluid with velocity ~v
under the application of local external force density ~f .
The term proportional to µ is the fluid viscosity, and µ
is inversely proportional to the Reynolds number.

Despite this Navier-Stokes equation’s enormous suc-
cess in describing various experiments, there are many
mathematical and numerical open questions associated
with its behavior as µ → 0. In this regime, complex
scale-invariant patterns of eddies and swirls develop in a
way that isn’t fully understood: turbulence remains one
of the classic unsolved problems of science.

How is ν related to µ? Eq. (2) can be written differently
by dividing the whole equation by ρ, in this equation
µ/ρ (in the incompressible case) is called the kinematic

viscosity (usually denoted as ν). Our artificial viscosity
ν in Eq. (1) is analogous to this kinematic viscosity. For
turbulence, µ in Eq. (2) is given by nature. In contrast,
our ν in Eq. (1) is added for numerical stability; it smears
singular walls to give regularized solutions. This is phys-
ically justified because the atomic lattice always provides
a cutoff scale. How do we know that this artificial term
gives the ‘correct’ answer (given that there can be many
different solutions to the same PDE)? Numerical meth-
ods for shock-admitting PDEs are validated by showing
that the vanishing grid spacing limit h → 0 gives the
same solution as the ν → 0 limit (that is, the viscosity

solution). We will argue that both our model of plasticity
and the Navier-Stokes equations do not have convergent
solutions as µ or ν → 0. We’re reassured from the turbu-
lence analogy and are satisfied with extracting physically
sensible results from our plasticity theory – viewing it not
as the theory of plasticity, but as an acceptable theory.

To solve Eq. (1), we implemented a second order cen-
tral upwind method [6] especially developed and tested
for conservation laws, such as Eqs. (1) and (2). The
method uses a generalized approximate Riemann solver
which doesn’t demand the full knowledge of characteris-
tics [6]. For the simulations of Navier-Stokes dynamics
(Eq. (2)) we use PLUTO [7], a software package built to
run hydrodynamics and magnetohydrodynamics simula-
tions, using the Roe approximate Riemann solver.

Accurately capturing singular flows is a challenge in
computational fluid dynamics. A classic example of such
singularities is the sonic boom that happens when an ob-
ject passes through a compressible fluid (described by a
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(a) Non-convergence in dislocation dynamics (see Eq. (1))
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(b) Non-convergence in turbulence
dynamics (Rayleigh-Taylor instability)

FIG. 2: Non-convergence exhibited in both
plasticity and turbulence. As time progresses, the
curves, which are initially monotonically decreasing, flip
order and become non-convergent (where the lines cross
each other). Red arrows show where the convergence is
lost.

version of Navier-Stokes) faster than its speed of sound.
The sonic boom is a sharp jump in density and pres-
sure, which causes the continuum equations to become
ill-defined. Our PDEs, depending on gradients of ̺, be-
come ill-defined when ̺ develops an infinite gradient at
a dislocation density jump.

The numerical methods we use are designed to appro-
priately solve the so-called Riemann problem: the evo-
lution of a simple initial condition with a single step in
the conserved physical quantities. For hyperbolic conser-
vation laws, exact solutions of the Riemann problem can
be obtained by decomposing the step into characteristic
waves. However, in most non linear problems, finding ex-
act Riemann solutions involves iterative processes th at
are either slow or (practically) impossible, and thus ap-
proximate solutions are employed instead. Both methods
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we use are approximate in different ways, but are quali-
tatively similar.

These sophisticated methods are designed to handle
the kind of density jumps seen in sonic booms. In our
dislocation dynamics, though, we have a more severe sin-
gularity that forms – a sharp wall of dislocations that
becomes a δ-function singularity in the dislocation den-
sity (as ν → 0). These δ-shocks are naturally present in
crystals – they describe, for example, the grain bound-
aries found in polycrystalline metals, which (in the con-
tinuum limit) form sharp walls of dislocations separating
dislocation-free crystallites. Unfortunately, the mathe-
matical and computational understanding of PDEs form-
ing δ-shocks is relatively primitive; there are only a few
analytic and numerical studies in one dimension (for an
example, see [8]). Currently, to our knowledge, there’s
no numerical method especially designed for δ-shock so-
lutions. Moreover, in a strict mathematical sense, several
properties of Eq. (1) – nonlocality and mixed hyperbolic
and parabolic features – haven’t been proven to permit a
successful application of shock-resolving numerical meth-
ods.

In the simulations presented here, we won’t add an
explicit viscosity (so µ = ν = 0); instead, we have an
effective numerical dissipation [6] that depends on the
grid spacing h as hn, where n depends on the numerical
method used. (Eq. (2) with µ = 0 is the compressible
Euler equation. Although we present our simulations as
small numerical viscosity limits of Navier-Stokes, they
could be viewed as particular approximate solutions of
these Euler equations.)

Figure 1 shows typical emerging structures in simu-
lations of both the CDD Eq. (1) and the Navier-Stokes
dynamics Eq. (2): both are complex, displaying struc-
tures at many different length scales; sharp, irregular
walls in the CDD and vortices in Navier-Stokes. Al-
though it might not be surprising to professionals in
fluid mechanics that nonlinear PDEs have complex, self-
similar solutions, it’s quite startling to those studying
plasticity that their theories can contain such complex-
ity (even though this complexity has been observed in ex-
periments [2]): traditional plasticity simulations do not
lead to such structures.

These rich and exotic solutions demand scrutiny. How
do we confirm the validity of our solutions? For contin-
uum PDEs solved on a grid, an important problem that
needs to be addressed is the effect of the imposed grid.
Traditionally, it’s expected that as the grid becomes finer,
the solution is likely to be closer to the real continuum so-
lution. For differential equations that generate singulari-
ties, one cannot expect simple convergence at the singu-
lar point! How do we define convergence when singulari-
ties are expected? For ordinary density-jump shocks like
sonic booms, mathematicians have defined the concept of
a weak solution: it’s a solution to the integrated version
of the original equation, bypassing singular derivatives.

For many problems, researchers have shown that
adding an artificial viscosity and taking the limit to zero
yields a weak solution to the problem. For some prob-
lems, the weak solution is unique, while for others there
can be several: different numerical methods or types of
regularizing viscosities can yield different dynamics of the
singularities. This makes physical sense: if a singular de-
fect (a dislocation or a grain boundary) is defined on
an atomic scale, shouldn’t the details of how the atoms
move (ignored in the continuum theory) be important
for the defect’s motion? In the particular case of sonic
booms, the microscopic physics picks out the viscosity

solution (given by an appropriate µ → 0 limit), lead-
ing mathematicians to largely ignore the question of how
micro-scale physics determines the singularities’ motion.

However, our problems here are more severe than pick-
ing out a particular weak solution. Neither our disloca-
tion dynamics nor the Navier-Stokes equation (with very
high Reynolds number) converge in the continuum limit
even for gross features, whether we take the grid size to
zero in the upwind schemes or we take ν → 0 (or µ → 0)
as a mathematical limit.

Figure 2a shows a quantitative measure of the our sim-
ulation’s convergence as a function of time, as the grid
spacing h = 1/N becomes smaller. We measure conver-
gence using the L2 norm

||̺̂2N − ̺N ||2 ≡

(∫
‖̺̂2N − ̺N‖2 dx

)1/2

where ̺̂2N has been suitably smeared to the resolution
of ̺N . (Normally we’d check the difference between the
current solution and the true answer, but here we don’t
know the true answer.) Here, We study the relaxation of
a smooth but randomly chosen initial condition – that is,
a perfect single crystal beaten with mesoscale hammers
with round heads – as a function of time. We see that
for short times these distances converge rapidly to zero,
implying convergence of our solution in the L2 norm.
However, at around t = 0.02 to 0.2, the solutions begin to
become increasingly different as the grid spacing h → 0.

This worried us at the beginning because it suggests
that the numerical results might be dependent somehow
on the artificial finite-difference grid we use to discretize
the problem, and therefore might not reflect the correct
continuum physical solution. We checked this by adding
the aforementioned artificial viscosity ν in Eq. (1). We
found that it converges nicely when ν is fixed as the grid
spacing goes to zero. However, this converged solution
is not unique: it keeps changing as ν → 0. So, it’s our
fundamental equation of motion (Eq. (1)) and not our nu-
merical method that fails to have a continuum solution.
This would seem even more worrisome: How do we un-
derstand a continuum theory whose predictions seem to
depend on the smallest studied length scale (the atomic
size)?
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(a) h = 1/128 (b) h = 1/256 (c) h = 1/512

FIG. 3: Continuum dislocation dynamics. Simulation results at t = 1.0 of our CDD Eq. (1) at different grid
sizes (h), starting from a smooth initial condition. We use periodic boundaries in both horizontal and vertical
directions, and all physical quantities are constant along the perpendicular direction.

(a) h = 1/128 (b) h = 1/256 (c) h = 1/512

FIG. 4: The Rayleigh-Taylor instability of the
Navier-Stokes equation. The Rayleigh-Taylor
instability is a fluid mixing phenomenon that occurs
when an interface between two different fluid densities
is pulled by gravity. These simulation results here are
the Rayleigh-Taylor instability at t = 4.0, for µ → 0, at
different grid spacings (h) with periodic boundaries in
the horizontal direction and fixed boundaries along the
vertical. The initial condition has density interface with
a single mode perturbation in the vertical velocity. The
system size is (Lx, Ly) = (1.0, 2.0).

It’s here that the analogy to turbulence has been cru-
cial for understanding the physics. It’s certainly not ob-
vious that the limit of strong turbulence µ → 0 in Navier-
Stokes (Eq. (2)) should converge to a limiting flow. Ac-
tually, our short experience suggests that there is no vis-
cosity solution for Eq. (2). Turbulence has a hierarchy of
eddies and swirls on all length scales, and as the viscos-

ity decreases (for fixed initial conditions and loading) not
only do the small-scale eddies get smaller, but also the
position of the large-scale eddies at fixed time change as
the viscosity or grid size is reduced.

Figure 2b depicts the convergence behavior of a simu-
lation of the Rayleigh-Taylor instability (as in Fig. 2a).
The instability triggers turbulent flow, and like our dis-
location simulations, convergence is lost after t ∼ 2.0
as the grid spacing h gets smaller. Our choice of the
Rayleigh-Taylor instability for comparison is motivated
by the presence of robust self-similar features (such as the
“bubbles” and “spikes” in Fig. 4 [9]), and by the spatio-
temporally non-converging features of the initially well-
defined interface.

The interface between two fluid densities is analogous
to our dislocation cell walls. Even though the Rayleigh-
Taylor instability is different from homogeneous turbu-
lence in important ways, we also verified that the lat-
ter shows similar spatio-temporal non-convergence but
statistical convergence (simulating the Kelvin-Helmholtz
instability for compressible flow in 2D). The Rayleigh-
Taylor instability provides the best visualization of the
analogy between the two phenomena, but this non-
convergence appears to be more general. Fig. 4 shows
density profiles at intermediate times for the Rayleigh-
Taylor instability. The figure shows the formation of
vortices (swirling patterns), and the simulations look sig-
nificantly different as the grid spacing decreases. Again,
this is analogous to the corresponding simulations of our
dislocation dynamics shown in Fig. 3, where larger cells
continue to distort and shift as the grid spacing decreases.

If the simulations aren’t convergent, how can we decide
if the theory is physically relevant and can be trusted
to interpret experiments? In turbulence, it has long
been known that, as vortices develop, self-similar pat-
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FIG. 5: Statistical properties and convergence
Although the continuum dislocation dynamics (CDD)
simulations with different grid sizes are
non-convergent (Fig. 2a), the statistical properties are
the same. The dislocation density correlation function
is plotted here for different simulation sizes at the same
time, exhibiting consistent power laws.

terns arise in the flow and exhibit power laws in the
energy spectrum and in the velocities’ correlation func-
tions [10]. A successful simulation of fully developed tur-
bulence isn’t judged by whether the flow duplicates an
exact solution of Navier-Stokes! Turbulence simulations
study these power laws, comparing them to analytical
predictions and experimental measurements.

Our primary theoretical focus in our plasticity study [3]
has been to analyze power-law correlation functions for
the dislocation density, plastic distortion tensor, and lo-
cal crystalline orientation. As Fig. 5 shows, like tur-
bulence simulations, these statistical properties seem to
converge nicely in the continuum limit.

It’s worth noting that, in both cases, non-convergence
emerges when small scale features appear on the wall (see
Fig. 6) or the interface (see Fig. 7):

In the case of our simulations of plastic flow (Eq. 1),
starting from smooth initial density profiles, finite time
singularities develop in the form of δ-shocks. The ex-
istence of finite-time singularities was shown in a 1D
variant of these equations, which is associated with the
Burgers equation [11]. Figure 6 shows how this effect
occurs by considering the two-norm differences (the in-
tegrand in space of the L2 norm discussed earlier). At
t = 0.04 (see Fig. 2a) when the N = 512 curve starts to
cross all the other curves, singular features start to ap-
pear around a wall (Fig. 6b). Although the boundaries
are non-convergent when specific locations and times are
considered (Fig. 2a), the statistical properties and asso-
ciated self-similarity (Fig. 5) are convergent.

In the case of Navier-Stokes simulations (see Fig. 7),

the existence of finite-time singularities is a topic of active
research: even though local-in-time analytic solutions are
easily shown to exist, global-in-time analytic solutions
can be proven to exist only for special cases, such as in
the 2D incompressible genuine Euler equation [12]. In
3D, the mechanism of vortex stretching is conjectured to
lead to finite-time singularities [13], even though there
are still crucial open questions. Despite its complexity,
turbulence can be concretely studied in special cases. For
our example of the Rayleigh-Taylor instability, the two-
fluid interface gets distorted and “bubbles” form (Fig. 4);
over time, the bubbles exhibit emergent self-similar char-
acteristics [9], showing statistical convergence. However,
there is no spatio-temporal convergence, because the in-
terface develops complex, turbulent features as the grid
becomes finer (see Figs. 2b and 7).

Sometimes science seems to be fragmented, with in-
dependent fields whose vocabularies, toolkits, and even
philosophies almost completely separate. But many valu-
able insights and advances arise when ideas from one field
are linked to another. Computational science is provid-
ing a new source of these links, by tying together fields
that can fruitfully share numerical methods.

Our use of well-established numerical methods from
the fluids community made it both natural and easy to
utilize their analytical methods for judging the validity
of our simulations and interpreting their results.
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(a) h = 1/256 (b) h = 1/512 (c) h = 1/256 (d) h = 1/512

t = 0.04 t = 1.00

FIG. 6: Non-convergence and singularity for CDD For (a) and (b), t = 0.04; for (c) and (d), t = 1.00. The
two-norm difference between h and h/2 are plotted. At short time, t = 0.04, the differences are small: (a) is empty
and (b) nearly so. At later times, t = 1.00, the two-norm difference becomes significant esepcially where the walls
are forming (see Fig. 3 for wall locations).

(a) h = 1/64 (b) h = 1/128 (c) h = 1/256 (d) h = 1/64 (e) h = 1/128 (f) h = 1/256

t = 2.0 t = 3.0

FIG. 7: Non-convergence and vortices for Navier-Stokes For (a), (b), and (c) t = 2.0; for (d), (e), and (f)
t = 3.0, corresponding to the two red arrows in Figure 2b. The two-norm difference between h and h/2 is plotted.
At t = 2.0, small structures start to become strong, as in (c), and the same is true at t = 3.0 for h = 1/128, as in (e).
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